Time-stamps for Mazurkiewicz traces

Wieslaw Zielonka, !

LIAFA, case 7014, Université Paris 7 and CNRS
2, Place Jussieu, 75251 Paris Cedex 05, France

Abstract

We construct a new time-stamp system for Mazurkiewicz traces. We begin by con-
structing a sequential time-stamp system which turns out to be optimal for a certain
class of time-stamps. In the next step we show that this time-stamp system can be
adapted for Mazurkiewicz traces, i.e. it can be used also in a distributed environ-
ment.

1 Introduction

Mazurkiewicz traces provide a well-established natural model of the behaviour
of simple concurrent systems. The theory is rich and still under active develop-
ment. Although many facts concerning traces generalise similar results known
for words, often these generalisations are far from trivial. The appropriate
notion of finite automata for traces, so-called asynchronous automata, was
introduced in [11].

The construction of deterministic asynchronous automata was (and still is)
much more involved than the construction of finite automata for words and
was carried out in two steps. First a special system of finite event labellings —
a time-stamp system — was constructed and it was shown that this labelling
can be updated locally by an asynchronous automaton. At the second step
the information related to the trace language to recognize was incorporated
into the automaton.

Although there is no formal proof that the first step is necessary, nobody was
able to provide a general construction of deterministic asynchronous automata
without some sort of time-stamp system (note however that, as shown in [9)],
non-deterministic asynchronous automata do not need such time-stamps and

1 Supported by ACI Sécurité informatique 2003-22 VERSYDIS.

Preprint submitted to Elsevier Science 29 December 2005

deterministic asynchronous automata for some special dependency relations
do without them as well [4,7]). But even if some day it turns out to be pos-
sible to construct deterministic asynchronous automata without time-stamps,
time-stamp systems are of interest by themselves since they provide pertinent
information about the order of events in traces and they allow us to update
this information in a distributed way with a finite memory.

Asynchronous automata come in two distinct flavours. For the original model
of [11] Mukund and Sohoni [8] provide a new, easier to grasp and more trans-
parent, time-stamp system and apply it to a gossip problem. Another type of
asynchronous automata — asynchronous cellular automata — was introduced in
[2]. The time-stamp system of [2] is also much easier to comprehend than the
original one. As in [8], the system of [2] was applied to time-stamp messages
in a distributed environment.

In this paper we deal with the model of asynchronous cellular automata of
[2]. We construct a new time-stamp system for this model with n2" ! time-
stamps, where n is the number of agents. To compare, the system of [2] uses
O(n™) time-stamps. More remarkably, the system that we present here was
initially devised for sequential, non-distributed, environment. In fact, this the
minimal possible sequential time-stamp system in a specific class of time-
stamp systems. Now it turns out that the same time-stamp system, but with
a modified update algorithm, can serve in distributed environments modelled
by traces.

The paper is organized as follows. Section 2 defines a class of sequential time-
stamp systems. In Section 3 we construct a sequential time-stamp system
minimal in this class. Finally, in Section 4 we show how to adapt this time-
stamp system to traces. The results presented in Sections 2 and 3 are fairly
old, they circulated previously in an unpublished manuscript due to the author
and were partially used for example in [3]. However, the application for traces
given in Section 4 is new.

2 Sequential time-stamp systems

Let ¥ be a finite set of agents that communicate by messages which they
leave in a box. The access to the box is sequential and its capacity is bounded,
for every agent a € X the box can contain at most one message sent by
a and if the box contains already a message of a then agent a can put a
new message in the box only by replacing his own old out-of-date message.
The box is not completely reliable, a message put into the box can at any
moment disappear without trace (or equivalently we can assume that there
is a malicious adversary which in order to hinder the communication can at

any moment remove any number of messages from the box). The messages are
stamped when they enter the box. The aim of the stamping is twofold:

(1) the stamp should provide the identity of the message sender and
(2) comparing the stamps of two messages in the box we should be able to
deduce the order in which they were deposited.

