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Abstract. This paper investigates the use of Separation Logic with
inductive definitions in reasoning about programs that manipulate dy-
namic data structures. We propose a novel approach for exploiting the
inductive definitions in automating program proofs based on inductive
invariants. We focus on iterative programs, although our techniques ap-
ply to recursive programs as well, and specifications that describe not
only the shape of the data structures, but also their content or their
size. This approach is based on a careful inspection of the typical lem-
mas needed in such program proofs and efficiently checkable criteria for
recognizing inductive definitions that satisfy these lemmas. Empirically,
we find that our approach is powerful enough to deal with sophisticated
benchmarks, e.g., iterative procedures for searching, inserting, or delet-
ing elements in binary search tress, red-black trees, and AVL trees, in a
very efficient way.

1 Introduction

Program verification requires reasoning about complex, unbounded size data
structures that may carry data ranging over infinite domains. Examples of such
structures are multi-linked lists, nested lists, trees, etc. Programs manipulating
such structures perform operations that may modify their shape (due to dy-
namic creation and destructive updates) as well as the data attached to their
elements. An important issue is the design of logic-based frameworks allowing to
express assertions about program configurations (at given control points), and
then to check automatically the validity of these assertions, for all computations.
This leads to the challenging problem of finding relevant compromises between
expressiveness, automation, and scalability.

An established approach for scalability is the use of Separation logic
(SL) [19, 25]. Indeed, its support for local reasoning based on the Frame Rule
leads to compact proofs, that can be dealt with in an efficient way. However,
finding expressive fragments of SL for writing program assertions, that enable
efficient automated validation of the verification conditions, remains a major
issue. Typically, SL is used in combination with inductive definitions, which pro-
vide a natural description of the data structures manipulated by a program.
Moreover, since program proofs themselves are based on induction, using induc-
tive definitions instead of universal quantifiers (like in approaches based on first-
order logic) enables scalable automation, especially for recursive programs which



traverse the data structure according to their inductive definition, e.g., [23]. Nev-
ertheless, automating the validation of the verification conditions generated for
iterative programs, that traverse the data structures using while loops, re-
mains a challenge. The loop invariants use inductive definitions for fragments
of data structures, traversed during a partial execution of the loop, and proving
the inductiveness of these invariants requires non-trivial lemmas relating (com-
positions of) such inductive definitions. Most of the existing works require that
these lemmas are provided by the user of the verification system, e.g., [8,18,23]
or they use translations of SL to first-order logic to avoid this problem. However,
the latter approaches work only for rather limited fragments [21,22]. In general,
it is difficult to have lemmas relating complex user-defined inductive predicates
that describe not only the shape of the data structures but also their content.

To illustrate this difficulty, consider the simple example of a sorted singly
linked list. The following inductive definition describes a sorted list segment
from the location E to F , storing a multiset of values M :

lseg(E,M,F ) ::= E = F ∧ emp ∧M = ∅
lseg(E,M,F ) ::= (∃X, v,M1. E 7→ {(next, X), (data, v)} ∗ lseg(X,M1, F )

∧ v ≤M1 ∧M = M1 ∪ {v}

where emp denotes the empty heap, E 7→ {(next, X), (data, v)} states that the
pointer field next of E points to X while its field data stores the value v, and
∗ is the separating conjunction. Proving inductive invariants of typical sorting
procedures requires such an inductive definition and the following lemma:

∃E2. lseg(E1,M1, E2) ∗ lseg(E2,M2, E3) ∧M1 ≤M2 ⇒ ∃M. lseg(E1,M,E3).

The data constraints in these lemmas, e.g., M1 ≤ M2 (stating that every
element of M1 is less or equal than all the elements of M2), which become more
complex when reasoning for instance about binary search trees, are an important
obstacle for trying to synthesize them automatically.

Our work is based on a new class of inductive definitions for describing frag-
ments of data structures that (i) support lemmas without additional data
constraints like M1 ≤ M2 and (ii) allow to automatically synthesize these
lemmas using efficiently checkable, almost syntactic, criteria. For instance, we
use a different inductive definition for lseg , with an additional parameter M ′:

lseg(E,M,F,M ′) ::= E = F ∧ emp ∧M = M ′ (1)

lseg(E,M,F,M ′) ::= (∃X, v,M1. E 7→ {(next, X), (data, v)} ∗ lseg(X,M1, F,M
′)

∧ v ≤M1 ∧M = M1 ∪ {v} (2)

The additional multiset parameter M ′ provides a “port” for appending another
sorted list segment, just like F does when we are referring strictly to the shape of
the list segment. The new definition satisfies the following lemma, which contains
no additional data constraints:

∃E2,M2. lseg(E1,M1, E2,M2) ∗ lseg(E2,M2, E3,M3)⇒ lseg(E1,M1, E3,M3). (3)

Besides such “composition” lemmas (formally defined in Sec. 5), we define (in
Sec. 6) other classes of lemmas needed in program proofs and we provide efficient
criteria for generating them automatically. Moreover, we propose (in Sec. 4) a



proof strategy using such lemmas, based on simple syntactic matchings of spa-
tial atoms (points-to atoms or predicate atoms like lseg) and reductions to SMT
solvers for dealing with the data constraints. We show experimentally (in Sec. 7)
that this proof strategy is powerful enough to deal with sophisticated bench-
marks, e.g., the verification conditions generated from the iterative procedures
for searching, inserting, or deleting elements in binary search tress, red-black
trees, and AVL trees, in a very efficient way.

2 Motivating Example

Fig. 1 lists an iterative implementation of a search procedure for binary search
trees (BSTs). The property that E points to a BST storing a multiset of values
M can be expressed by the following inductively-defined predicate:

bst(E,M) ::= E = nil ∧ emp ∧M = ∅ (4)

bst(E,M) ::= ∃X,Y,M1,M2, v. E 7→ {(left, X), (right, Y ), (data, v)} (5)

∗ bst(X,M1) ∗ bst(Y,M2)

∧ E 6= nil ∧M = {v} ∪M1 ∪M2 ∧M1 < v < M2

int search(struct Tree*

root, int key) {

struct Tree *t = root;

while (t != NULL) {

if (t->data == key)

return 1;

else if (t->data > key)

t = t->left;

else
t = t->right;

}

return 0;

} Fig. 1.

The predicate bst(E,M) is defined by two rules
describing respectively empty (eq. (4)) and non-
empty trees (eq. (5)). The body (right-hand side)
of each rule is a conjunction of a pure formula,
formed of (dis)equalities between location vari-
ables (e.g. E = nil) and data constraints (e.g.
M = ∅), and a spatial formula describing the
structure of the heap. The data constraints of
the rule (5) define M to be the multiset of val-
ues stored in the tree, and state the sortedness
property of BSTs.

The precondition of search is bst(root,M0),
where M0 is a ghost variable denoting the multi-

set of values stored in the tree, while its postcondition is bst(root,M0)∧ (key ∈
M0 → ret = 1) ∧ (key 6∈M0 → ret = 0), where ret denotes the return value.

The while loop traverses the BST in a top-down manner using the pointer
variable t. This variable decomposes the heap into two domain-disjoint sub-
heaps: the tree rooted at t, and the truncated tree rooted at root which contains
a “hole” t. To specify the invariant of this loop, we define another predicate
bsthole(E,M1, F,M2) describing “truncated” BSTs with one hole F as follows:

bsthole(E,M1, F,M2) ::= E = F ∧ emp ∧M1 = M2, (6)

bsthole(E,M1, F,M2) ::= ∃X,Y,M3,M4, v. E 7→ {(left, X), (right, Y ), (data, v)}
∗ bst(X,M3) ∗ bsthole(Y, F,M4,M2) (7)

∧ M1 = {v} ∪M3 ∪M4 ∧M3 < v < M4

bsthole(E,M1, F,M2) ::= ∃X,Y,M3,M4, v. E 7→ {(left, X), (right, Y ), (data, v)}
∗ bsthole(X,F,M3,M2) ∗ bst(Y,M4) (8)

∧ M1 = {v} ∪M3 ∪M4 ∧M3 < v < M4



Intuitively, the parameter M2, interpreted as a multiset of values, is used to
specify that the structure described by bsthole(E,M1, F,M2) could be extended
with a BST rooted at F and storing the values in M2, to obtain a BST rooted at
E and storing the values in M1. Thus, the parameter M1 of bsthole is the union
of M2 with the multiset of values stored in the truncated BST represented by
bsthole(E,M1, F,M2).

