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Abstract. Parity games and their subclasses and variants pop up in
various contexts: µ-calculus, tree automata, program verification [3, 1,
8]. Such games provide only binary information indicating the winning
player. However, in classical games theory [12] the emphasis is rather on
how much we win or lose. Can we incorporate the information about the
profits and losses into parity games?

1 Games

Our games oppose two players, player 1 and player 2. At each moment the game
is in some state s and the player controlling s chooses an action available at
s which results in issuing an immediate reward r and changing the state to a
new one s′. Both the reward and the new state depend deterministically on the
executed action, i.e. we can assume without loss of generality that the set of
actions A is just a subset of S×<×S, where S is the set of all states and < is a
set of (immediate) rewards. If a = (s1, r, s2) ∈ A then the state s1 = source(a) is
the source of the action a indicating the state where a is available, s2 = target(a)
is the target state where the game moves upon the execution of a and finally
r = reward(a) ∈ < is the reward associated with a.

The set S of states is partitioned onto two sets, the set S1 of states controlled
by player 1 and the set S2 of states controlled by player 2. For each state s the
set A(s) = {a ∈ A | source(a) = s} is the set of actions available at s and we
assume that this set is always non-empty for each state s.

The tuple A = (S1, S2, A) satisfying the conditions above is called an arena

over the set < of rewards. Unless otherwise stated, we assume always that an
“arena” means in fact a finite arena, i.e. an arena with finite state and action
spaces.

A history in arena A is a finite or an infinite sequence h = a1a2 . . . of actions
such that ∀i, target(ai) = source(ai+1). The source of the first action a0 is the
source, source(h), of history h. If h is finite then the target of the last action is
the target, target(h), of h.

It is convenient to assume that for each state s there is an empty history 1s

with the source and the target s.
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We start the play by putting a token at some initial state s1 and the players
play by moving the token from state to state: at each stage if the token is at
a state s ∈ Si controlled by player i than player i chooses an action a ∈ A(s)
available at s and moves the token to the state target(a).

Starting from an initial state s1, the infinite sequence of actions p = a1a2 . . .
executed by the players is called a play in the arena A, i.e. plays are just infinite
histories in A.

Upon the termination of a play p player 1 receives from player 2 a payoff. In
this paper we assume that the payoff depends uniquely on the infinite sequence
of rewards occurring in the play p.

An infinite sequence r = r1r2 . . . of elements of < is said to be finitely gener-
ated if there exists a finite subset X of < such that all ri belong to X .

A payoff mapping u over < maps finitely generated infinite sequences of
rewards r = r1r2 . . . into R, u : r 7→ u(r) ∈ R. Since we are concerned only with
plays over finite arenas we do not need to specify what is the payoff for those
infinite reward sequences which are not finitely generated.

A game over < is just a couple G = (A, u) consisting of an arena and a payoff
mapping. A play p = a0a1 . . . in the game G is a play in the underlying arena.
Upon completing p player 1 receives from player 2 the amount u(reward(p)),
where reward(p) := reward(a1), reward(a2), . . . is the sequence of rewards occur-
ring in p. To avoid clutter we abuse the notation and we write systematically
u(p) to denote u(reward(p)) (this can be seen as an extension of payoff mapping
to plays).

Parity games. For parity games the set of rewards < is the set N of non-negative
integers and following the tradition we call the elements of < = N priorities
rather than rewards.

For any infinite finitely generated sequence of priorities n = n1n2 . . . let

priority(n) = lim sup
i→∞

ni (1)

be the maximal priority occurring infinitely often in n. The payoff mapping in
the parity games is given by

u(n) =

{

1 if priority(n) is odd,

0 if priority(n) is even.
(2)

Two remarks are in order. Usually in parity games we speak about the winning
and the losing player, however it is clear that this is equivalent to the binary
payoff formulation given above and we prefer payoffs since subsequently we will
be interested in profits or losses and not just in the mere information who wins.
Secondly, in parity games we usually attach priorities to states not to actions
but this has no influence on the game analysis and game theoretists prefer to
associate rewards with actions [11].