Formally, a time-stamp system for a set > of agents satisfies the following
requirements:

e For each agent a € X there is a finite set S, of time-stamps used by a. The
sets S, are pairwise disjoint for different agents and S = U,¢x S, will stand
for the set of all time-stamps.

e C is a family of subsets of S, elements of C are called configurations. Intu-
itively, each configuration C' € C represents the set of time-stamps of the
messages that can be present in the box at some moment. We assume that
for each configuration C' and each agent a € X3, [C'NS,| < 1, which accounts
for the fact that at any moment there can be at most one message from the
agent @ in the box. Moreover, since messages can be removed from the box
at any moment, for any valid configuration C' € C all subsets C' of C are
also valid configurations and belong to C.

e < C S x S is a binary relation over S. For each configuration C € C, the
relation < restricted to C is a total (strict) ordering over C (i.e. < is irreflex-
ive, antisymmetric and transitive over C). If C' is the set of time-stamps of
messages present in the box then for any s;, sy € C, s1<s, indicates that the
message stamped with s; was put in the box before the message stamped
with so. If t<s for two time-stamps ¢, s then we say that s dominates t.

e To satisfy the requirement that agents should be able to deposit messages
at any moment with time-stamps indicating the correct date ordering we
assume that for any agent a € ¥ and any configuration C' € C such that

CN S, = 0 there exist a time-stamp s € S, such that C U {s} € C and, for
all t € C,t<s.

Thus when an agent a withdraws, if necessary, his old message from the
box and C' is the time-stamp configuration of the remaining messages then
a can always find a time-stamp s € S, dominating all ¢ € C' and use s with
his new message.

3 Minimal time-stamp system

In this section we construct a minimal time-stamp system for a given finite
set 3 of agents.

For a € ¥ the set S, of time-stamps for a consists of all mappings f : X —

{0,1, L} such that f(a) = L and for all b € ¥\ {a}, f(b) € {0,1}.

For each time-stamp f € S we shall denote by ay the corresponding agent,
i.e. as is the unique element of ¥ for which f(ay) = L.

Definition 1 In the sequel we fix a total order relation < over X.
Let f,g € S be such that ay < ay. Then

(i) either f(ay) = g(ay) and then we set f<g,
(it) or f(ay) # g(ay) and then g=<f.

If ay = a, then we assume that neither f<g nor g=<f, i.e. only time-stamps
of different agents are comparable by <.

Note that the definition given above implies that if ay # a, then either f<g
or g=<f and exactly one of these alternatives holds.

A set C C S of time-stamps is said to be consistent if Va € 3, |CNS,| < 1 and
the relation < restricted to C is a total ordering. As the set C of configurations
we take the set of all consistent subsets of S.

Let us note that if there are more than two agents then there exist inconsistent
subsets X of S satisfying | X NS,| < 1 for all a € . Thus the notion of consis-
tency is necessary to exclude such sets from the family of valid configurations.

The following lemma, shows that each player has always enough time-stamps
to put a new message in the box.

Lemma 2 Let a € ¥ and suppose that X C S is a set of time-stamps such
that

(1) XNS, =0 and
(2) Vb e £\ {a},| X NSy < 1.

Then there exists a time-stamp g € S, which dominates all elements of X, i.e.
f=<g forall f e X.

PROOF. Let us take g € S, such that for all f € X, if af < a, then
g(ar) = f(ay), otherwise, if a;, < ay then g(ay) = 1 — f(a,). If for some
b e X\ {a} thereis no f in X with f(b) = L then we can set g(b) either to 0
or to 1. Clearly, ¢g chosen in this way dominates all elements of X. O

Note that Lemma 2 does not require for the set X to be consistent. However,
if X is consistent and X NS, = @ then the proof of Lemma 2 provides a

time-stamp g € S, such that X U{g} is also consistent. In particular, starting
from the empty set of time-stamps we can add one by one new time-stamps
to obtain a consistent set having one time-stamp for each agent.

Now let us note for n = || agents, in the system constructed in this section
each agent has 2! time-stamps and thus |S| = n2""!. In the next lemma we
show that this is also the lower bound for the number of time-stamps necessary
for n agents, thus our system has the optimal size.

Lemma 3 Any time-stamp system for n agents requires at least n2"~! time-
stamps.