Using bsthole, we obtain a succinct specification of the loop invariant:

Inv ::= ∃M1. bsthole(root,M0, t,M1) ∗ bst(t,M1) ∧ (key ∈M0 ⇔ key ∈M1). (9)

We illustrate that such inductive definitions are appropriate for automated
reasoning, by taking the following branch of the loop: assume(t != NULL);
assume(t->data > key); t′ = t->left (as usual, if statements are trans-
formed into assume statements and primed variables are introduced in assign-
ments). The postcondition of Inv w.r.t. this branch, denoted post(Inv), is com-
puted as usual by unfolding the bst predicate:

∃M1, Y, v,M2,M3. bsthole(root,M0, t,M1) ∗ t 7→ {(left, t′), (right, Y ), (data, v)}
∗ bst(t′,M2) ∗ bst(Y,M3) ∧M1 = {v} ∪M2 ∪M3 ∧M2 < v < M3

∧ (key ∈M0 ⇔ key ∈M1) ∧ v > key. (10)

The inductiveness of Inv w.r.t. this branch is expressed by the entailment
post(Inv)⇒ Inv ′, where Inv ′ is obtained from Inv by replacing t with t′.

One of the contributions of this paper is a proof strategy for proving the
validity of entailments of the form ϕ1 ⇒ ∃ ~X.ϕ2, where ~X contains only data
variables3. The strategy is based on two steps: (i) enumerating spatial atoms A
from ϕ2, and for each of them, carving out a sub-formula ϕA of ϕ1 that entails
A, and (ii) proving that the data constraints from ϕA imply those from ϕ2 (this
can be done using SMT solvers). The step (i) may generate constraints on the

existentially-quantified variables ~X in ϕ2 that are used in the second step. If the
step (ii) succeeds, and every spatial atom of ϕ1 occurs in exactly one sub-formula
obtained during the first step (this constraint is required by the semantics of the
separating conjunction), then the entailment holds.

For the entailment post(Inv) ⇒ Inv ′, the first step has two goals
which consist in computing two sub-formulas of post(Inv) that entail
∃M ′1. bsthole(root,M0, t

′,M ′1) and respectively, ∃M ′′1 . bst(t′,M ′′1 ). This renam-
ing of existential variables requires adding the equality M1 = M ′1 = M ′′1 to Inv ′.
The second goal, for ∃M ′′1 . bst(t′,M ′′1 ), can be solved easily since this predicate
almost matches the sub-formula bst(t′,M2). This matching generates the con-
straint M ′′1 = M2, which provides an instantiation of the existential variable M ′′1
useful in proving the entailment between the data constraints.

Computing a sub-formula that entails ∃M ′1. bsthole(root,M0, t
′,M ′1) re-

quires a non-trivial lemma. Thus, according to the syntactic criteria defined
in Sec. 5, the predicate bsthole enjoys the following composition lemma:(

∃F,M. bsthole(root,M0, F,M) ∗ bsthole(F,M, t′,M ′
1)
)

(11)

⇒ bsthole(root,M0, t
′,M ′

1).

3 The existential quantifiers in ϕ1 can be removed using skolemization.



Intuitively, this lemma states that composing two heap structures described
by bsthole results in a structure that satisfies the same predicate. The particular
relation between the arguments of the predicate atoms in the left-hand side is
motivated by the fact that the parameters F and M are supposed to represent
“ports” for composing bsthole(root,M0, F,M) with some other similar heap
structures. This property of F and M is characterized syntactically by the fact
that, roughly, F (resp. M) occurs only once in the body of each inductive rule of
bsthole, and F (resp. M) occurs only in an equality with root (resp. M0) in the
base rule (we are referring to the rules (6)–(8) with the parameters of bsthole
substituted by (root,M0, F,M)).

Therefore, the first goal reduces to finding a sub-formula of post(Inv) that
implies the premise of (11) where M ′1 remains existentially-quantified. Recur-
sively, we apply the same strategy of enumerating spatial atoms and finding
sub-formulas that entail them. However, we are relying on the fact that all
the existential variables denoting the root locations of spatial atoms, e.g., F in
lemma (11), occur as argument in the only spatial atom rooted at the same
location as the conclusion, i.e., root in lemma (11). Therefore, in the first sub-
goal ∃F,M. bsthole(root,M0, F,M), matches the atom bsthole(root,M0, t,M1)
under the constraint F = t ∧M = M1. This constraint is used in solving the
second sub-goal, which now becomes ∃M ′1. bsthole(t,M1, t

′,M ′1).
The second sub-goal can be proved by unfolding bsthole twice, using first the

rule (8) and then the rule (6), and by matching the resulting spatial atoms with
those in post(Inv) one by one. This completes the proof of post(Inv) ⇒ Inv ′

since the sub-formulas generated for the two initial goals are disjoint and they
cover all the spatial atoms of post(Inv). Also, assuming that the existential M1

from Inv ′ is instantiated with M2 from post(Inv) (fact automatically deduced
in the first step), the data constraints in post(Inv) entail those in Inv ′.

3 Separation Logic with Inductive Definitions

Let LVar be a set of location variables, interpreted as heap locations, and DVar
a set of data variables, interpreted as data values stored in the heap, (multi)sets
of values, etc. In addition, let Var = LVar ∪ DVar. The domain of heap locations
is denoted by L while the domain of the variables in DVar is generically denoted
by D. Let F be a set of pointer fields, interpreted as functions L⇀ L, and D a
set of data fields, interpreted as functions L⇀ D. The syntax of the Separation
Logic fragment considered in this paper is defined in Table 1.

Formulas are interpreted over pairs (s, h) formed of a stack s and a heap h.
The stack s is a function giving values to a finite set of variables (location or
data variables) while the heap h is a function mapping a finite set of pairs (`, pf ),
where ` is a location and pf is a pointer field, to locations, and a finite set of
pairs (`, df ), where df is a data field, to values in D. In addition, h satisfies that
for each ` ∈ L, if (`, df ) ∈ dom(h) for some d ∈ D, then (`, pf ) ∈ dom(h) for
some pf ∈ F . Let dom(h) denote the domain of h, and ldom(h) denote the set
of ` ∈ L such that (`, pf ) ∈ dom(h) for some pf ∈ F .



Table 1. The syntax of the Separation Logic fragment

X,Y,E ∈ LVar location variables ρ ⊆ (F × LVar) ∪ (D × DVar)

~F ∈ Var∗ vector of variables P ∈ P predicates

x ∈ Var variable ∆ formula over data variables

Π ::= X = Y | X 6= Y | ∆ | Π ∧Π pure formulas

Σ ::= emp | E 7→ ρ | P (E, ~F ) | Σ ∗Σ spatial formulas

ϕ ::= Π ∧Σ | ϕ ∨ ϕ | ∃x. ϕ formulas

Formulas are conjunctions between a pure formula Π and a spatial formula
Σ. Pure formulas characterize the stack s using (dis)equalities between location
variables, e.g., a stack models x = y iff s(x) = s(y), and constraints ∆ over
data variables. We let ∆ unspecified, though we assume that they belong to
decidable theories, e.g., linear arithmetic or quantifier-free first order theories
over multisets of values. The atom emp of spatial formulas holds iff the domain
of the heap is empty. The points-to atom E 7→ {(fi, xi)}i∈I specifies that the
heap contains exactly one location E, and for all i ∈ I, the field fi of E equals xi,
i.e., h(s(E), fi) = s(xi). The fragment is parameterized by a set P of inductively
defined predicates, described hereafter.

Let P ∈ P. An inductive definition of P is a finite set of rules of the form
P (E, ~F ) ::= ∃~Z.Π ∧Σ, where ~Z ∈ Var∗ is a tuple of variables. A rule R is called
a base rule if Σ contains no predicate atoms. Otherwise, it is called an inductive
rule. A base rule R is called a spatial-empty base rule if Σ = emp. Otherwise, it is
called a spatial-nonempty base rule. For instance, the predicate bst in Section 2
is defined by one spatial-empty base rule and one inductive rule.

For each predicate P (E, ~F ) ∈ P, we distinguish the first parameter E from
the other parameters. Intuitively, E represents the root of the heap structure
described by P (E, ~F ). We consider several restrictions on the rules defining a

predicate P (E, ~F ) ∈ P. Thus, for each rule P (E, ~F ) ::= ∃~Z.Π ∧Σ,

– If the rule is inductive, then

• One points-to atom: Σ contains exactly one points-to atom E 7→ ρ, for
some ρ. In addition, for each field f ∈ F (resp. d ∈ D), ρ contains at
most one occurrence of f (resp. d).

• Connectedness: For each predicate atom Q(E1, ~F1) in Σ, there is Z ∈
LVar such that Π |= E1 = Z and Z occurs in ρ.

– If the rule is a spatial-nonempty base rule, then Σ contains exactly one
points-to atom E 7→ ρ, for some ρ.

Since we disallow the use of negations on top of the spatial atoms, the se-
mantics of the predicates in P is defined as usual as a least fixed-point.