Discounted and mean-payoff games. Let us compare briefly parity games with
other similar games studied in game theory rather than in computer science. Two
types of games are particularly popular, discounted and mean-payoff games [11,
4]. In both these games < = R, i.e. the rewards are real numbers.

In mean-payoff games the payoff for an infinite sequence of real numbers r =
r1r2 . . . is calculated through the formula mean(r) = lim supn→∞

1
n

∑n
i=1 ri .

Instead of taking lim sup it is possible to consider the games with the payoff
mean(r) = lim infn→∞

1
n

∑n
i=1 ri.

In the case of discounted games player 1 receives from 2 the amount discλ(r) =
(1 − λ)

∑∞
i=0 λiri, where λ ∈ (0, 1) is a discount factor.

The striking difference between the parity games on the one hand and the
mean-payoff or the discounted games on the other hand is that in the later
the emphasis is put on the amount of profit/loss while for the parity games the
information is just binary, indicating the winner without any attempt to quantify
his profit. Obviously for games inspired by economic applications to be able to
quantify the profit is essential, after all, the difference between winning or losing
10$ is hardly noticeable (and both events in themselves are of little interest)
while the difference between winning 10$ and winning 106$ is formidable and of
great interest to the player.

Can parity games be adapted to provide a pertinent information about the
player’s profits/losses instead of just a plain indication who wins? It turns out
that in fact several such extensions are possible for parity games and moreover
these games preserve the most appealing property of parity games: the existence
of optimal memoryless strategies for both players.

1.1 Strategies

A strategy of a player is his plan of action, it tells him which action to take when
it is his turn to move. The choice of the action to be executed can depend on
the whole sequence of previous moves. Thus a strategy for player 1 is a mapping

σ : {h | h a finite history with target(h) ∈ S1} −→ A (3)

such that if s = target(h) then σ(h) ∈ A(s).
A strategy σ of player 1 is said to be positional or memoryless if the chosen

action depends only on the last state in the history. It is convenient to view a
positional strategy as a mapping

σ : S1 → A (4)

such that σ(s) ∈ A(s), ∀s ∈ S1.
Strategies and positional strategies for player 2 are defined in the similar way

with S2 replacing S1.
In the sequel, σ and τ , possibly with subscripts or superscripts, will always

denote strategies for players 1 and 2 respectively.
A finite or infinite history h = a1a2 . . . is said to be consistent with a strategy

σ of player 1 if for each i such that target(ai) ∈ S1, ai+1 = σ(a0 . . . ai). Moreover,



if s = source(a1) ∈ S1 then we require that a1 = σ(1s) (recall that 1s is a special
play of zero length with the source and target s). The consitency with strategies
of player 2 is defined similarly.

Given a pair of strategies σ and τ for both players and a state s, there exists
in arena A a unique infinite play p, denoted pA(s, σ, τ), consistent with σ and τ
and such that s = source(p).

Strategies σ] and τ ] of players 1 and 2 are optimal in the game G = (A, u)
if for any state s ∈ S and any strategies σ and τ

u(pA(s, σ, τ ])) ≤ u(pA(s, σ], τ ])) ≤ u(pA(s, σ], τ)) . (5)

Thus if both strategies are optimal the players do not have any incentive to
change them unilaterally.

Note that for zero sum games that we consider here, where the profit of one
player is equal to the loss of his adversary, we have the exchangeability property
for optimal strategies: for any other pair of optimal strategies τ ‡, σ‡, the couples
(τ ‡, σ]) and (τ ], σ‡) are also optimal and u(pA(s, σ], τ ])) = u(pA(s, σ‡, τ ‡)); this
last quantity is called the value of the game G = (A, u) at the state s.

The basic problem of game theory is to determine for a given payoff mapping
u if for every game G = (A, u) both players have optimal strategies.