PROOF. We proceed by induction on the number n of agents. Let us assume
that the lemma holds for all time-stamp systems with less than n agents.

Let us take any time-stamp system for the set ¥ of agents with n = |X|. Since
the relation < is used only to compare time-stamps belonging to different
agents we can assume without loss of generality that

for all @ € ¥ and all s,¢ € S, neither s<¢ nor t<s . (1)

Then direct inspection of the conditions defining time-stamp systems in Sec-
tion 2 shows that for any agent a € ¥ and any time-stamp s € S, the set

dom(s) ={teS|s<t}C [J S (2)
beS\{a}

of all the time-stamps dominating s forms a time-stamp system for the set
¥\ {a} of agents, hence by the induction hypothesis

Vs € S, |dom(s)| > (n—1)2" 2 . (3)

Let us consider the directed graph G = (S, EL) with the set S as the set
of vertices and the set of edges E_ induced by <: (s,t) € E if and only if
s<t. For each s € S the set of edges of G that have source s has the same
cardinality as dom(s), thus by (3)

[E<| =3_[dom(s)| > [S|(n —1)2""* . (4)

sES

Condition (1) implies that the mapping from S into ¥ which maps, for a € ¥,
all time-stamps of S, to a is a vertex coloring of the graph G. The lower bound
on the graph chromatic number given in [1] (Theorem 3 in Chapter 15) states
that

2> [S17/(IS1* - 2|EX])
ie. |[EL| <[S]2(1—1/n)/2. The last inequality and (4) imply |S| > n2"~!. O

4 Time-stamps for traces

In this section we show that the time-stamp system constructed in Section 3
can also be used in a distributed environment modeled by Mazurkiewicz traces.

Let us consider the following situation. As previously, we have a fixed finite set
of agents X, however, now each agent a € X has his own box, it is convenient
to name the boxes after their owners, thus a denotes an agent as well as his
box. The boxes form the vertices of a simple undirected graph that is called
the dependency graph.

In the formal reasoning it is convenient to use the dependency relation. This
is a binary symmetric and reflexive relation & over ¥ such that (a,b) € 2 if
either ¢ = b or if there is an edge joining a and b in the dependency graph.
We say that a and b are independent if (a,b) ¢ 9.

An agent cannot modify the contents of the boxes belonging to other agents
but he can read all adjacent boxes and copy the messages he finds there to
his box. He is always interested only in the most recent messages sent by
the other agents and therefore in his box he stores for each agent ¢ the most

recent message sent by c that is available to him, all old messages from c are
discarded.

More precisely, an execution of an action by an agent a takes place in three
steps:

(1) first a copies all messages from all the adjacent boxes into his box,

(2) next he determines for each agent ¢, ¢ # a, the most recent message from
¢ present in his box and discards from his box all the other messages from
C’

(3) finally a discards from his box his own old message (if there is any) and
replaces it by his new message.

Such an action is assumed to be atomic which implies that the actions of
adjacent agents cannot overlap in time.

Any sequence aias...a, € X* can represent a sequential order of actions
executed by the agents in the system, a; represents an action executed by
agent a;. Elements of X, if they appear in such a sequence, are called actions
(thus actions inherit their names from the corresponding agents). Now we
should observe that changing the order of consecutive actions executed by
independent agents has no influence on the system, if @ and b are independent,
(a,b) & 2, then for any u,v € ¥*, the sequences uabv and ubav of actions
are indistinguishable in this model. More generally, let ~4 be the smallest
equivalence relation over the elements of ¥X* such that uabv ~¢ ubav, for all

u,v € ¥* and (a,b) ¢ 2, then the action sequences equivalent under ~g
are indistinguishable in this model. The equivalence classes of elements of
>* under ~4 are known as Mazurkiewicz traces. It is useless to present here
all the elementary introductory machinery related to traces, the reader can
consult to this end any of the numerous papers using traces or the monograph
[5]; in fact the introductory chapter [6] is sufficient for our purposes.