We say that a formula ψ1 entails another formula ψ2, denoted by ψ1 ⇒ ψ2,
iff every model of ψ1 is also a model of ψ2. In addition, ψ1 ⇔ ψ2 is used to
denote the conjunction of ψ1 ⇒ ψ2 and ψ2 ⇒ ψ1.



4 A Proof Strategy Based on Lemmas

We introduce a proof strategy based on lemmas for entailments ϕ1 ⇒ ∃ ~X.ϕ2,
where ϕ1, ϕ2 are quantifier-free, and ~X ∈ DVar∗. We consider quantifier-free left-
hand sides ϕ1 since the existential variables from this part of the entailment can
be skolemized. In addition, we restrict our considerations to the situation that
only data variables are quantified in the right-hand side4. W.l.o.g., we assume
that every variable in ~X occurs in at most one spatial atom of ϕ2 (multiple
occurrences of the same variable can be removed by introducing fresh variables
and new equalities in the pure part). Also, we assume that ϕ1 and ϕ2 are of
the form Π ∧ Σ. In the general case, our proof strategy checks that for every
disjunct ϕ′1 of ϕ1, there is a disjunct ϕ′2 of ϕ2 s.t. ϕ′1 ⇒ ∃ ~X.ϕ′2.

Our proof strategy is defined by the recursive procedure slice(ϕ1,∃ ~X.ϕ2) in
Alg. 1. The procedure computes a sub-formula ψ of ϕ1 and two pure formulas
Cr, called rely, and Cg, called guarantee, such that ψ ∧ Cr ⇒ ϕ2 ∧ Cg. Intuitively,

the constraint Cr defines the instantiations of the existential variables ~X over
variables (terms) of ϕ1; the constraint Cg describes the possible relations between
data variables of ϕ1 assumed while computing the sub-formula ψ. When ψ is
syntactically the same as ϕ1, the entailment ϕ1 ⇒ ∃ ~X. ϕ2 holds.

When ϕ2 contains at least two spatial atoms, slice is called recursively (line

3) on each spatial atom from ϕ2, preserving the existential quantifiers over ~X.
Then, it checks (line 7) that the pure part of ϕ1, together with the rely constraints
obtained from the recursive calls, implies the pure part of ϕ2 and the guarantees
from the recursive calls. The second condition at line 7 ensures that the semantics
of the separating conjunction is preserved by checking that every spatial atom
of ϕ1 occurs in at most one sub-formula returned by the recursive calls. If both
tests succeed, slice returns the pure part of ϕ1 conjuncted to all the spatial sub-
formulas obtained from the recursive calls, and the conjunction of all the rely,
and respectively, guarantee constraints (line 8).

If ϕ2 contains only one spatial atom, slice checks whether ϕ1 contains a
spatial atom that matches the spatial atom in ϕ2 (line 10), using the function

matchAtom. If ϕ2 is an atom ∃ ~X. E 7→ ρ, then matchAtom searches for an atom
E′ 7→ ρ′ of ϕ1 that (1) has the same root, i.e., Pure(ϕ1) |= E = E′, (2) for every
pointer field f , if (f,X) ∈ ρ, then there is (f, Y ) ∈ ρ′, and vice versa. matchAtom
returns such an atom, if it exists, or an error value ⊥ otherwise. Moreover, in
the positive case, matchAtom computes a rely constraint Cr and a guarantee
constraint Cg (which are sets of equality constraints between data terms) such
that

(
Pure(ϕ1) ∧E′ 7→ ρ′ ∧ Cr

)
⇒ E 7→ ρ ∧ Cg. For example, consider the call of

matchAtom with the following formulas:

ϕ1 ::= X = Y ∧ w = w′ ∧ E 7→ {(f, Y ), (d1, v), (d2, w)}
ϕ2 ::= ∃v′. E 7→ {(f,X), (d1, v

′), (d2, w
′)},

where d1 and d2 are data fields. matchAtom returns the points-to atom from ϕ1,
Cr : v = v′, and Cg : w = w′. The basic principle here is to add an equality

4 We believe that this restriction is reasonable for the verification conditions appearing
in practice and all the benchmarks in our experiments are of this form.



1 Procedure slice (ϕ1, ∃ ~X. ϕ2 )
2 if |Spatial(ϕ2)| > 1 then
3 foreach spatial atom A of Spatial(ϕ2) different from emp do

4 (ϕA, CAr , CAg )← slice(ϕ1,∃ ~X. A);

5 if ϕA = ⊥ then return ⊥;

6 Cr ←
∧

A C
A
r ; Cg ←

∧
A C

A
g ;

7 if Pure(ϕ1) ∧ Cr |= Pure(ϕ2) ∧ Cg and ∀A,B. ϕA ./ ϕB then
8 return ( Pure(ϕ1) ∧ ?A ϕA, Cr, Cg )

9 else

10 (A, Cr, Cg)← matchAtom(ϕ1, ∃ ~X. Spatial(ϕ2));
11 if A 6= ⊥ and Pure(ϕ1) ∧ Cr |= Pure(ϕ2) ∧ Cg then
12 return (A, Cr, Cg)
13 else if A = ⊥ and Spatial(ϕ2) is a points-to atom then return ⊥ ;

14 else if A = ⊥ and Spatial(ϕ2) is a predicate atom, say P (E, ~F ) then

15 foreach lemma L , ∃~Z. Π ∧Σ ⇒ P (E, ~F ) do

16 (A1, Cr, Cg)← matchAtom(ϕ1, ∃ ~X∃~Z. root(L));
17 if A1 6= ⊥ then

18 ∃ ~Z′.Π ′ ∧Σ′ ← quantElmt( ∃ ~X∃~Z.Π ∧ (Σ \ root(L)), Cr );

19 (ϕ, C′r, C′g)← slice(ϕ1 \A1, ∃~Z′. Π ′ ∧Σ′);
20 if ϕ 6= ⊥ and Pure(ϕ1) ∧ Cr ∧ C′r ∧Π |= Pure(ϕ2) ∧ Cg ∧ C′g

then
21 return (Pure(ϕ1) ∧A1 ∗ ϕ, Cr ∧ C′r ∧Π, Cg ∧ C′g);

22 return ⊥

Algorithm 1: The procedure slice. Given a formula ϕ , ∃ ~X. Π∧Σ, Pure(ϕ) =
Π and Spatial(ϕ) = Σ. The size of Σ, |Σ|, is the number of its atoms. Also,
ϕA ./ ϕB denotes the fact that ϕA and ϕB don’t share spatial atoms.

deduced from the matching to Cg, if it involves only the free variables of ϕ2, and
to Cr, otherwise.

The output of matchAtom for predicate atoms is computed in a similar way:

The predicate atom from ϕ2, say P (E′, ~F ′), is matched to some atom P (E, ~F )
from ϕ1 such that Pure(ϕ1) |= E = E′. For instance, matchAtom called with

ϕ1 ::=X = Y ∧ w = w′ ∧ P (E, Y, v, w) and ϕ2 ::= ∃v′. P (E,X, v′, w′),

returns the spatial atom of ϕ1 and the same rely and guarantee as above.
If ϕ2 contains a predicate atom, say P (E, ~F ), which doesn’t match an atom

of ϕ1 (line 14), slice proceeds by applying lemmas (line 15). Straightforward
lemmas correspond to the inductive rules defining the predicate P : every rule
P (E, ~F ) ::= ∃~Z.Π ∧ Σ defines a lemma ∃~Z.Π ∧ Σ ⇒ P (E, ~F ). More complex
lemmas are defined in Sec. 5 and 6.

Essentially, applying a lemma L , ϕL ⇒ P (E, ~F ) means that the initial

proof goal, i.e., proving entailment of ∃ ~X. P (E, ~F ), is reduced to proving the

entailment of ∃ ~X.ϕL. The formula ϕL may contain existentially-quantified lo-
cation variables. Finding suitable instantiations for these variables relies on a



natural assumption that ϕL contains a unique spatial atom, denoted by root(L),
rooted at E (either a points-to atom E 7→ ρ or a predicate atom Q(E, . . .)),
that includes the occurrences of all the root variables of the points-to atoms
and all the first parameters of the predicate atoms. This assumption holds for
all the inductive rules defining predicates in our fragment (a consequence of the
connectedness constraint) and for all the lemmas defined in Sec. 5 and 6. The
atom root(L) is matched with an atom rooted at E from ϕ1 using the func-
tion matchAtom (line 16). When this matching is possible, matchAtom returns
a spatial atom A1 of ϕ1 rooted at some E′, with E′ = E implied by Pure(ϕ1),
together with rely and guarantee constraints.