In computer science we prefer positional strategies since they are particularly
easy to implement. For this reason the question that we ask in this paper for
every payoff u is whether for each game G = (A, u) over a finite arena A both
players have positional optimal strategies.

2 From Parity Games to Games with Profits

2.1 Simple Priority Games.

The simplest adjustment of parity games enabling any real-valued payoff consists
in associating with each priority a real number by means of a mapping α : N → R,
we call α a priority valuation. Let n = n1n2 . . . be any finitely generated infinite
sequence of elements of N.

Then the payoff mapping of simple priority games is given by

uα(n) = α(priority(n)), (6)

where priority(n) is defined as in (1). Clearly for different priority valuations α we
have different simple priority games, in particular for α that maps even numbers
to 0 and odd numbers to 1 we recover the parity game. In fact simple priority
games are still very close to parity games. Let α(N) = {x1 < . . . < xk} be all
priority values taken in the increasing order1. Then to establish if player 1 has a
strategy allowing him to win at least xi in the game with the priority valuation
α we solve the game with the binary priority valuation βi defined by βi(l) = 1 if
α(l) ≥ xi and βi(l) = 0 if α(l) < xi. Games with binary valuations are obviously

1 We can assume without loss of genarality that α(N) is finite.



equivalent to parity games thus both players have optimal positional strategies
σ]

i , τ
]
i in the game with the valuation βi (in fact this is true even for infinite

arenas [3, 10]). These strategies can used to build optimal positional strategies
σ], τ ] in the game with the valuation α. For a given state s ∈ S define the rank
of s to be the maximal l such that the strategy βl of player 1 allows him to win
1 in the binary priority game with the valuation βl when the initial state is s.
Then, for s ∈ S1, we set σ](s) = σ]

l (s) while for s ∈ S2 we set τ ](s) = τ ]
l+1(s),

where l is the rank of s. Clearly the strategies σ] and τ ] are positional. Moreover,
it is easy to see that in (A, uα) for plays starting at a state s with the rank l the
strategy σ] assures for player 1 that he will win at least xl while the strategy τ ]

assures for player 2 that he will pay no more than xl. This proves the optimality
of strategies σ] and τ ] (also for infinite arenas).

2.2 Mean-payoff Priority Games.

To generalize yet further our games set < = N × R as the set of rewards.
Each couple (n, r) ∈ < consists now of a non-negative priority n and a real
valued reward r ∈ R. For an infinite finitely generated reward sequence x =
(n1, r1), (n2, r2), . . . we calculate now the payoff in the following way. Let n =
priority(n1n2 . . .) be the maximal priority appearing infinitely often in x and let
x(n) = (ni1 , ri1), (ni2 , ri2 ), . . . be the subsequence of x consisting of the elements
with priority n, n = ni1 = ni2 = · · · . Then

mean(x) = lim sup
k→∞

ri1 + · · · + rik

k
(7)

defines the payoff for mean-payoff priority games. Thus, intuitively, we calculate
here mean-payoff of rewards but limited to the subsequence of the maximal
priority occurring infinitely often. Note that if there is only one priority then
this payoff mapping reduces to the payoff of mean-payoff games (and for this
reason we keep the same name). But, on the other hand, if we limit ourselves to
reward sequences such that ni = nj implies ri = rj for all i, j, i.e. to sequences
where the reward is constant for each priority, then mean reduces to a simple
priority payoff of Sect. 2.1 with an appropriate priority valuation. Thus mean-
payoff priority games combine the principal characteristics of mean-payoff and
parity games.

Are these games positional?
If the arena is controlled by player 1, i.e. S = S1, then player 1 has an obvious

optimal positional strategy that can be found in the following way (we do not
pretend that the method given below is the most efficient one). First note that
for any play of the form p = xyω, where x is a finite history, y = a1a2 . . . ak is a
simple cycle2 in the arena A and yω = yy . . . is the infinite concatenation of y,
we can calculate mean(p) in the following way:
let for 1 ≤ i ≤ k, reward(ai) = (ni, ri), let l = max{ni | 1 ≤ i ≤ k} be the

2 That means that source(y) = target(y) and source(ai) 6= source(aj) for 1 ≤ i < j ≤

k.



maximal priority occurring in y, and let M = {i | 1 ≤ i ≤ k and ni = l} be
the occurrences of l in y, then mean(p) = 1

|M |

∑

m∈M rm.