Since the relation ~4 is a congruence for the operation of concatenation of
words, traces form a monoid denoted here M(X, &). A trace t; is a prefix of a
trace to, denoted t; C to, if there exists a trace t3 such that t1t3 = to. If t3 # 1,
where 1 is the empty trace, then ¢ is a proper prefix of ¢, and we write then
t1 C ty. The relation C is a partial order over the set of traces.

For any non-empty set A C X and a trace t, by 04(t) we denote the shortest
prefix of ¢ containing all occurrences of actions of A. If A is reduced to just
one action a then we write simply 0,(t).

Non-empty traces of the form 9,(¢), for a € X, are called prime traces and
Prime stands for the set of all such traces.

For a trace t, alph(¢) stands for the set of actions (letters) appearing in ¢.

For any two dependent actions @ and b, (a,b) € &, and any trace t, either
0a(t) C Op(t) or Op(t) T 0,(t). Moreover, if a and b are dependent and different,
(a,b) € 2 and a # b, and if alph(t) N {a,b} # 0 then either 9,(¢t) T Oy(t) or
Ob(t) T 0a(t).

In general, for any trace ¢t and any actions a,b € alph(t), 0,(t) C 0y(¢) if and
only if there exists a sequence a = cy, ..., ¢, = b of actions such that, for all 7,
i <k, (¢,Ci+1) € Y and 0,,(t) C O, (t); note that this implies in particular
that all actions ¢; are pairwise different.

The proof of the following elementary but extremely useful fact can be found
either in [10] or in [6].

Lemma 4 (Levi lemma for traces) Let t = zy = zu be two factoriza-
tions of a trace t. Then there exist traces ty,t1,19,t3 such that every action
of alph(t;) is independent of every action of alph(ty) and x = toty, y = tots,
z = tote, u = t1t3.

The following lemma gathers some useful facts concerning traces. The elemen-
tary proof is left to the reader.

Lemma 5 (1) If t1,ty are traces such that t; C ty then for each non-empty
subset A of &3, 0a(t1) C 0alta)-
(2) For every trace t, a € X and a non-empty subset B of X2, if 0,(t) C 0p(t)

then 0,(t) = 0,(0p(%)).
(8) Lett € M(X, 9), A, B non-empty subsets of ¥ and
E(t,A,B) ={c€X|0:.(04(t)) = 0:(95(1))} - (5)
If 1 # 0,(04(t)) T 0.(0p(t)) then there exists ¢ € E(t, A, B) such that
Ou

(0a(t)) T 0:(9a(t)) = 0.(95(t)) T 0.(9(1))-

We shall use here the same time-stamp system as in Section 3. Thus we assume
that there is a total order < over the set ¥ and the set S, of time-stamps of
agent a consists of all mappings f from 3 into a three-element set {L,0,1}
such that a is the only element of 3 mapped by f to L. As previously, agent a
stamps his messages using the stamps from S,. The only significant difference
is that now we shall use directly the order < over stamps only to compare time-
stamps of two agents that are adjacent in the dependency graph. Determining
the order of messages that do not come from adjacent agents needs more
complicated methods.

We first define our stamping system globally and next we show how time-
stamps can be used if we have at our disposal only local information.

Let 1y be the constant mapping that maps each a € X to 1.
We define by induction on the length of traces the mapping

A:PrimeU{1} - SU{1x} .

For the empty trace 1, A\(1) = 15.

Let Prime, be the set of prime traces of the form 9,(t) for some trace ¢. Thus
Prime, consists of the traces where the last action is executed by a and for
t € Prime,, A(t) will be the time-stamp associated with this occurrence of
action a.

For ¢t € Prime,, A(t) is a time-stamp of S, defined in the following way:

L if b = a,
A(t)(b) = { A(G6(2))(a) if b < a, (6)
1= X0(t))(a) ifa<b.

Note that A is really well-defined since for every trace ¢ € Prime, and every
b # a, 0y(t) is a proper prefix of ¢ belonging to Prime, U{1}.

