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Number systems

Let R be an integral domain,
b ∈ R, and N = {n1, . . . , nm} ⊂ R.
Then we call the pair (b,N ) a number system in R if every
g ∈ R admits a unique and finite representation of the form

g =
h∑

j=0

aj(g)bj with ai(g) ∈ N for i = 0, . . . , h (1)

and ah(g) 6= 0 if h 6= 0. We call b the base and N the set of
digits.
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Examples for number systems

I b ∈ Z, b ≤ −2 and N := {0, 1, . . . , |b| − 1},
then (b,N ) is a number system in Z.

I B ∈ Fq[X ] a polynomial, deg B > 1,
N := {P ∈ Fq[X ] : deg P < deg B}.
then (B ,N ) is a number system in Fq[X ].

I Let β be an algebraic integer over Z. Furthermore let
b ∈ Z[β] and N := {0, 1, . . . ,N(b)− 1}. Then under
certain circumstances the pair (b,N ) is a number system in
Z[β].
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Additive functions

Let R be an integral domain and (b,N ) be a number system in
this domain.
Then we call a function f : R → R b-additive, if for g as in (1)
we have that

f (g) =
h∑

k=0

f (akbk).

Moreover we call it strictly b-additive, if for g as in (1) we have
that

f (g) =
h∑

k=0

f (ak).
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The sum-of-digits function

A very simple example of a strictly b-additive function is the
sum-of-digits function sb, which is defined by

sb(g) =
h∑

k=0

ak

for g as in (1).
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Delange’s Result

Theorem Delange (1975)

∑
n≤x

sq(n) =
q − 1

2
N logq N + NF

(
logq N

)
,

where logq is the logarithm to base q and F is a 1-periodic,
continuous and nowhere differentiable function.
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Peter’s Result

Theorem Peter (2002)

There are c ∈ R and ε > 0 such that∑
n≤N

sq(
⌊
αnk

⌋
) =

q − 1

2
N logq(αNk) + cN

+ NF
(
logq(αNk)

)
+O(N1−ε)

where bxc is the greatest integer less than x, F a 1-periodic
function and α = 1 or α > 0 an irrational of finite type.
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Pseudo polynomial

Let α0, β0, . . . , αd , βd ∈ R, α0 > 0 and β0 > β1 > · · · > βd ≥ 1,
where at least one βi 6∈ Z. Then we define a pseudo polynomial
p as

p(x) := α0xβ0 + · · ·+ αdxβd .
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Over a pseudo-polynomial sequence

Theorem Nakai and Shiokawa (1990)

Let p be a pseudo polynomial. Then∑
n≤N

sq(bp(n)c) =
q − 1

2
N logq p(N) +O(N)

where logq denotes the logarithm to base q.
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Arbitrary additive functions

Theorem M (201?)

Let q ∈ N \ {1} and f be a strictly q-additive function with
f (0) = 0. If p is a pseudo polynomial, then there exists ε > 0
such that∑

n≤N

f (bp(n)c) = µf N logq(p(N))

+ NF
(
logq(p(N))

)
+O

(
N1−ε) .
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Asymptotic distribution in Z

Let f be a q-additive function such that f (aqk) = O(1) as
k →∞ and a ∈ N . Furthermore let

mk,q :=
1

q

∑
a∈N

f (aqk), σ2
k,q :=

1

q

∑
a∈N

f 2(aqk)−m2
k,q,

and

Mq(x) :=
N∑

k=0

mk,q, D2
q(x) =

N∑
k=0

σ2
k,q

with N = [logq x ].
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Asymptotic distribution in Z

Theorem Bassily and Katái (1995)

Assume that Dq(x)/(log x)1/3 →∞ as x →∞ and let p(x) be
a polynomial with integer coefficients, degree d and positive
leading term. Then, as x →∞,

1

x
#

{
n < x

∣∣∣∣ f (p(n))−Mq(xd)

Dq(xd)
< y

}
→ Φ(y),

where Φ is the normal distribution function.
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Length of expansion

Theorem Kovacs and Pethő (1992)

Let `(γ) be the length of the expansion of γ to the base b. Then∣∣∣∣∣`(γ)− max
1≤i≤n

log
∣∣γ(i)

∣∣
log |b(i)|

∣∣∣∣∣ ≤ C .
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Area of interest

We fix a T and set Ti for 1 ≤ i ≤ n such that

log Ti = log T
log
∣∣b(i)

∣∣n
log |N(b)|

.

Furthermore we will write

N(T) = N(T1, . . . ,Tr) :=
{
λ ∈ R :

∣∣λ(i)
∣∣ ≤ Ti , 1 ≤ i ≤ r

}
.
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Asymptotic distribution in Z[β]

Theorem M (2009)

Assume that there exists an ε > 0 such that
Db(x)/(log x)ε →∞ as x →∞ and let p be a polynomial of
degree d. Then, as T →∞,

1

#N(T)
#

{
z ∈ N(T)

∣∣∣∣ f (bp(z)c)−Mb(T d)

Db(T d)
< y

}
→ Φ(y),

where Φ is the normal distribution function.
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Some remarks

I It should suffices that

Db(x)→∞ for x →∞.