Let y be a simple cycle such that mean(yω) is maximal. It is easy to see
that for any other play p in A, mean(p) ≤ mean(yω). Thus to maximize his
gain player 1 should arrive at this cycle y, which can be done with a positional
strategy, and then he should turn round y forever which is obviously positional.
If there are states in A from which the cycle y of the maximal payoff is not
accessible then in the subarena consisting of such states we repeat the procedure
described above.

For arenas controlled by player 2 (which means that S = S2) the optimal
positional strategy of player 2 can be found in the similar way by finding the
simple cycle minimizing the payoff.

The main result of Sect. 3 (Theorem 3) states that the existence of opti-
mal positional strategies for one-player games implies the existence of optimal
positional strategies for two-player games and thus we can conclude

Proposition 1. For all priority mean-payoff games over finite arenas both play-

ers have optimal positional strategies.

This result above was first established by other methods in [7].

2.3 Weighted Reward Games.

Yet another extension of parity games can be obtained in the following way.
Suppose that for an infinite finitely generated sequence of priorities n = n1n2 . . .,
the priorities ne and no are respectively the greatest even and the greatest odd
priority occurring infinitely often in n. Then player 1 wins the parity game iff
the quantity no − ne is positive. However, intuitively, no − ne gives us a more
detailed information of how much the winning player outperforms the losing
player in parity games, and we can as well consider the game where no−ne is the
payoff obtained by player 1, i.e. the game where player 1 tries now to maximize
this value. It is convenient then to replace even priorities by their negatives, i.e.
consider finitely generated sequences m1m2 . . . of integers and then the payoff
for player 1 takes the form lim supi→∞ mi + lim inf i→∞ mi. However, we can
then go a step further and take as the set of rewards the set R of real numbers
and for a fixed parameter λ ∈ [0; 1] and a finitely generated sequence r1r2 . . . of
real numbers define a weighted reward payoff mapping

uwr
λ (r1r2 . . .) = (1 − λ) lim inf

i→∞
ri + λ lim sup

i→∞
ri . (8)

Note that for λ = 1 the definition above gives just the classical gambling payoff
[2, 9] while λ = 1/2 can be used, as explained above, to generalize parity games.
In the same way as for mean-payoff priority games one can verify that weighted
reward one-player games have optimal positional strategies which implies by
Theorem 3 the following result obtained first in [6]:

Proposition 2. For all weighted reward games over finite arenas both players

have optimal positional strategies.



3 From One-Player Games to Two-Player Games.

It turns our that to assure that a payoff mapping u allows optimal positional
strategies for all two-player games it suffices to verify whether one-player games
with payoff u have optimal positional strategies. In fact a similar result holds
also for perfect information stochastic games [5] and the proof below is just an
adaptation of the one of [5].

This result is useful in practice since, as we have seen, the verification if
a given payoff mapping admits optimal positional strategies can be trivial for
one-person games but can require a bit of dexterity for two-person games.

An arena A = (S1, S2, A) is said to be controlled by player i if for each state
s ∈ Sj controlled by his adversary j, j 6= i and i, j ∈ {1, 2}, there is only one
action a ∈ A with source s. Thus essentially the adversary player j has never
any choice, in particular he has only one strategy and this strategy is positional.
In this case we can as well put all the states of j under the control of player i
and remove player j altogether from our game. A one-player arena is just an
arena controlled by one of the two players and a one-player game is a game on a
one-player arena. Note that in one-player games it suffices to exhibit an optimal
strategy for the controlling player since the unique strategy of his adversary is
trivial.