The rely constraints Cr returned by matchAtom are used to eliminate some
of the existential variables from the current goal ∃ ~X∃~Z. Π ∧ (Σ \ root(L)). The
atom root(L) is removed from ϕL since it has been already matched to an atom
of ϕ1. The procedure quantElmt is responsible for this quantifier elimination and
returns a formula ∃~Z ′. Π ′ ∧Σ′ with ~Z ′ ⊆ ~Z, which is equivalent to ∃ ~X∃~Z. Π ∧
(Σ \root(L))∧Cr (line 18). For instance, the procedure quantElmt can substitute
a quantified variable Xi with a variable Y occurring in ϕ1, if Xi = Y is a conjunct
of Cr. Then, the procedure slice is called recursively on the sub-formula ϕ1 \A1

and the simplified consequence ∃~Z ′. Π ′ ∧ Σ′. The final output of this case is
defined at line 21.

To exemplify the use of the lemmas, consider the following input of slice
corresponding to the entailment stating that two cells linked by the next pointer
field, and storing ordered data values, form a sorted list segment:

ϕ1 ::= x1 6= nil ∧ x2 6= nil ∧ v1 < v2 ∧ x1 7→ {(next, x2), (data, v1)}
∗ x2 7→ {(next, nil), (data, v2)}

ϕ2 ::= ∃M. lseg(x1,M, nil, ∅) ∧ v2 ∈M,

where lseg has been defined in Sec. 1 (eq. (1)–(2)). The first lemma to
be applied corresponds to the inductive rule of lseg , i.e., eq. (2) (page II):
∃X,M1, v. x1 7→ {(next, X), (data, v)}∗ lseg(X,M1, nil, ∅)∧M = {v}∪M1∧v ≤
M1 ⇒ lseg(x1,M, nil, ∅). Therefore, the input of matchAtom is ϕ1 and the atom
∃X, v. x1 7→ {(next, X), (data, v)} from the lemma. The output of matchAtom
is the points-to atom of ϕ1 rooted at x1, the rely Cr : X = x2 ∧ v = v1, and Cg is
empty (true). The rely Cr is used to eliminate the quantifiers over X and v, the
quantifier ∃M being eliminated by simply deleting the constraint M = {v1}∪M1,
and slice is called at line 19 with inputs

ϕ′
1 ::= x1 6= nil ∧ x2 6= nil ∧ v1 < v2 ∧ x2 7→ {(next, nil), (data, v2)}

ϕ′
2 ::= ∃M1. lseg(x2,M1, nil, ∅) ∧ v1 ≤M1

This recursive call returns the whole formula ϕ′1 together with the rely C′r :
M1 = {v2}, and an empty guarantee. Note that the conjunction of Cr, C′r, and
the pure part of the lemma, in particular, the constraint M = {v}∪M1, implies
the constraint v2 ∈ M from ϕ2. Therefore, the entailment ϕ1 ⇒ ϕ2 holds. The
full explanation of this examples is given in Appendix A.

The following result states the correctness of slice. Moreover, since we as-
sume a finite set of lemmas, and every application of a lemma L removes one



spatial atom from ϕ1 (the atom matched to root(L)), the termination of slice is
guaranteed. In general, slice is incomplete.

Theorem 1. Let ϕ1 and ∃ ~X.ϕ2 be two formulas. If slice(ϕ1,∃ ~X.ϕ2) =

(ϕ1, Cr, Cg), then ϕ1 ⇒ ∃ ~X.ϕ2.

5 Composition Lemmas

As we have seen in the motivating example, the predicate bsthole(E,M1, F,M2)
satisfies the property that composing two heap structures described by this pred-
icate results in a heap structure satisfying the same predicate. We call this prop-
erty a composition lemma. We define simple and uniform syntactic criteria which,
if they are satisfied by a predicate, then the composition lemma holds. Further
extensions to allow, e.g., trees with parent node, are discussed in Appendix B.

The main idea is to divide the parameters of inductively defined predicates
into three categories: The source parameters ~α = (E,C), the hole parameters
~β = (F,H), and the static parameters ~ξ ∈ Var∗, where E,F ∈ LVar are called
the source and resp., the hole location parameter, and C,H ∈ DVar are called
the cumulative and resp., the hole data parameter5.

Let P be a set of inductively defined predicates and P ∈ P with the param-
eters (~α, ~β, ~ξ ). Then P is said to be syntactically compositional if the inductive
definition of P contains exactly one base rule, and at least one inductive rule,
and the rules of P are of one of the following forms:

– Base rule: P (~α, ~β, ~ξ ) ::=
2∧

1=i

αi = βi ∧ emp,

– Inductive rule: P (~α, ~β, ~ξ ) ::= ∃~Z. Π∧Σ, with (a)Σ , E 7→ ρ∗Σr∗P (~γ, ~β, ~ξ ),

(b) Σr contains only predicate atoms, (c) γ ⊆ ~Z, and (d) the variables in ~β
don’t occur elsewhere in Π ∧Σ.

P ∈ P with the parameters (~α, ~β, ~ξ ) is said to be semantically compositional

if the entailment ∃β. P (~α, ~β, ~ξ ) ∗ P (~β,~γ, ~ξ )⇒ P (~α,~γ, ~ξ ) holds.

Theorem 2. Let P be a set of inductively defined predicates. If P ∈ P is syn-
tactically compositional, then P is semantically compositional.

The proof of Theorem 2 is done by induction on the size of the domain of
the heap structures as follows. Suppose (s, h) |= P (~α, ~β, ~ξ ) ∗ P (~β,~γ, ~ξ ), then

either s(~α) = s(~β) or s(~α) 6= s(~β). If the former situation occurs, then (s, h) |=
P (~α,~γ, ~ξ ) follows immediately. Otherwise, the predicate P (~α, ~β, ~ξ ) is unfolded
by using some inductive rule of P , and the induction hypothesis can be applied
to a sub-heap of smaller size. The fact (s, h) |= P (~α,~γ, ~ξ ) is deduced from the
hypothesis, i.e., P is syntactically compositional.

Remark 1. The static parameters are useful to define universal properties of the
data structures, e.g., all the data values in the binary search tree are greater
than a data value represented by the static data parameter v.

5 For simplicity, we assume that ~α and ~β consist of exactly one location parameter
and one data parameter.



6 Derived Lemmas

Theorem 2 provides a mean to obtain lemmas for one single syntactically compo-
sitional predicate. In the following, based on the syntactic compositionality, we
demonstrate how to derive additional lemmas describing relationships between
different predicates. We identify three categories of derived lemmas: “comple-
tion” lemmas, “stronger” lemmas, and “static-parameter contraction” lemmas.

6.1 The “completion” lemmas

We first consider the “completion” lemmas which describe relationships between
incomplete data structures (e.g. binary search trees with one hole) and complete
data structures (e.g. binary search trees). For example, the following lemma
exists for the predicate bsthole and bst :

∃F,M2. bsthole(E,M1, F,M2) ∗ bst(F,M2)⇒ bst(E,M1).

Moreover, notice that the rules (i.e., lemmas) in the definition of bst can be
obtained from those of bsthole by replacing (F,M2) with (nil, ∅), and M1 with M .
These observations can be generalized to arbitrary syntactically compositional
predicates as follows.

Let P ∈ P be a syntactically compositional predicate with the parameters
(~α, ~β, ~ξ ), and P ′ ∈ P a predicate with the parameters (~α, ~ξ ). Then P ′ is said to
be a completion of P with respect to a pair of constants ~c = c1c2 if the rules of
P ′ are obtained from the rules of P by setting ~β = ~c. More precisely,

– P ′ contains only one base rule, and this base rule is obtained from the base
rule of P by replacing βi with ci for each i : 1 ≤ i ≤ 2,

– for each inductive rule of P ′, say P ′(~α, ~ξ ) ::= ∃ ~Z ′.Π ′ ∧ Σ′, there exists a

rule of P of the form P (~α, ~β, ~ξ ) ::= ∃~Z.Π ∧ E 7→ ρ ∗ Σr ∗ P (~γ, ~β, ~ξ ), s.t.

| ~Z ′| = |~Z| and Π ′ ∧Σ′ is (Π ∧ E 7→ ρ ∗Σr ∗ P ′(~γ, ~ξ ))[~c/~β, ~Z ′/~Z],

– for each inductive rule of P , say P (~α, ~β, ~ξ ) ::= ∃~Z.Π∧E 7→ ρ∗Σr∗P (~γ, ~β, ~ξ ),

there is an inductive rule of P ′ of the form P ′(~α, ~ξ ) ::= ∃ ~Z ′.Π ′∧Σ′, satisfying
the same conditions as above.

Note that in the above definition, the occurrences of P in Σr (if there are any)
are not replaced by P ′.

Theorem 3. Let P ∈ P be a syntactically compositional predicate with the pa-
rameters (~α, ~β, ~ξ ), and P ′ ∈ P with the parameters (~α, ~ξ ). If P ′ is a completion

of P with respect to ~c, then P ′(~α, ~ξ )⇔ P (~α,~c, ~ξ ) and ∃~β. P (~α, ~β, ~ξ )∗P ′(~β, ~ξ )⇒
P ′(~α, ~ξ ) hold.

