SAFE EXECUTIONS OF RECOGNIZABLE TRACE LANGUAGES
BY ASYNCHRONOUS AUTOMATA

Wieslaw Zielonka

Institute of Computer Science
Polish Academy of Sciences
00—-90f Warsaw
PKiN P.0O. Box a2
POLAND

1i.Introduction

In this paper we are interested in concurrent systems on
the level of action occurrences. As was shown by Mazurkiewicz[7]
the behaviour of these systems can be conveniently described by
trace languages, i.e. subsets of partially commutative monoids in
the same way as the behaviour of sequential systems is described
by formal languages.

Here we consider the class of recognizable trace languages.

We introduce a new kind of asynchronous finite devices - finite
asynchronous cellular automata that recognize exactly all
recognizable trace languages. We show that every recognizable
trace language can be realized by a safe and unambiguous finite
asynchronous cellular automaton, when safety means that every
computation starting from an initial state can be extended to an
accepted computation.

The same result holds alsoc for finite asynchronous
automata defined in [10] because every finite asynchronous
cellular automaton can be transformed easily to a finite
asynchronous automaton in a way that preserves all interesting

properties such as safety and unambiguity.

2. Traces and recognizable trace languages

In this section we fix the notation and recall some
elementary properties of traces. A great part of this material is
folklore.

We begin with notational remarks. If {,jelN are integers then (t, j]
denotes the set { kelN : i{<k<j >. For a set X by P(X) is denoted
the fami.ly of all subsets of X. Finally, for a word x over an
alphabet A and a letter aeA we assume that |x| is the length of x,

alph(x) is the set of letters that occur in x, 'Xla is the number

279

of occurrences of @ in x. The empty word is denoted by 1.

The pair (A,8) is a concurreﬁt alphabet if A is a finite set of
actions and 6SAxA is a symmetric and irreflexive binary relation
over A, the independency relation. We intr oduce an equivalence

relation >~ over A*. For two words u.veA*. u~ v if there exists a

e (2]
»
sequence of words wi;""wh*IEA such that USW ., VW, and
vV ielf,R], 3 xi.yieA » 3 (a,bl)ed, w£=xiabyi & wi+1=xibayi.
We can establish easily that g is a congruence over A*. i.e if
x2,V and u= v then xu:byv for all x,y,u,veA*.

By definition the quotient M(A.9)=A*/:= of A* by = is the

6 2]
partially commutative monoid over (A,8). Its elements, 1i.e.
equivalence classes of >, are called traces. 1If ueA* then [u]e

denotes the trace represented by u, i.e. the equivalence class of
u. Thus the mapping [1, : A* — M(A,©) that maps xeA" to [x], is

the canonical homomorphism from A* to M(A,8).

If LSA*.‘TSM(A.G) then [LJe={ [u]e : uel. > is the image of L under

L]6 while [T];‘={ 'ueA*t : [u]eeT > is the inverse image of T.

Subsets of M(A,8) will be called trace languages.

Let t=[x]9eM(A,6) be a trace, then we define |t|=|x] . |t|a=|x|a ,
alph(t)=alph(x) for aeA. The traces [a]6 for aeA and [1]9 will
be denoted simply by a and 1 respectively. This does not lead to a
confusion because it will be clear from the context if we are in

the domain of words or traces.

9d=AxA\8 will denote the dependency relation associated with 6.
For ocA we set Gd(a)={beA : Jaea, (a,b)e@d}.

Thus Gd(a) contains actions that depend on any action from o
Observe that ed is reflexive and thus V ae€A, aeed(a).

The independency relation will sometimes be written in the infix
form afb instead of (a,b)ed. Consequently if o,f3SA and t,reM(A,Q)
then we write a6 and tér to denote that axf3<e and

alph (t)xalph(r)<€ respectively.

If t=ur for t,u,reM(A,8) then u is a prefix of t and this fact is
denoted by wu«t.