Theorem 3. Let u be a payoff mapping over a set < of rewards. If for each finite

one-player arena A over < the player controlling A has an optimal positional

strategy in the game G = (A, u) then for all two-person games over finite arenas

with payoff u both players have optimal positional strategies.

Proof. Suppose that u satisfies the conditions of the theorem. In the sequel
whenever we speak about games over arenas A the payoff u is tacitly assumed.

For any arena A = (S1, S2, A) we call the value |A| − |S| the rank of A (|X |
denotes the cardinality of X). Since for each state there is at least one available
action the rank is always non-negative. If the rank is 0 then for each state s there
is exactly one available action and therefore each player has only one possible
strategy and these strategies are positional and optimal.

We shall continue the proof of Theorem 3 by induction over the rank value.
Let A = (S1, S2, A) be an arena with rank k > 0 and suppose that both

players have optimal positional strategies for all games over the arenas with the
ranks smaller than k. We shall construct a pair of optimal strategies σ], τ ] for
the game over A, the strategy σ] of player 1 will be positional but the strategy
τ ] of player 2 will use some finite memory. In the next step we shall show that
also player 2 has an optimal positional strategy.

If one of the players controls A then both of them have optimal positional
strategies and there is nothing to do.

Thus we can assume that there exists a state x ∈ S1 controlled by player
1 such that the set A(x) = {a ∈ A | source(a) = s} of actions available at x
contains more than one element. Let us fix such a state x which we shall call
the pivot. We fix also a partition of the set A(x) onto two non-empty sets AL(x)
and AR(x), A(x) = AL(x) ∪ AR(x), AL(x) ∩ AR(x) = ∅.



We define two subarenas AL and AR of A which we call respectively the left
and the right (sub)arena. In AL and AR we keep the same states as in A. Also
the actions with the source in the states s 6= x are the same in AL, AR and A.
The only difference concerns the actions with the source x, in the left arena AL

we keep only the actions of AL(x) while in the right arena only the actions of
AR(x) removing all the other actions with source x.

Since the ranks of the arenas AL and AR are smaller than the rank of A,
by the induction hypothesis, there exist optimal positional strategies σ]

L and τ ]
L

in the game (AL, u) and optimal positional strategies σ]
R and τ ]

R in the game
(AR, u).

We pretend that one of the two strategies σ]
L or σ]

R is also optimal for player
1 in the initial game over A. The situation is more complicated for player 2,
usually neither τ ]

L nor τ ]
R is optimal for him in the game over A. However, it

turns out to be possible to intertwine in some way the strategies τ ]
L and τ ]

R to
obtain an optimal strategy for player 2 on A.

Using the arena AL and the strategy τ ]
L of player 2 we construct an arena

AL[τ ]
L] that has the same states as AL but we restrict the actions available to

player 2: for each state s ∈ S2 controlled by 2 we leave in AL[τ ]
L] only one action

with the source s, namely the action τ ]
L(s) provided by the strategy τ ]

L. We do
not restrict the moves of player 1, he can take exactly the same actions as in
AL.

In a similar way we construct from the arena AR and the optimal strategy
τ ]
R of player 2 in the game on AR an arena AR[τ ]

R] by restricting the actions

player 2 to those that are provided by the strategy τ ]
R.

Notice that arenas AL[τ ]
L] and AR[τ ]

R] are controlled by player 1.

Next we rename in AL[τ ]
L] and AR[τ ]

R] all the states that are different from
the pivot state x.

Let
U = S \ {x} (9)

be the set of states that are different from the pivot x. Let UL, UR be two disjoint
copies of the set U and let

SL := UL ∪ {x} and SR := UR ∪ {x} . (10)

For a state s ∈ U its left and right copy are denoted respectively sL and sR.
It is convenient to assume that the pivot x is the only state that is a copy of
itself, i.e. xL = x = xR. By πL we shall denote the natural bijections

πL : S → SL and πR : S → SR (11)

πL : s 7→ sL = πL(s) and πR : s 7→ sR = πR(s), for all s ∈ S . The renaming
mappings πL and πR are extended in a natural way to actions

πL((s, r, t)) = (πL(s), r, πL(t)) and πR((s, r, t)) = (πR(s), r, πR(t)) (12)

for actions (s, r, t) respectively on the left and the right subarena.