(The reason for that will follow in the last section.)

I One can replace p(n) by bp(n)c. Also shifting of the
“decimal” dot is possible.
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Continuation

We extend our number system onto K∞ the completion of the
field of quotients K of R. Then we get that every γ ∈ K∞ has a
(not necessarily unique) representation of the shape

γ =

`(γ)∑
j=−∞

aj(γ)bj (aj(γ) ∈ N ).
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Fundamental domain

In this context the fundamental domain F indicates the
properties of this extension. It is defined as all numbers with
zero in the integer part of their b-ary representation, i.e.,

F :=

{
γ ∈ K∞

∣∣∣∣γ =
∑
j≥1

ajb
−j , aj ∈ N

}
.
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Block count

Let θ ∈ K∞ be such that

θ =
∑
j≥1

ajb
−j .

Then for d1 . . . dk ∈ N k being a block of digits of length ` we
denote by N (θ; d1 . . . dk ; N) the number of occurrences of this
block in the first N digits of θ. Thus

N (θ; d1 . . . dr ; N) := #{0 ≤ n < N : d1 = an+1, . . . , dr = an+r}.
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Normal number

Now we call θ normal in (b,N ) if for every k ≥ 1 we have that

RN(θ) = RN,r(θ) := sup
d1...dr

∣∣∣∣ 1

N
N (θ; d1 . . . dr ; N)− 1

|N |r
∣∣∣∣ = o(1)

where the supremum is taken over all possible blocks
d1 . . . dr ∈ N r of length r .
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Construction of normal numbers

In order to construct a normal number we often take a strictly
increasing sequence (sn)n≥1 of real numbers and concatenate its
values. Thus we define

θ((sn)n≥1) := 0. bs1c bs2c bs3c bs4c bs5c . . .
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Constructions of normal numbers

Theorem Champernowne (1933)

θ((n)n≥1) is normal.

Theorem Copeland and Erdős (1946)

Let sn ∈ N. If

∀δ > 0∃N ∈ N : #{sn : sn ≤ N} ≥ Nδ,

then θ((sn)n≥1) is normal.
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Construction of normal numbers

Theorem Nakai and Shiokawa (1992)

Let f be a polynomial with real coefficients. Then θ((f (n))n≥1)
is normal.

Theorem M, Thuswaldner and Tichy (2007)

Let f be an entire function of bounded logarithmic order. Then
θ((f (n))n≥1) and θ((f (p))p∈P) are normal.
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Block counting

For proving that one of the constructions above really yields a
normal number one counts the number of occurrences of a
pattern within the expansion and ignores the number occurring
between two expansions.

S_n S_{n+1}
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Counting the patterns

In order to prove the arithmetic or asymptotic behaviour one
might consider the following generalisation of the above block
counting function.

N ((sn)n≥1; (d1, `1), . . . , (dk , `k); N)

= #{(n, `) : 1 ≤ n ≤ N , 0 ≤ ` < `(sn)

, a`+`1(sn) = d1, . . . , a`+`k (sn) = dk}.

M. Madritsch Additive functions and number systems April 7, 2010

30 / 35



Department for Analysis and Computational Number Theory

Connections

I Arithmetic summation:

N ((n)n≥1; (d , 0); N) = N log N + NΦ(log N) +O
(
N1−ε)

I Normal number:

N ((sn)n≥1; (d1, 0), . . . (dk , k − 1); N) = N log N +O (N)

I Asymptotic distribution:

N ((sn)n≥1; (d1, `1), . . . , (dk , `k); N) = N log N +O (N)
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Indicator function

N ((n)n≥1; (d1, `1) . . . (dk , `k); N)− 1

qk
N log(sN)

=
∑
n≤N

∑
0≤`<`(sN)

k∏
j=1

(
I`+`j ,dj

(bsnc)−
1

q

)
+O(1).

with

I`,d(x) =

{
1 if a`(x) = d ,

0 else.
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Fourier transform

∑
n≤N

(
I`,d (bsnc)−

1

q

)

� N

δ
+
∞∑
ν=1

min

(
δ

ν2
,

1

ν

) ∣∣∣∣∣∑
n≤N

e

(
ν

q`+1
sn

)∣∣∣∣∣ .
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Diophantine approximation

Since in most of the examples above we used polynomials we
write

p(x) = αkxk + · · ·+ α1x + α0.

Then we are interested in the size of bi for

∣∣∣∣ ν

q`+1
αi −

ai

bi

∣∣∣∣ ≤ (log N)H

Nk
.
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Division of the expansion

Since in our case the coefficients look like

ν

q`+1
αi .

the Diophantine approximation leads us to a division of the
expansion according to the position of the digit within the
expansion.

I Most significant digits.

I Middle digits.

I Least significant digits.

M. Madritsch Additive functions and number systems April 7, 2010

35 / 35


	Number systems and additive functions
	Arithmetical properties
	Asymptotic distribution
	Normal numbers
	Connections