280

Definition 2.1(4,6]

Let M be a monoid with the unit element 1. A finite state
M-automaton its a guintuple A=(M.Q,q°.<$.F') , where Q s a finite
set of states , 9, is the initial state, and & : OM — Q s the
transition mapping satisfying the following conditions

&5(q,1)=q for every qeQ and 6(q,m1m2)=6(6(q.m‘).mz) for all qeQ
and mi,mzeM. A recognizes the subset L(A)={ meM : é(qo.m)eF > of M
and a subset LEM is recognizable (ff there exists a finite state

M-automaton recognizing L. o

The following simple but very useful proposition establishes a
link between recognizable trace languages and recognizable

languages.

Proposition 2.2
-1

TEM(A,8) 1is recognizable a trace language Lff [T]e SA* is a
(a]

recognizable language.

For other more sophisticated algebraic characterizations of
recognizable trace languages we refer to Ochmanski{8], Dubocl3]
and Zielonkal10].

3. Finite Asynchronous Cellular Automata

A finite asynchronous cellular automaton A over a concurrent
aphabet (A,8) consists of

(i) a graph ¥ with A as the set of vertices and where an edge
joins aeA and beA iff (a.b)eed.

(1i) a family < Sa: aeA > of finite sets, where every Sa is
interpreted as the set of states of aeA,

(iii) a family < cSa : aeA > of +transition mappings, where for

every ae€A, <SCz : béonsb — .?(Sa) , a=ed(a).

Elements of the cartesian product S=aéAsa are global states of A.
We also distinguish the sets [,FS® of itnitial and final states
respectively.

Let @=2a<A, then ncx : aéASa . aéasa will denote the projection of
the global states onto the set aéasa . If a={a> then we write !'la.

281

The bahaviour of A is explained in terms of a game on ¥ with A as
a set of players placed on the vertices of the graph $. If a
player aeA makes a move then he examines the states of all his
neighbours from Bd(a) and changes his own state in accordance with
his transition mapping 6a' This single move is viewed as atomic ,
which implies that two neighbouring players a,beA, (a,b)e@d,
cannot move simultanecusly. On the other hand, since there is no
global synchronizing mechanism nonadjacent players are free to
move concurrently.

Formally, if se€% is a global state and the player a moves at s
then he replaces his actual state ﬂa(s) by s’eéa(ﬂa(s)). where
a=9d(a).

Now we introduce the global transition mapping

A: SxA" = PS) of &

defined in the following way:

(A1) A(s,1)=(s> for all se€5,

(A2) if s’,s"€S and aeA then s"eA(s’,a) if
i) VbeAN{a>, Hb(s")=ﬂb(s’) »and

(11) Ha(s")eéa(ﬂa(s’)) , a=6d(a).
We extend A to words as in the case of finite automata,
A(s,xy)=X s’€% : 3 s"€S, s"eA(s,x) & s’eA(s",y) > for se€% and
x.yeA*.

Observe that if aB8b then A(s,ab)=A(s,ba) and in general, for
u,veA*. if UM v then A(s,u)=&(s,v) for any se€5. This remark and
the fact that certain moves can be performed concurrently by the
players show that it is more natural to consider the sequences of
moves up to g i.e. rather than words ueA* we should take traces
[u]eeM(A.e) to describe the behaviour of A.

We extend A to A : SXM(A,8) — P(M(A,8)) Dby setting

A(s.[x)e)=A(s,x) for all xeA* and se%.

Formally, the finite asynchronous cellular automaton is just the
finite automaton A=(A,S$,0,A.F) ,where the set of states % is the
cartesian product aéASa and the transition function A is
represented by the family < éa: aeA > of mappings in the way
described by the conditions (Al) and (A2).

LA)=C xeA” : 3 s e, 3 sef, seals .x) >

is the language recognized by A , while

T(RA)={ teM(A,0) : 3 soeﬂ. 3 sfeF} sfeA(so.t) >

282

is the trace language recognized by A.
Note that T(A)=IL(A)l, and L(A)=[T(A)I;' . Thus T(A) is a
recognizable trace language.