The arenas obtained from AL[τ ]
L] and AR[τ ]

R] by applying the correspond-

ing renaming mappings are denoted πL(AL[τ ]
L]) and πR(AR[τ ]

R]). Note that

πL(AL[τ ]
L]) and πR(AR[τ ]

R]) have only one common state x and the only com-
mon actions are eventually the actions of the form (x, r, x) if such actions
with source and target x exist in A. Finally we construct the arena ALR =
πL(AL[τ ]

L])∪πR(AR[τ ]
R]), where the union means that we take simply the union

of state sets and the union of action sets of πL(AL[τ ]
L]) and πR(AR[τ ]

R]). Let

us note that since the only state common to πL(AL[τ ]
L]) and πR(AR[τ ]

R]) is the

pivot x the arena ALR can be seen informally as the arena obtained from AL[τ ]
L]

and AR[τ ]
R] by gluing them together at x.

Obviously, ALR is a one-player arena controlled by player 1. Intuitively, for
each state of ALR controlled by player 1 he has at his disposition the same actions
as in A. On the other hand, player 2 is compelled to use either the strategy τ ]

L

or the strategy τ ]
R depending on whether the current position is in the left or in

the right subarena of ALR. Each time the pivot x is visited player 1 can choose
if he prefers to play till the next visit to x against the strategy τ ]

L or against the

strategy τ ]
R by choosing either a left or a right action at x.

Example 4. Figure 1 illustrates different stages of the construction of ALR. To
avoid clutter the rewards associated with actions are omitted. The states con-
trolled by players 1 and 2 are represented respectively by circles and squares.
The pivot state x has three outgoing actions and we fix the following left/right
partition of A(x): AL(x) = {(x, s2)}, AR(x) = {(x, s1), (x, s3)}. Suppose now

that for the state s4 the optimal positional strategy τ ]
L for player 2 in (AL, u)

chooses the action (s4, s1) while in (AR, u) the optimal positional strategy τ ]
R for

the same player chooses the action (s4, s3) (for the other state s2 both strategies
choose the only available action (s2, s4)). The bottom part of Fig. 1 presents the

resulting arenas AL[τ ]
L] and AR[τ ]

R]. Finally, the upper left part of Fig. 1 shows
the arena ALR. Note that in ALR at the pivot state x player 1 has again three
available actions, as in the initial arena A.

Since the game (ALR, u) is controlled by player 1 he has in this game an

optimal positional strategy σ]
LR. Now let us look which action is chosen by σ]

LR

at the pivot state, we can have either target(σ]
LR(x)) ∈ SL or target(σ]

LR(x)) ∈
SR. Exchanging if necessary “left” and “right”, we can assume without loss of
generality that

target(σ]
LR(x)) ∈ SL . (13)

Under condition (13) it turns out that the strategy

σ] := σ]
L (14)

is optimal for player 1 in the game (A, u)
It remains to define an optimal strategy τ ] for player 2 on A. Let h be a

finite history in A with target(h) ∈ S2, then
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Fig. 1. Construction of ALR.

τ ](h) =



















τ ]
L(target(h)) if either h does not contain any action with source x

or the last such action belongs to AL(x),

τ ]
R(target(h)) if h contains at least one action with source x

and the last such action belongs to AR(x).

(15)

Thus player 2 applies in τ ] either the strategy τ ]
L or τ ]

R and which of the two
strategies is chosen depends on the action taken by player 1 at the last passage
through the pivot state. To implement the strategy τ ] one needs a memory, albeit
a finite memory taking two values L and R is sufficient. The initial memory value
is L. Every time the play traverses the pivot state x player 2 observes the action
taken by player 1 and updates his memory either to L or to R depending on
whether this action belongs to AL(x) or to AR(x).