The inductive formula (6) was conceived to guarantee the most important
feature of A: for ¢t € Prime, and every b € alph(?) \ {a}, A(0s(t))<A(¢). In

particular,

Vi e M(X, 2),Va,b € X,
if b € alph(09,(t)) and a # b then A\(3p(0,(2)))<A(0u(t)) . (7)

Lemma 6 For each trace t € M(X, 2) and all a,b € alph(t), if
9a(t) T 0,(2) (8)
then A(0a(t))<A(0p()).

PROOF. Since a,b € alph(t) the traces 0,(t) and 9,(t) are non-empty and,
by Lemma 5, eq. (8) implies 0,(t) = 0,(0(t)). Eq. (8) implies also that a # b
therefore (7) applies yielding A(9,(t)) = A(04(0s(t)))<A(Dp(t)). O

The preceding lemma can be strengthen in the case of dependent actions:

Lemma 7 For each tracet € M(X, 9) and all actions a,b € alph(t) such that
(a,b) € D and a # b we have 0,(t) T Op(t) if and only if A(0.(t))<A(0s(2)).

PROOF. Since a and b are different dependent actions, the traces d,(t) and
Op(t) are ordered by the strict prefix relation . By Lemma 6, if 0y(t) C
0a(t) then A(0y(t))<A(0,(t)) and if 0, (t) T 0Op(t) then A(0,(t))<A(0s(t)). Since
the two-element time-stamp set {A(9,(t)), A(0y(t))} containing time-stamps of
different agents is totally ordered by < relation, the thesis follows. O

Proposition 8 Let t € M(X,9), a € ¥, A, B two non-empty subsets of ¥
such that 0,(0a(t)) # 1 # 0,(0p(t)). Then 0,(0a(t)) = 0,(0p(t)) if and only
Zf/\(aa(aA(t))) = A(aa(aB(t)))

PROOF. The left to right implication follows just from the definition of .

Suppose that 9,(04(t))) # 0a(0r(t))). Since the traces 9,(04(t))) and 9, (0r(t)))
are comparable by the prefix relation without loss of generality we can as-
sume that 0,(0a(t))) T 0,(05(t))). By Lemma 5 there exists ¢ € ¥ such
that 0,(04(t))) C 0.(04(t))) = 0.(0B(t))) T 0,(05(t))). Then, by Lemma 6,
A(0a(94(1)))) = A(0:(04(1)))) = A(0(95(1))))<A(a(05(1)))), i-e. M(0a(0a(2)))) #
A0.(08(t)))). O

— —

With each trace t € M(X, &) we associate the time-stamp set A(t) of t:

A(t) = {A(0a(t)) | @ € alph(?)} . 9)

The time-stamp set A(t) induces the following directed precedence graph G(t)
of t. The vertices of G(t) are those actions a € ¥ for which there exists a
time-stamp f € A(t) belonging to the agent a, i.e. such that f(a) = L. Note
that from the definition of A(t) it follows that the set of vertices of G(t) is
equal to the alphabet alph(t) of ¢. The set E; of edges of G(¢) is constructed
in the following way: for a,b € alph(t), (a,b) € E; if and only if a and b are
different dependent actions, (a,b) € & and a # b, and for the time-stamps
f,g € A(t) such that f(a) = L = g(b) we have f<g.

Note that for each pair of different dependent actions a, b € alph(t), (a,b) € 2,
a # b, always one of the traces 0,(t) and 0y(t) is a prefix of the other and by
Lemma 7 this prefix order is captured by the edges of G(¢), i.e. there is an
edge from a to b in G(t) iff 1 # 0,(t) T 0,(2).

Definition 9 Let t € M(3, 2) be a trace, a € X, A, B non-empty subsets of
Y. We define

Eq(t, A, B) = {c€ ¥ | 3f € A@A(t) NA(D5(1)), f(c) =L} . (10)

In other words, an action ¢ € X belongs to Eq(t, A, B) if and only if both
time-stamp sets A(0a(t)) and A(Op(t)) contain the same time-stamp issued by
agent c.

We define also

Lt(t, A, B) (11)
to be the set consisting of all actions ¢ € alph(0p(t)) such that there exists
an directed path in the precedence graph G(0g(t)) from c to an element of B
which does not pass by any element of Eq(t, A, B).