As it turns out the inverse also holds:

Proposition 3.1
For every recognizable trace language TSM(A,8) there exists a
deterministic finite asynchronous cellular automaton A over M(A,0)

recognizing T. o

In Proposition 3.1 "deterministic' means that A is deteministic as
a finite automaton, i.e. card(l)=1 and Vse$, VaeA, card(A(s,a))<1.
The proof of Proposition 3.1 is not trivial. It is similar to the
proof of the corresponding result in the case of finite asynchronous
automata in [10] and will be given in a separate paper(2] . Some
related ideas were introduced in [{1]. Note also that there are
some simpler interesting cases , e.g. if the graph ¥ 1is

acyclici8].

The defined here finite asynchronous cellular automata relate
closely to the usual cellular automata. The set A of the vertices
of the graph § corresponds to the set of cells. In the cellular
automata the connection pattern is usually regular, e.g. this can
be a grid and they work in the synchronized mode while in the case
of the finite asynchronous cellular automata the connection
pattern is given by the graph § of the dependency relation €, and

a
actions (moves) are executed asychronously.

4. Safe implementation of recognizable trace languages by

asynchronous cellular automata

As it turns out the implementations of recognizable trace
languages by deterministic finite asynchronous cellular automata

may sometimes show incurable defects.

Definition 4.1.

Let A=(A,S,0,A,F) be a finite asychronous cellular automaton. A
global state s€% is accessible (coaccessible) if there exist an
initial state soeﬂ (a final state sféF respectively) and a trace

teM(A,8) such that seA(so.t) (sfeA(s,t) resp.). A is safe if

283

every accessible state se€8 is coaccessible.

Example 4.2.

Let A=ta,b,c¥, ©=C(a,d),(b,a)> ,L=((d"buab®)c)™ and T=Ll,
The trace 1language T is recognizable and we can construct a
deterministic finite asynchronous cellular automaton recognizing

T. An example of such an automaton is given below.

Ve set
_, 0 41 2 1 2 —e® 1 _2 1 2 -
Sa—{sa,sa,sa,ra.ra , Sb {sb,sb,sb,rb.rb}. Sc {sc.rc >,
D={(s°.s°.s >,
a b’ ¢
el o ey i J g
F {(sa,sb,rc) : i,je1,8>, i®y > U {(ra,rb,sc) : i,jel1,8, i=j D,
o _ 1 o —1
éa(sa.sc)—sa , éb(sb.sc) Sy
1 —.2 1 —.2
6a(sa.sc) S, , éb(sb.sc) Sy

1 2 o = 2 1
6C(sa,sb,sc) r. éc(sa.sb,sc) ,

1 2 __ 1
6a(sa.rc)-6 (s 5 b,rc)—rb ,

! 1 _
a .rc)—ra » 6b(sb,rc)-6 (s

QN

1 2 1 .2
éa(ra,rc)—ra . 6b(rb.rc) rb ’

1 2 e = 2 1
6c(ra.rb,rc)—-sc 6C(ra,rb.rc)

1 2 __ 1 1 _ 2 =1
6a(ra,sc)-6a(ra,sc)—sa , éb(rb,sc)-éb(rb,sc) Sy -
The reader is encouraged to draw the transition diagram for A.

Note that in this automaton we have A((so.so.s),azbz)=(sz.s2
2 a b’ ¢ a’”b

b’sc) we cannot reach any final

state and in fact we cannot move from this state at all. Thus the

»S).
C

But from the global state (sz,s
presented automaton is not safe.o

Thus although the automaton A from Example 4.2 recognizes the
given trace language T this implementation seems to have a defect.
In our distributed system there is no global control device and so
e by A.

Intuitively this means that besides the desired computations A may

we are not able to prevent the execution of the trace [a®b%)

perform some other computations which we can detect only by
inspecting from time to time the current global state to see if it
is coaccessible. This is due to the fact that the players have
only a limited knowledge , if a and & are nonadjacent , (a.b)eed.
then they do not see their states one another. This holds in

Example 4.2 where the players «,b may perform the sequence

284

[azbzle because a is unvisible directly for b and vice versa. On
the other hand, the introduction of a global arbiter to our game
restricts considerably the degree of parallelism in the system and
creates immediately other problems, for example how to find a
checkpoint at which & should be restarted.