6.2 The “stronger” lemmas

We illustrate this class of lemmas on the example of BST. Let
natbsth(E,M1, F,M2) be the predicate defined by the same rules as
bsthole(E,M1, F,M2) (i.e., eq. (6)–(8)), except that M3 ≥ 0 is added to the
body of each inductive rule (i.e., eq. (7) and (8)). Then we say that natbsth



is stronger than bsthole, since for each rule R of natbsth, there is a rule R′ of
bsthole, such that the body of R entails the body of R′. This “stronger” relation
guarantees that the following lemma hold:

natbsth(E,M1, F,M2)⇒ bsthole(E,M1, F,M2)

∃E2,M2. natbsth(E1,M1, E2,M2) ∗ bsthole(E2,M2, E3,M3)⇒ bsthole(E1,M1, E3,M3).

In general, for two syntactically compositional predicates P, P ′ ∈ P with the
same set of parameters (~α, ~β, ~ξ ), P ′ is said to be stronger than P if for each

inductive rule P ′(~α, ~β, ~ξ ) ::= ∃~Z. Π ′ ∧ E 7→ ρ ∗ Σr ∗ P ′(~γ, ~β, ~ξ ), there is an

inductive rule P (~α, ~β, ~ξ ) ::= ∃~Z. Π ∧E 7→ ρ ∗Σr ∗P (~γ, ~β, ~ξ ) such that Π ′ ⇒ Π
holds. The following result is a consequence of Thm. 2.

Theorem 4. Let P, P ′ ∈ P be two syntactically compositional predicates with
the same set of parameters (~α, ~β, ~ξ ). If P ′ is stronger than P , then the entail-

ments P ′(~α, ~β, ~ξ ) ⇒ P (~α, ~β, ~ξ ) and ∃~β. P ′(~α, ~β, ~ξ ) ∗ P (~β,~γ, ~ξ ) ⇒ P (~α,~γ, ~ξ )
hold.

6.3 The “static-parameter contraction” lemmas

Let tailbsth(E,M1, F,M2) be the predicate defined by the same rules as
bsthole(E,M1, F,M2), with the modification that the points-to atom in each
inductive rule is replaced by E 7→ {(left, X), (right, Y ), (tail, F ), (data, v)}.
Notice that tailbsth is not syntactically compositional since F occurs in the
points-to atom of the inductive rules. Moreover, let stabsth(E,M1, F,M2, B)
be the predicate defined by the same rules as bsthole(E,M1, F,M2),
with the modification that the points-to atom in each inductive rule
is replaced by E 7→ {(left, X), (right, Y ), (tail, B), (data, v)}, and the
atom bsthole(Y,M4, F,M2) (resp. bsthole(X,M3, F,M2)) is replaced by
stabsth(Y,M4, F,M2, B) (resp. stabsth(X,M3, F,M2, B)). Clearly, the predicate
stabsth is syntactically compositional.

From the above description, it is easy to observe that the inductive definition
of tailbsth(E,M1, F,M2) can be obtained from that of stabsth(E,M1, F,M2, B)
by replacing B with F . Then the lemma tailbsth(E,M1, F,M2) ⇔
stabsth(E,M1, F,M2, F ) holds. From this, we further deduce the lemma

∃E2,M2. stabsth(E1,M1, E2,M2, E3) ∗ tailbsth(E2,M2, E3,M3)⇒
tailbsth(E1,M1, E3,M3).

We call the replacement of B by F in the inductive definition of stabsth
the “static-parameter contraction”. This idea can be generalized to arbitrary
syntactically compositional predicates as follows.

Let P ∈ P be a syntactically compositional predicate with the parameters
(~α, ~β, ~ξ ), P ′ ∈ P be an inductive predicate with the parameters (~α, ~β, ~ξ′ ), ~ξ =

ξ1 . . . ξk, and ~ξ′ = ξ′1 . . . ξ
′
l. Then P ′ is said to be a static-parameter contraction

of P if the rules of P ′ are obtained from those of P by setting ξi with βj for

some ξi ∈ ~ξ and βj ∈ ~β such that ξi and βj have the same data type. More
precisely, the base rules of P ′ are those of P , in addition, there is a function
prj : {1, . . . , k} → {0, 1, 2} such that the following conditions hold.



– |prj−1(0)| = l and ~ξ′ = prj 0( ~ξ ), where prj 0( ~ξ ) is the tuple obtained from ~ξ
by keeping the elements ξi such that prj (i) = 0 and removing all the others.

– For each i : 1 ≤ i ≤ k s.t. prj (i) 6= 0, ξi and βprj (i) have the same data type.

– For each inductive rule of P ′, say P ′(~α, ~β, ~ξ′ ) ::= ∃~Z.Π ′ ∧ Σ′, there is an

inductive rule of P of the form P (~α, ~β, ~ξ ) ::= ∃~Z.Π∧E 7→ ρ∗Σr ∗P (~γ, ~β, ~ξ ),

s.t. Π ′ ∧Σ′ is obtained from Π ∧ E 7→ ρ ∗Σr ∗ P (~γ, ~β, ~ξ ) by first replacing

P (~γ, ~β, ~ξ ) with P ′(~γ, ~β, ~ξ′ ), then replacing ξi with βprj (i) for each i : 1 ≤ i ≤
k such that prj (i) 6= 0.

– For each inductive rule of P , say P (~α, ~β, ~ξ ) ::= ∃~Z.Π∧E 7→ ρ∗Σr∗P (~γ, ~β, ~ξ ),

there is an inductive rule of P ′ of the form P ′(~α, ~β, ~ξ′ ) ::= ∃~Z.Π ′ ∧ Σ′,
satisfying the same conditions as above.

The function prj is called the contraction function of the static-parameter con-
traction. Notice that in the above definition, the occurrences of P in Σr (if there
are any) are not replaced by P ′.

Suppose ~β ∈ LVar × DVar, ~ξ′ = ξ′1 . . . ξ
′
l, prj : {1, . . . , k} → {0, 1, 2} such

that |prj−1(0)| = l, then the (prj , ~β)-extension of ~ξ′, denoted by ext (prj ,~β)(
~ξ′), is

defined as ~ξ = ξ1 . . . ξk such that prj 0(~ξ) = ~ξ′ and for each position i : 1 ≤ i ≤ k
such that prj (i) 6= 0, ξi = βprj (i).

Theorem 5. Let P ∈ P be a syntactically compositional predicate with the pa-
rameters (~α, ~β, ~ξ ) and P ′ ∈ P be an inductive predicate with the parameters

(~α, ~β, ~ξ′). If P ′ is a static-parameter contraction of P with the contraction func-

tion prj , then P ′(~α, ~β, ~ξ′)⇔ P (~α, ~β, extprj ,~β(~ξ′)) and ∃~β. P (~α, ~β, ext (prj ,~γ)(~ξ′))∗
P ′(~β,~γ, ~ξ′)⇒ P ′(~α,~γ, ~ξ′) hold.

7 Experimental results

We have extended our tool spen [26] with the proof strategy proposed in this
paper. The entailments are written in an extension of the SMTLIB format used
in the competition SL-COMP’14 for solvers for separation logic. It provides as
output SAT, UNSAT or UNKNOWN, and a diagnosis for all these cases.

The solver starts with a normalization step, based on the boolean abstrac-
tions described in [11], which saturates the input formulas with (dis)equalities
between location variables implied by the semantics of separating conjunction.
The entailments of data constraints are translated into satisfiability problems in
the theory of arrays, discharged using the SMT solver Z3 [10].

We have applied the approach proposed on two sets of problems6:

RDBI: verification conditions for proving the correctness of iterative procedures
(delete, insert, search) over data structures storing integer data: sorted lists,
binary search trees (BST), AVL trees, and red black trees (RBT).

SL-COMP’14: pure shape problems in the SL-COMP’14 benchmark. These
problems use syntactically compositional inductive predicates.