Proposition 10 Let t € M(X, 2) and A, B non-empty subsets of 3.
Then for any action c € X,

(A) c belongs to alph(0aup(t)) if and only if c is a vertex in one of the prece-
dence graphs G(04(t)) or G(0p(t)),
(B) for all ¢ € alph(0aug(t)), exactly one of the following cases holds:
(1) 0:(0auB(t)) = 0.(04(t)) = 0.(08(t)) if and only if ¢ belongs to
Eq(t, A, B),
(1) (00(1)) C 9205 () = 0u(0a05(1)) if and only if ¢ € Li(t, A, B),
(i41) 0:(0p(t)) T 0.(0a(t)) = 0c(0aun(t)) if and only if c € Lt(t, B, A).
(C) There exists an algorithm that, given A, B, A(04(t)) and A(Op(t)), cal-
culates A(Oaup(t)).

PROOF. (A) follows directly from the fact that alph(9augs(t)) = alph(da(t))U

10

alph(0p(t)) and the sets of vertices of precedence graphs are the alphabets of
the corresponding traces.

(B) Part (i) was in fact already proved in Proposition 8.

To prove (ii) let us first factorize traces d4(t) = tota and Op(t) = totn, where tg
is the longest common prefix of 04(t) and dg(t). Then every action of alph(t)
is independent of every action of alph(t¢g) and moreover 0aup(t) = totatp-

Suppose now that 0.(04(t)) C 0.(0s(t)). Then 0.(0p(t)) = 0.(0aun(t)). More-
over ¢ € alph(tp) and there exists a sequence ¢ = ¢y, cy,...,¢, € B of ac-
tions such that Vi,0 < i < k, (¢;,¢i41) € 9D, ¢; # ciy1 and 0,,(0p(t)) C
Oc;11(0B(1)). All actions ¢; in this sequence belong to alph(tp) and therefore
always 0, (0a(t)) C 0., (0p(t)) and (i) and Lemma 7 show that the sequence
of ¢; defined above constitutes the path required in Definition 9 of Lt(¢, A, B).

Conversely, let us suppose now that ¢ € Lt(¢, A, B). Then, by the definition,
there exists an directed path ¢ = ¢,...,cx € B in the graph G(0p(t)) such
that no ¢; is in Eq(¢, A, B). By backward induction we shall prove that Vi, 0 <
i <k,

0c;(04(t)) € 0, (05(1)) , (12)

which, for ¢ = 0, provides the required result.

First note that since ¢; € B, 0,,(04(t)) C 0., (Qaup(t)) = 0., (0p(t)). Since
¢ is not in Eq(¢, A, B) by (i) the traces O, (04(t)) and 0, (0p(t)) cannot be
equal and therefore (12) holds for i = k.

Suppose that (12) holds for i + 1 and we shall prove that it holds for i.
Since (c;, ¢i1) is an edge of G(05(t)), we have A(O; (05(t)))<A(0c;,, (08(1)))-

However, as (¢;,¢i11) € 2 and ¢; # c¢i41 this implies by Lemma 7 that

0c;(08(1)) T Oc;y,, (O5(1))-

Again since (c;, ¢;41) € & and ¢; # cit1, prime traces O, (04(t)) and O, (05(1))
are comparable by the prefix order. It is impossible to have 0., ,(05(t)) C
0.,(04(t)) since this would mean that the prime trace 0, +1(6B(t)) is a pre-
fix of 0a(t) implying O, ,(95(t)) T O, ,(04(t)), in contradiction with the
induction hypothesis requiring that (12) holds for ¢ + 1.

Thus 0,(04(t)) T Oy, (08(t)), in particular 0., (04(t)) is a prefix of dp(t).
This implies that 0,(04(t)) C 0., (0p(t)). However, the equality is excluded

by the fact that ¢; & Eq(t, A, B) and by (i). Thus 861(8,4()) is a proper prefix
of 0., (0p(t)) and (12) holds for 7. This terminates the proof of (ii).

The last case (iii) is just symmetric to (ii).

Finally, since 0.(04(t)) and 0.(0s(t)) are comparable by the prefix order no

11

case other than the ones listed in (B) is possible.