This gives rise to the following central question of our paper.
Does there exist for every recognizable trace language T a safe
finite asynchronous cellular automaton A recognizing T®

For the language given in Example 4.2 the answer is positive as it

is shown below.

Example 4. 3.
Let A,8,T be as in Example 4.2. We set

1
b

1 2 1 2z 2 1 2 12 231 12 21
® =((s ,s ,r ,r'>), & ={s,,s,,r,,r, >, & =(s s r r->.
a a’Ta'a’a’ T T ¢ c e e e

The initial and final states are

0=F=¢ (s;.sé,r:l)‘, (r;.ré.s:l) s t.g.R,leCl,2>, i®y, kel > ,
and the transition mappings are given by
t Jk,_ 1 t Jky_ 1
6a(sa,rc) Ty , 6b(sb.rc) ry »
, , , , i1, kel1,2>, i=k
T _Jk,__1 v _JRy__1
6a(r‘a.sc) sa > 6b(rb9sc) Sb Py
1 _21,__2 1 _12,__2
éa(sa.sC) S, , 6b(sb.sc) Sy
1 21, 2 1 12, 2
6a(ra.rc)—ra , <Sb(rb.rc) Ty »
1 _2 _12,_ 2 1 _21,_ . 12 21
6 (Sa'sb'sc) 6C (Sa,sb’sc) {rc .I‘c > »

1 2 12, _ 2 1 21,_. . _12 21
cSc(ra.rb,rC)—6C(ra,rb,rc) {sc 'S, >
In this way we obtain a safe automaton recognizing T but it is

no longer deterministic. D

The following proposition shows that it is not by accident that

the automaton from Example 4.3 is not deterministic.

Proposition 4. 4.

Let (A,0) and TSM(A,8) be as in Example 4.2 and let A=(A,S,0,A,F)
be a safe finite asynchronous cellular automaton recognizing T.
Then

(i) A has at least two input states, t.e. card(l)22 , and

(it) there exists an accesible state s€8 and an action xe€A such

285

that card(A(s,x))=22.
Proof
Suppose that A recognizes T and there exists an accessible state
s€% such that
A(s,1a”b]) =0mA (s, [ab®])

Let s=(sa.s ,sc). (Sa,s

2 ” ”»” z
b.sc)eA(s,[ab]e). (sa,s sc)eA(s.[a b]e).

b b’

Since a@b it is easy to see that (s;.sé.sc)eA(s,[azbzle). if

teM(A,B8) is such that seA(so,t) for some soeﬂ then

(sa.sb

from T and hence (s”,s’
a’ b

.sc)eA(so.tazbz). But ta®b? is not a prefix for any trace

.sc) is not coaccessible.

This shows that if A is safe then for any accessible state se$
either A(s.[azb]e)=ﬂ or A(s.[abz]e)=9.

Since there exists an initial state from which [azb]6 can be
excuted and the same holds for the trace [abzle. the preceding
fact entails immediately (i).

We shall prove (ii). Let k=card(IX%) and T;=[((a?buab2)c)k]eST.
Note hat T} contains exactly EF traces. Since Ef)k this implies
that there exist different traces t’,t”eﬂ;. t’#t” and states
soeﬂ. se€% such that A(so.t’)=A(s°.t”)=s. Since t’'#t” there exist
traces to,r’.r" such that t’=t°[ab2]r’ and t”=t°[a?b]er”. If
(ii) does not hold then A(so,to) contains exactly one state, say
s’, and A(s’.[azble)#ﬂﬂA(s’,[abzle). But we have just shown that

in this case A cannot be safe. o

Proposition 4.4 shows that the finite asynchronous cellular
automata differ from the finite automata. Namely we can always
construct a deterministic and safe finite automaton. For this it
suffices to take any deterministic finite automaton recognizing a
given regular language L and simply remove all states thap are
not coaccessible.This procedure is not applicable for the
cellular asynchronous automata, if we remove the state (s:,sz.sc)
from the automaton & in Example 4.2 then we should remove all the
global states that contain SZ’S;’SC changing in this way the
recognized language.

However there is one important case when a safe and deterministic

finite asynchronous cellular automaton can be constructed.

286

Proposition 4.5.