6 http://www.liafa.univ-paris-diderot.fr/spen/benchmarks.html

http://www.liafa.univ-paris-diderot.fr/spen/benchmarks.html


Table 2. Experimental results on benchmark RDBI

Data structure Procedure #VC Lemma ⇒D Time (s)
(#b, #r, #p, #c, #d) spen Z3

sorted lists search 4 (6, 8, 17, 3, 1) 6 0.10 0.05
insert 8 (12, 18, 30, 12, 0) 20 0.33 0.10
delete 4 (6, 10, 16, 6, 1) 10 0.15 0.05

BST search 4 (9, 11, 27, 9, 1) 6 0.20 0.05
insert 14 (18, 21, 33, 14, 0) 24 0.63 0.20
delete 25 (30, 37, 106, 25, 0) 68 1.49 0.51

AVL search 4 (10, 12, 17, 13, 1) 6 0.23 0.15
insert 22 (20, 27, 66, 23, 0) 48 1.94 0.63

RBT search 4 (9, 12, 27, 12, 1) 6 0.23 0.15
insert 21 (32, 25, 126, 22, 0) 78 2.94 0.93

Table 3. Experimental results on benchmark SL-COMP’14

Data structure #VC Lemma Time-spen(s)
(#b, #r, #p, #c, #d) spen-comp spen-TA

Nested linked lists 16 (17,47,14,8,0) 0.81 0.65

Skip lists 2 levels 4 (5,11,1,1,0) 0.18 0.18

Skip lists 3 levels 10 (16,32,29,17,0) 0.47 0.42

Table 2 provides experimental data7 for RDBI. The column #VC gives the
number of verification conditions considered for each procedure. The column
Lemma summarizes the number and the type of lemmas applied for each set of
problems: #b and #r are the number lemmas corresponding to base and resp.,
inductive rules, #c and #d are the number of composition and resp., derived
lemmas, and #p is the number of predicates matched syntactically, without
applying lemmas. Also, ⇒D provides the number of entailments between pure
constraints generated by spen; Time-spen gives the “wall clock time” spent by
spen on all problems excepting the time taken to solve the data constraints by
Z3, which is given on the column Time-Z3.

For the benchmark SL-COMP’14, Table 3 provides for comparison the time
spent by the decision procedure [11] on the same set of problem.

8 Related work

There have been many works on the verification of programs manipulating mu-
table data structures in general and the use of separation logic, e.g., [1–5, 7–9,
11–18, 21, 22, 24, 27]. In the following, we discuss those which are closer to our
approach.

The prover SLEEK [7, 18] and the natural proof approach DRYAD [20, 23]
provide proof strategies for proving entailments of SL formulas. These strategies
are also based on lemmas, relating inductive definitions, but differently from our
approach, these lemmas are supposed to be given by the user (SLEEK can prove

7 Our experiments were performed on an Intel Core 2 Duo2.53 GHz processor with
4 GiB DDR3 1067 MHz running a virtual machine with Fedora 20 (64-bit).



the correctness of the lemmas once they are provided). Our approach is able to
discover and synthesize the lemmas systematically, efficiently, and automatically.
Furthermore, the inductive definitions used in our paper enable succinct lemmas,
far less complex than for instance, the lemmas used in DRYAD, which include
complex constraints on data variables and the magic wand.

The method of cyclic proofs [5] can prove the entailment of two SL formulas
describing relationships between inductive predicates (or lemmas in our termi-
nology) by using induction on the size of the heaps, but it is the users’ task to
input these formulas. In addition, their lemmas focus on the shape part, but do
not contain data or size constraints. However, there are examples of intricate
lemmas which can be proved using the cyclic proofs methodology but not with
our approach, e.g., lemmas concerning the predicate RList which is defined by
unfolding the list segments from the end (instead of the beginning).

The tool SLIDE [14, 15] provides decision procedures for fragments of SL
based on reductions to the language inclusion problem of tree automata. Their
fragments contain no data or size constraints. In addition, the EXPTIME lower
bound complexity is an important obstacle for scalability. Our previous work [11]
introduces a decision procedure based on reductions to the membership problem
of tree automata which however is not capable of dealing with data constraints.

The tool GRASShopper [21, 22] is based on translations of SL fragments
to first-order logic with reachability predicates, and the use of SMT solvers to
deal with the latter. The advantage is the integration with other SMT theories
to reason about data. However, this approach considers a very limited class of
inductive definitions, for linked lists and trees. It is unclear whether it can be
generalized to allow user-defined inductive predicates, as in our work.

The truncation point approach [12] provides a method to specify and ver-
ify programs based on separation logic with inductive definitions. The approach
allows inductive definitions describing truncated data structures with multiple
holes, but it cannot deal with data constraints. Our approach can also be ex-
tended to cover such inductive definitions.

9 Conclusion
We proposed a novel approach for automating program proofs based on Sepa-
ration Logic with inductive definitions. This approach consists of (1) efficiently
checkable criteria for recognizing inductive definitions that satisfy crucial lem-
mas in such proofs and (2) a novel proof strategy for applying these lemmas. The
proof strategy relies on syntactic matchings of spatial atoms and SMT solvers
for dealing with data constraints. We have implemented the approach as an ex-
tension of our tool spen and applied it successfully to a representative set of
examples, coming from iterative procedures for binary search trees or lists.

In the future, we plan to investigate extensions of our approach to formulas
with a more general boolean structure or using more general inductive defini-
tions. Concerning the latter, we plan to investigate whether some ideas from [23]
could be used to extend our proof strategy. From a practical point of view, apart
from improving the implementation of our proof strategy, we plan to integrate
it into the program analysis framework Celia [6].
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A Full example of Section 4

We provide here the full execution of slice on the input considered in Section 4.
The input corresponds to the entailment stating that two cells linked by the

next pointer field, and storing ordered data values, form a sorted list segment:

ϕ1 ::= x1 6= nil ∧ x2 6= nil ∧ v1 < v2 ∧ x1 7→ {(next, x2), (data, v1)}
∗ x2 7→ {(next, nil), (data, v2)}

ϕ2 ::= ∃M,M ′. lseg(x1,M, nil, ∅) ∧ v2 ∈M,

where lseg has been defined in Sec. 1 (eq. (1)–(2)).

The first recursive call of slice: Because ϕ2 has only one spatial atom
(lseg(x1,M, nil, ∅)) which fails to be matched to an atom of ϕ1 by matchAtom
at line 10, the lemmas of lseg are tried at line 15. The only lemma including a
points-to atom from x1 is the inductive rule of lseg , i.e., eq. (2) (page II), where
the pure part of the lemma Π0 : v1 ≤M1

1 ∧M = M1
1 ∪ {v1}.

Therefore, matchAtom is called at line 16 with the input ϕ1 and ∃X1, v1. x1 7→
{(next, X1), (data, v1)} (α-conversion is applied to existential variables). The
output of matchAtom is the points-to atom of ϕ1 rooted at x1, the rely C1r :
X1 = x2 ∧ v1 = v1 and the guarantee C1g is empty (true). The rely C1r is used to
eliminate the quantifiers over X1 and v1; in addition, quantifier over M are also
eliminated to satisfy the constraint ~Z ′ ⊆ ~Z.

The second recursive call of slice: is done at line 19 with the following inputs:

ϕ1
1 ::= x1 6= nil ∧ x2 6= nil ∧ v1 < v2 ∧ x2 7→ {(next, nil), (data, v2)}

ϕ1
2 ::= ∃M1

1 . lseg(x2,M
1
1 , nil, ∅) ∧ v1 ≤M1

1 .

By applying again lemma (2) to the atom lseg(x2,M
1
1 , nil, ∅), we have that

Π1 : v2 ≤ M2
1 ∧M1

1 = M2
1 ∪ {v2}. The matchAtom is called at line 16 with

ϕ1
1 and ∃X2, v2.x2 7→ {(next, X2), (data, v2)}. The output of matchAtom is the

points-to atom of ϕ1
1 rooted at x2, the rely C2r : X2 = nil ∧ v2 = v2 and the

empty guarantee C2g . The quantifiers elimination at line 18 returns the simplified

formula wrt C2r :

∃M2
1 . lseg(nil,M2

1 , nil, ∅) ∧ v2 ≤M2
1 .

The third recursive call of slice: is done at line 19 with the following inputs:

ϕ2
1 ::= x1 6= nil ∧ x2 6= nil ∧ v1 < v2 ∧ emp

ϕ2
2 ::= ∃M2

1 . lseg(nil,M1
2 , nil, ∅) ∧ v2 ≤M2

1 .

The third lemma applied is the base rule (1) of lseg , which has Π2 : M2
1 = ∅

and matchAtom generates empty (true) rely C3r and guarantee C3g .

The fourth (final) recursive call of slice: is done at line 19 with the following
inputs:

ϕ3
1 ::= x1 6= nil ∧ x2 6= nil ∧ v1 < v2 ∧ emp

ϕ3
2 ::= true ∧ emp



By matching the atom emp at line 10, it generates empty (true) C4r and C4g .
Because Pure(ϕ3

1) |= Pure(ϕ3
2) is valid, the fourth recursive call returns at line 12,

to the line 20 in the 3rd recursive call with the triple (emp, C′r
3

: true, C′g
3

: true).

The constraint on data tested at line 20 in the 3rd recursive call is Pure(ϕ2
1)∧

C′r
3∧C3r ∧Π2 |= Pure(ϕ2

2), i.e., x1 6= nil∧x2 6= nil∧v1 < v2∧M2
1 = ∅ ⇒ v2 ≤M2

1 ,
which is valid. Notice that v2 ≤ ∅ is trivially true. Then, the 3rd recursive call
returns the triple (emp, C′r

2
: M2

1 = ∅, C′g
2

: true) at line 20 of the second recursive
call.