Up to the next visit to x player 2 uses either the strategy τ ]
L or τ ]

R depending
on the memory value.

We shall show that strategies σ] and τ ] defined by (13) and (15) are optimal
in the game over A.

Let s ∈ S and consider the play pA(s, σ], τ ]). From (13) it follows that player
1 chooses during this play at each passage through x the same left hand side
action from AL(x), however in this case player 2 plays all the time using the



strategy τ ]
L, thus

pA(s, σ], τ ]) = pA(s, σ]
L, τ ]

L) = pAL
(s, σ]

L, τ ]
L) . (16)

Let τ be any strategy of player 2 on A and let τ ’ be the restriction of this strategy
to histories in AL. Obviously, τ ’ is a valid strategy on AL and pAL

(s, σ]
L, τ ′) =

pA(s, σ]
L, τ) = pA(s, σ], τ). On the other hand, u(pAL

(s, σ]
L, τ ]

L)) ≤ u(pAL
(s, σ]

L, τ ′))

by optimality of σ]
L, τ ]

L on AL. These facts and (16) imply

u(pA(s, σ], τ ])) ≤ u(pA(s, σ], τ)) . (17)

Now let σ be any strategy of player 1 on A. This strategy can be transformed
to a strategy σLR on ALR in the following way.

Let
π : SL ∪ SR → S

be the mapping from the states of ALR to the states of A such that π(sL) =
π(sR) = s for all s ∈ S. This mapping can be extended to actions by putting
π((y′, r, y′′)) = (π(y′), r, π(y′′)) for any states y′, y′′ ∈ SL ∪SR and next to finite
and infinite histories, for a history h = a1a2 . . . in ALR, π(h) = π(a1)π(a2) . . .
is a history in A. Now for any history h = a1 . . . an in ALR with the target
y := target(h) controlled by player 1 we define

σLR(h) =

{

πL(σ(π(h))) if target(h) ∈ SL = UL ∪ {x},

πL(σ(π(h))) if target(h) ∈ UR,
(18)

where πL and πR were defined in (11). Thus, intuitively, when playing according
to σLR player 1 takes the projection π(h) of the history h onto A, applies the
strategy σ which gives him an action (s, r, t) := σ(π(h)) in A. The target state of
h, target(h), is either the state sL ∈ UL ∪ {x} or the state sR ∈ UR. In the first
case player 1 executes the action πL((s, r, t)) = (sL, r, tL), in the second case he
executes πR((s, r, t)) = (sR, r, tR).

Let pALR
(sL, σLR, ·) be the play in ALR starting at a left hand side state

sL ∈ SL and consistent with σLR (we left out here the strategy of player 2
since he has only one strategy on ALR and therefore it is useless to specify it
explicitly). From the construction of ALR and definitions (18) and (15) of σLR

and τ ] it follows that for any strategy σ of player 1 on A

pA(s, σ, τ ]) = π(pALR
(sL, σLR, ·)), (19)

Since σ]
LR is an optimal positional strategy for player 1 in (ALR, u) we have

u(pALR
(sL, σLR, ·)) ≤ u(pALR

(sL, σ]
LR, ·)). (20)

The play pALR
(sL, σ]

LR, ·) starts in the left hand side state sL and is consistent

with the strategy σ]
LR that, according to (13), chooses at the pivot state x a

left hand side action, therefore this play traverses uniquely the left hand side



states SL. We can define for player 1 a positional strategy π ◦ σ]
LR ◦ πL on AL

that corresponds to the left hand side part of the strategy σ]
LR: for s ∈ S1,

π ◦σ]
LR ◦πL(s) = π(σ]

LR(sL)). That we have defined in this way a valid strategy
for player 1 on AL is guaranteed by (13). Since player 2 is constrained in ALR

to play on SL according to the strategy τ ]
L we can see that applying the strategy