(C) Given A(04(t)) and A(0p(t)) we can, directly from the definition, calculate
the set Eq(t, A, B) as well as find the graphs G(04(t)) and G(05(t)) (note
that to find both graphs we need also to know the dependency relation 2). In
the next step, again using the definition, we find Lt(¢, A, B) and Lt(¢, B, A).
And finally, (A) and (B) show that A(J4up(t)) is correctly calculated by the
following algorithm:

e for each action a € Lt(¢, A, B) pick from A(0p(t)) the time-stamp f such
that f(a) = L and put it into A(Qaun(?)),

e for each action a € Lt(t, B, A) pick from A(04(t)) the time-stamp f such
that f(a) = L and put it into A(aup(t)),

e for each action a € Eq(t, A, B) we can pick indifferently either from A(04(t))
or from A(0p(t)) the time-stamp f such that f(a) = L and put in into

A(0aun(t)).

O

Proposition 11 Let t € M(X,9) and a € X. There is an algorithm that,
given A(0y(t)) for all b such that (a,b) € D, calculates \(O4(ta)).

PROOF. Let A= {be€ X | (a,b) € Z} be the set of all actions dependent
on a. Suppose that A = {by,..., by} and set A; = {by,...,b;},i=1,...,m
The algorithm given in the proof of Proposition 10 (C) allows to calculate
A(04,,, (1)) from A(04,(t)) and A(Ds,,,(t)), therefore applying it m — 1 times
we can calculate A(J4(?)).

Note that J,(ta) = 04(t)a which implies that for all b # a, 0,(0,(ta)) =
0p(04(t)). Therefore for such actions b, A(9y(0,(ta))) = A(9s(04(t))). However,
A(05(04(t))) is just the time-stamp ¢ in A(D4(t)) such that g(b) = L.

This shows that we can calculate the time-stamp f = \(0,(ta)) € S, in the
following way: for all b € X,

(

il if b = a,

g(a) if b < a and there is g € A(04(t)) such that g(b) =
f(b) =4¢1—g(a) if a <band thereis g € A(0a(t)) such that g(b) =

1x(a) if b < a and there is no g € A(Jp(t)) such that g(b)

|1 —1x(a) if a < b and there is no g € A(0p(t)) such that g(b) =

The last two cases in the definition of f above are just the consequences of the
fact that if there is no g € A(94(t)) such that g(b) = L then 9,(9,(ta)) = 1
and for the empty trace we have set in (6) A(1) =1y. O

12

References

[1]
[2]

[3]

C. Berge. Graphs and hypergraphs. North-Holland, 1976.

R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and
asynchronous cellular automata. Information and Computation, 106(2):159—
202, 1993.

R. Cori and E. Sopena. Some combinatorial aspect of time-stamp systems.
Europ. J. Combinatoric, 14:95-102, 1993.

V. Diekert and A. Muscholl. A note on Métivier’s construction of asynchronous
automata for triangulated graphs. Fundamenta Informatica, 25:241-246, 1996.

V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
1995.

A. Mazurkiewicz. Introduction to trace theory. In V. Diekert and G. Rozenberg,
editors, The Book of Traces, pages 3—41. World Scientific, 1995.

Y. Métivier. An algorithm for computing asynchronous automata in the case
of acyclic non-commutation graph. In ICALP’87, volume 267 of LNCS, pages
226-236. Springer, 1987.

M. Mukund and M. Sohoni. Keeping track of the latest gossip in a distributed
system. Distributed Computing, 10(3):137-148, 1997.

G. Pighizzini. Synthesis of nondeterministic asynchronous automata. In
M. Droste and Y.Gurevich, editors, Semantics of programming languages and
model theory, volume 5 of Logic and Appplications, pages 109-126. Gordon and
Breach Science Publ., 1993.

[10] R.Cori and D.Perrin. Automates et commutations partielles. ~RAIRO

Informatique théorique et applications, 19:21-32, 1985.

[11] W. Zielonka. Notes on finite asynchronous automata. RAIRO Informatique

thorique et applications, 21(2):99-135, 1987.

13