The constraint on data tested at line 20 in the 2nd recursive call is Pure(ϕ1
1)∧

C′r
2 ∧ C2r ∧Π1 |= Pure(ϕ1

2), i.e., Pure(ϕ1
1) ∧M2

1 = ∅ ∧X2 = nil ∧ v2 = v2 ∧ v2 ≤
M2

1 ∧M1
1 = M2

1 ∪ {v2} |= v1 ≤M1
1 , which is also valid. Then, the 2nd recursive

call returns the triple (x2 7→ {(next, nil), (data, v2)}, C′r
1

: C2r ∧ C′r
2 ∧ M1

1 =

{v2} ∪M2
1 ∧ v2 ≤M2

1 , C′g
1

: true) at line 20 of the first recursive call.

The constraint on data tested at line 20 in the 1st recursive call is Pure(ϕ1)∧
C′r

1 ∧ C1r ∧ Π0 |= Pure(ϕ2), i.e., Pure(ϕ1) ∧ C′r
1 ∧ X1 = x2 ∧ v1 = v1 ∧ v1 ≤

M1
1 ∧M = M1

1 ∪ {v1} |= v2 ∈M which is valid. The first call returns the triple

(x1 7→ {(next, X1), (data, v1)∗x2 7→ {(next, nil), (data, v2)}, C′r : C1r ∧C′r
1∧M =

{v1} ∪M1
1 ∧ v1 ≤M1

1 , C′g : true) at line 20 of the first recursive call.

B Extensions of the lemmas

In this section, we discuss how the the basic idea of syntactical compositionality
can be extended in various ways.

Multiple location and data parameters.
At first, we would like to emphasize that although we restrict our discussions

on compositional predicates P (~α, ~β, ~ξ) to the special case that ~α (resp. ~β) contain
only two parameters: one location parameter, and one data parameter. But all
the results about the lemmas can be generalized smoothly to the situation that
~α and ~β contain multiple location and data parameters.

Pseudo-composition lemmas.
We then consider syntactically pseudo-compositional predicates.
We still use the binary search trees to illustrate the idea.
Suppose neqbsthole is the predicate defined by the same rules as bsthole,

with the modification that E 6= F is added to the body of each inductive rule.
Then neqbsthole is not syntactically compositional anymore and the composition
lemma
∃E2,M2. neqbsthole(E1,M1, E2,M2) ∗ neqbsthole(E2,M2, E3,M3)⇒

neqbsthole(E1,M1, E3,M3)
does not hold. This is explained as follows: Suppose h = h1∗h2 (where h = h1∗h2
denotes that h1 and h2 are domain disjoint and h is the union of h1 and h2),
(s, h1) |= neqbsthole(E1,M1, E2,M2) and (s, h2) |= neqbsthole(E2,M2, E3,M3),
in addition, both ldom(h1) and ldom(h2) are nonempty. Then from the inductive
definition of neqbsthole, we deduce that s(E1) 6= s(E2) and s(E2) 6= s(E3). On



the other hand, (s, h) |= bsthole1(E1,M1, E3,M3) requires that s(E1) 6= s(E3),
which cannot be inferred from s(E1) 6= s(E2) and s(E2) 6= s(E3) in general.
Nevertheless, the entailment
∃E2,M2.neqbsthole(E1,M1, E2,M2) ∗ neqbsthole(E2,M2, E3,M3) ∗

E3 7→ ((left,X), (right, Y ), (data, v))⇒
neqbsthole(E1,M1, E3,M3) ∗ E3 7→ ((left,X), (right, Y ), (data, v))

holds since the information E1 6= E3 can be inferred from the fact that E3 is
allocated and separated from E1. Therefore, intuitively, in this situation, the
composition lemma can be applied under the condition that we already know
that E1 6= E3. We call this as pseudo-compositionality. Our decision procedure
can be generalized to apply the pseudo-composition lemmas when proving the
entailment of two formulas.

Data structures with parent pointers.

Next, we show how our ideas can be generalized to the data structures with
parent pointers, e.g. doubly linked lists or trees with parent pointers. We use
binary search trees with parent pointers to illustrate the idea. We can define the
predicates prtbst(E,Pr,M) and prtbsthole(E,Pr1,M1, F, Pr2,M2) to describe
respectively binary search trees with parent pointers and binary search trees
with parent pointers and one hole. The intuition of E,F are still the source
and the hole, while Pr and Pr1 (resp. Pr2) are the parent of E (resp. F ) (the
definition of prtbst is omitted here).

prtbsthole(E,Pr1,M1, F, Pr2,M2) ::= E = F ∧ emp ∧ Pr1 = Pr2 ∧M1 = M2

prtbsthole(E,Pr1,M1, F, Pr2,M2) ::= ∃X,Y,M3,M4, v.
E 7→ {(left,X), (right, Y ), (parent, Pr1), (data, v)}
∗ prtbst(X,E,M3) ∗ prtbsthole(Y,E,M4, F, Pr2,M2)
∧ M1 = {v} ∪M3 ∪M4 ∧M3 < v < M4

prtbsthole(E,Pr1,M1, F, Pr2,M2) ::= ∃X,Y,M3,M4, v.
E 7→ {(left,X), (right, Y ), (parent, Pr1), (data, v)}
∗ prtbsthole(X,E,M3, F, Pr2,M2) ∗ prtbst(Y,E,M4)
∧ M1 = {v} ∪M3 ∪M4 ∧M3 < v < M4

Then the predicate prtbsthole enjoys the composition lemma

∃E2, P r2,M2. prtbsthole(E1, P r1,M1, E2, P r2,M2) ∗
prtbsthole(E2, P r2,M2, E3, P r3,M3)⇒

prtbsthole(E1, P r1,M1, E3, P r3,M3).

Multiple points-to atoms in inductive rules.

In addition, we would like to remark that the constraint that each inductive
rule contains only one points-to atom can be lifted, without affecting the compo-
sitionality. For instance, we can define the predicate lsegeven for list segments
of even length as follows,

lsegeven(E,F ) ::= E = F ∧ emp,
lsegeven(E,F ) ::= ∃X,Y. E 7→ (next,X) ∗X 7→ (next, Y ) ∗ lsegeven(Y, F ).



Then lsegeven still enjoys the composition lemma

∃E2. lsegeven(E1, E2) ∗ lsegeven(E2, E3)⇒ lsegeven(E1, E3).

On the other hand, the predicate lsegodd for list segments of the odd length
does not enjoy the composition lemma. The definition of lsegodd(E,F ) can be
obtained from that of lsegeven(E,F ) by replacing the base rule with the rule
lsegodd(E,F ) ::= E 7→ (next, F ). This counterexample suggests that in order to
guarantee the compositionality lemma, the syntactical compositionality should
be carefully generalized as follows: The inductive rules may be generalized to
contain several points-to atoms, but the base rule should not be changed.

Points-to atom in base rules.
Finally, we discuss the constraint that the base rule of a syntactically compo-

sitional predicate has an empty spatial atom. We use the aforementioned pred-
icates lsegeven and lsegodd to illustrate the idea. The only difference between
the inductive definition of lsegeven and and that of lsegodd is as follows: The
base rule of lsegodd is E 7→ (next, F ), while that of lsegeven is E = F . From
this, we deduce that

lsegodd(E,F )⇔ ∃X. E 7→ {(next,X)} ∗ lsegeven(X,F ).

This idea can be generalized to arbitrary syntactically compositional predicates.

C Proofs in Section 5

Theorem 2. Suppose that P is a set of inductively defined predicates. If P ∈ P
is syntactically compositional, then P is semantically compositional.

Proof. Suppose P is syntactically compositional and has parameters (~α, ~β, ~ξ).
It is sufficient to prove the following claim.

For each pair (s, h), if (s, h) |= P (~α1, ~α2, ~ξ′) ∗P (~α2, ~α3, ~ξ′), then (s, h) |=
P (~α1, ~α3, ~ξ′).

We prove the claim by induction on the size of ldom(h).
Suppose for each i : 1 ≤ i ≤ 3, ~αi = Eivi.
Since (s, h) |= P (~α1, ~α2, ~ξ′) ∗ P (~α2, ~α3, ~ξ′), there are h1, h2 such that h =

h1 ∗ h2, (s, h1) |= P (~α1, ~α2, ~ξ′), and (s, h2) |= P (~α2, ~α3, ~ξ′).

If (s, h1) |=
2∧
i=1

α1,i = α2,i ∧ emp, then ldom(h1) = ∅, and h2 = h. From this,

we deduce that (s, h) |= P (~α1, ~α3, ~ξ′).