σ]
LR for a play starting at sL in ALR gives, modulo the renaming, the same

result as applying the strategies π ◦ σ]
LR ◦ πL and τ ]

L in AL for a play staring at
s, formally

π(pALR
(sL, σ]

LR, ·)) = pAL
(s, π ◦ σ]

LR ◦ πL, τ ]
L). (21)

Eq. (19) and (21) imply the equality of corresponding rewards sequences, i.e.

also the equality of corresponding payoffs while by optimality σ]
L and τ ]

L in AL

we have u(pAL
(s, π ◦ σ]

LR ◦ πL, τ ]
L)) ≤ u(pAL

(s, σ]
L, τ ]

L)).
Putting together the last inequality and (16), (19), (20), (21) we deduce

u(pA(s, σ, τ ])) ≤ u(pA(s, σ], τ ]).

This and (17) imply the optimality of strategies σ] and τ ] in the game (A, u).
Our problem is that the optimal strategy of player 2 constructed above is

not positional, however, the remedy is simple. Consider the game with the payoff
mapping −u and where the roles of players 1 and 2 are permuted, i.e. it is player
1 that pays to player 2 the amount −u(p) after a play p. Thus player 2 wants
to maximize the payment while player 2 tries to minimize it. In the new game
choose as the pivot a state controlled by player 2 with at least two available
actions, then the construction above repeated in this new setting will provide
optimal strategies σ‡ and τ ‡ for players 1 and 2 in the new game with τ ‡ beeing
positional. However optimal strategies in the new and the old games are the same
thus τ ‡ is an optimal positional strategy for player 2 in (A, u). By exchangeability
property for optimal strategies, σ] and τ ‡ constitute a pair of optimal positional
strategies in the game (A, u). ut

4 Final Remarks

In Sect. 3 and in Theorem 3 instead of payoff mappings we could use, without any
substantial modification, preference relations [12] over infinite reward sequences.
Such a relation - is a binary complete transitive relation (where “complete”
means that a - b or b - a for all a, b in the domain of -). Obviously each
payoff mapping u defines a preference relation -u, for infinite finitely generated
sequences of rewards r and r′, r -u r′ iff u(r) ≤ u(r′). Although, at least in
principle, preference relations can be represented by real valued payoffs, this
representation is not always natural and therefore it may be advantageous to
reformulate Sect. 3 and trade payoffs for preference relations.

4.1 Nash equlibria

Suppose that we have a finite set {1, . . . , N} of players and the set of states is
partitioned onto N disjoint sets S = S1∪ . . .∪SN , Si beeing the states controlled



by player i. Again, if the current state is s then the player controlling s chooses
and executes an action available at s. Now each player i has his own payoff
mapping ui that gives for each infinite finitely generated sequence of rewards r
the payoff ui(r) of player i. A strategy profile σ = (σ1, . . . , σN ) is an N -tuple of
strategies, where σi is a strategy of player i. Fixing a strategy profile σ and an
initial state s ∈ S we have exactly one play pA(s, σ) starting at s and consistent
with all strategies σ. For a strategy profile σ and a strategy σ′

i of player i by
(σ−i, σ′

i) we denote the strategy profile obtained from the profile σ by replacing
σi by σ′

i.
A strategy profile σ is in Nash equilibrium if for each i, 1 ≤ i ≤ N , and each

strategy σ′
i of player i, ui(pA(s, (σ−i, σ′

i))) ≤ ui(pA(s, σ)) . From the result of
Sect. 3, using the trigger strategy described in [12], we can deduce that

Proposition 5. Suppose that for all i, 1 ≤ i ≤ N , for one-player games over

finite arenas with payoffs ui and −ui there exist optimal positional strategies.

Then for each N -person game with payoff profile (u1, . . . , uN ) over a finite arena

there exists a Nash equilibrium profile σ where the strategy σi of each player i is

a finite memory strategy.
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