Note that if the independency relation is empty, 6=0 , then VueA*,
[u]9={u} and M(A,0) is isomorphic with A*. Thus any language LSA*
can be viewed as a trace language in M(A,0).

Let LEA* be a regular language. Then there exists a deterministic
and safe finite asynchronous cellular automaton over the

concurrent alphabet (A4,0) recognizing L. o

The proof of this proposition will be given in Appendix.

Now we introduce some definitions.

Definition 4.6.

An asynchronous cellular automaton A=(A, 5. 1,A,F) is unambiguous i f
for all traces t’,t”eM(A,8) if their composition is recognized by
A, t.e. t’t”eT(A) then there exists exactly one triple of states

(so,s’.s")eﬂxSxF such that s’eA(so.t’) and s"eA(s’,t”). o

Definition 4.6 is equivalent with the classical definition of
unambiguity but it seems more adequate if we consider trace

languages.

Definition 4.7.

Let A=(A,S.0,A,F) be an asynchronous cellular automaton. A state
saeSa of a player aeA is dead if for every global state s&% such
that sa=na(s) we have A(s,a)=0.

By deadaSSa we shall denote the subset of all dead states of Sa.

A is dead-regular iff FsﬁéAdeada’ (a]

Thus if a player aceA is in a dead state saedeada then he cannot

move any more, regardless of the states of the other players.

Let us examine the case when A is both safe and dead-regular. We
say that a global state se€$% is dead if VaeA, A(s,a)=0, i.e. none
of the players can move at s.

Let t’eM(A,8) be a trace and let s’€e® be a state such that
s’eA(so.t’) for some initial state soeﬂ of A. If A is safe then
there exists a trace r such that A(s,r)df, i.e. treT(A). If A is
also dead-regul ar then we can deduce that
alph(r)=s{ aeA : Ha(s)esa\deada >. Thus in this case if a state s
is accessible and dead then it belongs to F and we can even

assume that F=aéhdeada' Morecover, note that every player aeA can

287

verify locally if he will move any more or not by inspecting if
he is in a dead state while in general, if A is not safe and
dead-regular as for instance in Example 4.2, the players have no
local criterion to decide when to stop their moves.

Now the main result can be presented.

Theorem 4. 8.
Let TEM(A,H) be a recognizable trace language. Then there exists a
fintte asynchronous cellular automaton A that is safe,

unambiguous, dead-regular , and recognizes T. [u}

Thus even if it is not possible to implement safely and
deterministicaly all recognizable trace languages it is always
possible to do this safely and unambiguosly by means of a

dead-regular automaton.

5. Appendix

Proof of Proposition 4.5 (hint)

The main idea is to include in the states of the players special
labels (time-stamps) . By means of these time-stamps the player
executing the last move can be found at any moment. We refer the
reader to [85] when such a bounded sequential time-system is

constructed. (n]

The full proof of the main Theorem 4.8 is long and for this reason
it will be published eisewhere. But as we do not want to leave the
reader without hints we present here the main ideas and point out
encoutered difficulties.

The proof is carried on by induction on the number of players
card (A).

From this moment we fix a player aeA and we set A’=A\{a> ,
6’ =6N(A’XA’).

Let GTa={ reM(A,e) : |r|a=0 & VteM(A,8)\{1>, t K r =p =(tOa) 1.
The trace language GTa is recognizable. Moreover, for every trace
reM(A,0) there exists a unique sequence of traces (ro,... ,rn),
denoted by facta(r), such that

(i) r=r _ar,a...ar .,

(ii) lro|a=0 ,

(iii) Vielf,nl, rieGTa.

288

Note that since for every r, in facta(r) we have |ri|a=0 the
traces r., can be considered as elements of the monoid M(A’,8°).
Intuitively, the trace ry o telf,n-11, contains the moves that
follow strictly the i-th move of the player a but do not follow
the i{+fst move of a The suffix r, contains the moves that
strictly follow the last move of «. Finally, the prefix Ty
contains all the other moves. Note that the moves in r, precede
or may be concurrent with the i+fst move of a, itel0O,n-11.