Otherwise, there are a recursive rule of P , say P (~α, ~β, ~ξ) ::= ∃ ~X.Π ∧ E 7→
ρ ∗ Σr ∗ P (~γ, ~β, ~ξ), and an extension of s, say s′, such that (s′, h1) |= Π ′ ∧
E1 7→ ρ′ ∗Σ′r ∗P (~γ′, ~α2, ~ξ′), where Π ′, ρ′, Σ′r, γ

′ are obtained from Π, ρ,Σr, γ by

replacing ~α, ~β, ~ξ with ~α1, ~α2, ~ξ′ respectively. From this, we deduce that there are
h1,1, h1,2, h1,3 such that h1 = h1,1∗h1,2∗h1,3, (s′, h1,1) |= E 7→ ρ′, (s′, h1,2) |= Σ′r,



and (s′, h1,3) |= P (~γ′, ~α2, ~ξ′). Then (s′, h1,3 ∗ h2) |= P (~γ′, ~α2, ~ξ′) ∗ P (~α2, ~α3, ~ξ′).

From the induction hypothesis, we deduce that (s′, h1,3 ∗ h2) |= P (~γ′, ~α3, ~ξ′).

Then (s′, h1,1 ∗ h1,2 ∗ h1,3 ∗ h2) |= Π ′ ∧ E1 7→ ρ′ ∗ Σ′r ∗ P (~γ′, ~α3, ~ξ′). We then

deduce that (s, h) |= ∃ ~X.Π ′ ∧ E1 7→ ρ′ ∗Σ′r ∗ P (~γ′, ~α3, ~ξ′).

To prove (s, h) |= P ( ~α1, ~α3, ~ξ′), it is sufficient to prove that (s, h) |= ∃ ~X.Π ′′∧
E1 7→ ρ′′ ∗Σ′′r ∗P ( ~γ′′, ~α3, ~ξ′), where Π ′′, ρ′′, Σ′′r , ~γ

′′ are obtained from Π, ρ,Σr, ~γ

by replacing ~α, ~β, ~ξ with ~α1, ~α3, ~ξ′ respectively.
From the fact that no variables from ~β occur in Π, ρ, Σr, or ~γ, we know

that Π ′′ = Π ′, ρ′′ = ρ′, Σ′′r = Σ′r, and ~γ′′ = ~γ′. Since (s, h) |= ∃ ~X.Π ′ ∧ E1 7→
ρ′ ∗ Σ′r ∗ P (~γ′, ~α3, ~ξ′), we have already proved that (s, h) |= ∃ ~X.Π ′′ ∧ E1 7→
ρ′′ ∗Σ′′r ∗ P ( ~γ′′, ~α3, ~ξ′). The proof is done. ut

D Proofs in Section 6

Theorem 3. Let P ∈ P be a syntactically compositional predicate with the
parameters (~α, ~β, ~ξ), and P ′ ∈ P with the parameters (~α, ~ξ). If P ′ is a completion

of P with respect to ~c, then P ′(~α, ~ξ)⇔ P (~α,~c, ~ξ) and ∃~β. P (~α, ~β, ~ξ)∗P ′(~β, ~ξ)⇒
P ′(~α, ~ξ) hold.

Proof. The fact P ′(~α, ~ξ) ⇔ P (~α,~c, ~ξ) can be proved easily by an induction on
the size of the domain of the heap structures.

The argument for ∃~β. P (~α, ~β, ~ξ)∗P ′(~β, ~ξ)⇒ P ′(~α, ~ξ) goes as follows: Suppose

(s, h) |= P (~α, ~β, ~ξ)∗P ′(~β, ~ξ). Then there are h1, h2 such that h = h1∗h2, (s, h1) |=
P (~α, ~β, ~ξ), and (s, h2) |= P ′(~β, ~ξ). From the fact that P ′(~β, ~ξ) ⇔ P (~β,~c, ~ξ),

we know that (s, h2) |= P (~β,~c, ~ξ). Therefore, (s, h) |= P (~α, ~β, ~ξ) ∗ P (~β,~c, ~ξ).

From Theorem 2, we deduce that (s, h) |= P (~α,~c, ~ξ). From the fact P (~α,~c, ~ξ)⇔
P ′(~α, ~ξ), we conclude that (s, h) |= P ′(~α, ~ξ). ut

Theorem 4. Let P, P ′ ∈ P be two syntactically compositional inductively defined
predicates with the same set of parameters (~α, ~β, ~ξ). If P ′ is stronger than P ,

then the entailment P ′(~α, ~β, ~ξ) ⇒ P (~α, ~β, ~ξ) and ∃~β. P ′(~α, ~β, ~ξ) ∗ P (~β,~γ, ~ξ) ⇒
P (~α,~γ, ~ξ) hold.

Proof. We first show that P ′(~α, ~β, ~ξ) ⇒ P (~α, ~β, ~ξ). By induction on the size of

ldom(h), we prove the following fact: For each (s, h), if (s, h) |= P ′(~α, ~β, ~ξ), then

(s, h) |= P (~α, ~β, ~ξ).

Suppose (s, h) |= P ′(~α, ~β, ~ξ).

If (s, h) |=
2∧
i=1

αi = βi ∧ emp, since P ′ and P have the same base rule, we

deduce that (s, h) |= P (~α, ~β, ~ξ).

Otherwise, there are a recursive rule of P ′, say P ′(~α, ~β, ~ξ) ::= ∃ ~X.Π ′ ∧E 7→
ρ ∗ Σr ∗ P ′(~γ, ~ξ), and an extension of s, say s′, such that (s′, h) |= Π ′ ∧ E 7→
ρ∗Σr ∗P ′(~γ, ~β, ~ξ). Then there are h1, h2, h3 such that h = h1 ∗h2 ∗h3, (s′, h1) |=



E 7→ ρ, (s′, h2) |= Σr, and (s′, h3) |= P ′(~γ, ~β, ~ξ). From the induction hypothesis,

we deduce that (s′, h3) |= P (~γ, ~β, ~ξ). Moreover, from the assumption, we know

that there is a recursive rule of P of the form P (~α, ~β, ~ξ) ::= ∃ ~X.Π∧E 7→ ρ∗Σr ∗
P (~γ, ~ξ), such that Π ′ ⇒ Π holds. Then it follows that (s′, h1∗h2∗h3) |= Π∧E 7→
ρ∗Σr ∗P (~γ, ~β, ~ξ). We then deduce that (s, h) |= ∃ ~X.Π ∧E 7→ ρ∗Σr ∗P (~γ, ~β, ~ξ).

From this, we conclude that (s, h) |= P (~α, ~β, ~ξ).
We then prove the second claim of the theorem.
From the argument above, we know that P ′(~α, ~β, ~ξ)⇒ P (~α, ~β, ~ξ) holds. Then

P ′(~α, ~β, ~ξ)∗P (~β,~γ, ~ξ)⇒ P (~α, ~β, ~ξ)∗P (~β,~γ, ~ξ) holds. In addition, from Theorem

2, we know that P (~α, ~β, ~ξ)∗P (~β,~γ, ~ξ)⇒ P (~α,~γ, ~ξ) holds. Therefore,we conclude

that P ′(~α, ~β, ~ξ) ∗ P (~β,~γ, ~ξ)⇒ P (~α,~γ, ~ξ). ut

Theorem 5. Let P ∈ P be a syntactically compositional predicate with the
parameters (~α, ~β, ~ξ) and P ′ ∈ P be an inductive predicate with the parameters

(~α, ~β, ~ξ′). If P ′ is a static-parameter contraction of P with the contraction func-

tion prj , then P ′(~α, ~β, ~ξ′)⇔ P (~α, ~β, extprj ,~β(~ξ′)) and ∃~β. P (~α, ~β, ext (prj ,~γ)(~ξ′))∗
P ′(~β,~γ, ~ξ′)⇒ P ′(~α,~γ, ~ξ′) hold.

Proof. The first claim can be proved by induction on the size of the domain of
the heap structures.

The argument for the second claim goes as follows: From the fact that
P ′(~β,~γ, ~ξ′)⇔ P (~β,~γ, ext (prj ,~γ)(~ξ′)), we deduce that

P (~α, ~β, ext (prj ,~γ)(~ξ′)) ∗ P ′(~β,~γ, ~ξ′)⇒
P (~α, ~β, ext (prj ,~γ)(~ξ′)) ∗ P (~β,~γ, ext (prj ,~γ)(~ξ′)).

From Theorem 2, we know that

P (~α, ~β, ext (prj ,~γ)(~ξ′)) ∗ P (~β,~γ, ext (prj ,~γ)(~ξ′))⇒ P (~α,~γ, ext (prj ,~γ)(~ξ′)).

Then the second claim follows from the fact that P (~α,~γ, ext (prj ,~γ)(~ξ′)) ⇔
P ′(~α,~γ, ~ξ′). ut
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