The main step in the construction is provided by the following
proposition , which shows how a recognizable trace language is

coded by a regular sequential language.

Proposition 5.1

Let TSM(A,8) be a recognizable trace language and acA be the fixed

player. There exist finite alphabets G and H , a recognizable
language LTSGH*, and a mapping @ : GUH — P(M(A’,0’)) such that
() V eeGUH, p(e) is a recognizable trace language
(i) for every teT, facta(t)=(to.t1,...,tn) there exists
exactly one word xeLT » X=e,e ... e, such that toep(eo),
tfep(ef),....tnep(en), (we say that this x codes t)
(Lid) tet x=eoe1...eneLT be any element of LT and let
(tO’tt""’tn) be any segquence of traces such that
vV telO,n], tiep(ei). Then there exists a trace teT such
that (t_,t_,...,t_JY=fact (t). o
o n a

Let LT'G.H.p be as in Proposition 5.1. Since for eeGUH p(e) is a
recognizable trace language and p(e)SM(A’,0’), by the induction
hypothesis there exists a safe, unambigouos, dead-regular finite
asynchronous cellular automaton &° over (A’,0’) recognizing g(e).
Let d=(GUH,Q,q°.<S,F') be a safe, deterministic finite automaton
recognizing LT (as we have mentioned, this automaton can be
obtained from any deterministic automaton recognizing LT by
removing the states that are not coaccessible).

Let teT, fact (t)=(t _,t and let x=e_e .e_ €L be
a (8] n T

se et) .

1 n ot

the word in LT coding t. At the beginning the player a is in the
state q1=6(q°,eo) and the players from A’ have the automaton A0
switched on , which enables them to execute the trace to.In
general, for telf,n], the player a making its i-th move choses
eieH » changes its state to qi+1=6(qi,ei) using the automaton 4,
and , finally, switches on the automaton &%¢ (recognizing p(ei))

for all the other players.

289

We see that intuitively the execution of the tracefti. telf,nl, is
controlled by the i-th move of the player a while the execution of
jk to is controlled by the choice of the initial state.

: Let us examine the following situation. We want to execute the

trace teT and we have already executed its prefix u, u«t. Let

facta(u)=(uo.uf,...

automaton &ei has been switched on and it has executed the

,um). Then for every tilelO,ml, ui«ti and the

i
t prefix Y, - If ui#ti then A€i¢ is still active, it has not yet
arrived to its final state. As it turns out, at the given moment
not only the last switched on automaton A%m may be active but some
preceding automata may be active as well. Fortunately, the number
of these automata is bounded by a constant. Now it remains to
coordinate the work of the active automata, which , we admit ,is
the most difficult part of the construction.
¢ References
9 £11 R.Cori, Y.Metivier, Approximation of a trace, asynchronous
?utomata and the ordering of events in a distributed system, 15
,iCALP, LNCS 317,147-161, Springer Verlag, 1988
/ [21 R.Cori,Y.Metivier,W.Zielonka, Applications of trace approxi -
mation to asynchronous automata and message passing with bounded
time-stamps in asynchronous networks, in preparation
£3] C. Duboc, Mixed product and asynchronous automata, Theor.
[Comp. Sci.,48(1986),183-199
! {4] S.Eilenberg, Automata, Languages and Machines,vol. A, 1974,
Academic Press
[51 Amos Israeli, Ming Li, Bounded Time-Stamps, Proceedings of
T 28th Annual FOCS Symposium ,1987,371-382
(6] G.Lallement, Semigroups and Combinatorial Applications,18979,
I J.Wiley and Sons 4
(7] A.Mazurkiewicz, Concurrent Program Schemes and Their Interpre-
tations, DAIMI -PB-78, Aarchus University,1977
(8] Y.Metivier, An algorithm for computing asynchronous automata
in the case of acyclic non-commutation graphs, 14 ICALP,LNCS 267
(91 E.Ochmanski, Regular Behaviour of Concurrent Schemes,
EATCS Bulletin, vol.27,1988,56-67
[10] W.Zielonka, Notes on Finite Asynchronous Automata, RAIRO
Inf. Theor. et Appl.,21(2),1987,99-138

