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Abstract. It is well-known that Abstract State Machines (ASMs) can simulate “step-
by-step” any type of machines (Turing machines, RAMs, etc.). We aim to overcome two
facts: 1) simulation is not identification, 2) the ASMs simulating machines of some type
do not constitute a natural class among all ASMs. We modify Gurevich’s notion of ASM
to that of EMA (“Evolving MultiAlgebra”) by replacing the program (which is a syntactic
object) by a semantic object: a functional which has to be very simply definable over the
static part of the ASM. We prove that very natural classes of EMAs correspond via “lit-
eral identifications” to slight extensions of the usual machine models and also to grammar
models. Though we modify these models, we keep their computation approach: only some
contingencies are modified.
Thus, EMAs appear as the mathematical model unifying all kinds of sequential computa-
tion paradigms.
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418 S. GRIGORIEFF AND P. VALARCHER

1. Introduction

What we prove in this paper. The fact that Abstract State Machines (ASMs) can
strict lock-step (i.e. “step-by-step ”) simulate any type of machines (Turing machines,
stack automata, RAM, etc) and grammars was shown long ago by Gurevich [10, 6]. A
systematic study is also done in Börger [2]. A tighter notion of simulation is also valid as
shown in Blass, Dershowitz & Gurevich [1].
The questions we consider in this paper are the following:

(Q1) Can we replace strict lock-step simulation by literal identity (up to a simple change
of view)?

(Q2) Given a computation model C, is it possible to get a natural characterization of the
class of ASMs which are equivalent to machines in C?

As far as we know, up to now, there is only one isolated answer which is about question
(Q2): Gurevich & al. [6] proved that Schönhage Storage Modification Machines correspond
exactly (for strict lock-step equivalence) to ASMs with unary functions only.
We bring positive answers to both questions for the diverse usual computation models C
(Turing machines, stack automata, RAMs, Schönhage Machines, Chomsky type 0 gram-
mars, etc.) slightly extended to models C+ using a tailored version of ASMs which (resur-
recting Gurevich’s original name for ASMs) we call Evolving Multialgebras (EMAs). These
answers have the following remarkably simple form:

Theorem 1.1. There exists a family of EMA static parts M (fixed semantical feature) and
a family of dynamic signatures S (fixed syntactical feature) such that, letting EM,S be the
family of EMAs with static part in M and dynamic signature in S,
- any computation device in C+ is literally identical to some EMA in EM,S,
- this “literal identity” correspondence is a bijection from C+ onto EM,S.

Of course, literal identity is not a formal notion. What we mean is as follows: the
diverse components of a computation device in C+ are in one-one correspondance with the
diverse components of the associated EMA, and this correspondance is an identity up to
a change of perspective (for instance, a “physical” bi-infinite tape will be considered to be
identical to the mathematical set Z of integers).

Remark 1.2. 1. This theorem is indeed a schema: one theorem per computation model.
We have proved it for a variety of usual sequential computation models (cf. [5]).
2. As said above, the diverse instances of Theorem 1.1 are proved for slight extension C+

of the usual computation models C. In all cases, C+ can be viewed as C considered with
different time units: for any k ≥ 1, a device M in C is seen as a device M(k) in C+ in which
one step of M(k) corresponds to k successive steps of M (or < k successive steps in case
the last of these steps has no successor).
3. Considering another presentation of C+, one can also view it as C in which some contin-
gencies have been removed (for instance, the read/write head will be able to scan a window
of cells instead of a single cell) but the computational paradigm has been preserved: local
computation and a particular topology of data storage for Turing machines, indirect ad-
dressing of registers for random access machines, etc. In our opinion, the classes C+ are the
right ones to carry the diverse computation paradigms.
4. In fact, contingencies can also be captured by families of EMAs with more technical
definitions (cf. [5]): we loose the remarkable simplicity of the above families EM,S .
5. This theorem schema strengthens Gurevich’s claim that ASMs constitute the natural
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EVOLVING MULTIALGEBRAS UNIFY ALL USUAL SEQUENTIAL COMPUTATION MODELS 419

mathematical modelization of algorithms: EMAs (which are a variant of ASMs) appear as
the computation model which unifies all usual sequential computation paradigms.

About the proof. No surprise, the proof of Theorem 1.1 for a particular C involves the
particular features of the class C. Thus, the claim (point 5 in Remark 1.2) that Theorem 1.1
is true for extensions C+ of every usual sequential computation model C cannot be proved
but only be supported by proved instances for a variety of classes C.

As for the common features to all such proofs, they come from an analysis of what
precludes positive solutions to questions (Q1) and (Q2). Let us list some of the difficulties
which are met. Some are easy to solve, other ones force to adequately tailor the definition
of ASMs (as that of EMAs) and those of the usual computation models.

(1) An ASM program mimicking the transition function δ of a Turing machine is a de-
scription of δ. Since there are many distinct descriptions of the same δ, there are many
ASMs which tightly simulate the same Turing machine. Thus, surprisingly as it is, looking
at this component – transition functions –, ASMs are less abstract than Turing machines.
Somehow, there is an extra operational feature in ASMs: the operational way to use δ is
not part of the formalization of Turing machines.
This is why we modify ASMs to EMAs: Evolving Multialgebras. The notion of EMA is
that of ASM in which the program (a syntactic object) is replaced by a semantic object: a
(very simply definable) functional operating on the function sets over the ASM domain. It
is then more natural to break the universe of an ASM into its natural parts: this allows a
very useful rudimentary typing of elements and functions.

(3) Again considering Turing machines, an ASM simulates the tape by the set Z of all inte-
gers and the moves of the head by the successor and predecessor operations on Z. Terms in
the ASM logical language allow to name the i-th successor and the i-th predecessor. Thus,
we cannot avoid the ASM program to move the head more than one cell left or right unless
we constrain terms in ASM programs to be of a simple form (somewhat “flat”). Which
would put technicalities to any positive answer to question (Q2). This is why we consider
slight extensions of the machine models which allow the read/write head to scan a window
of cells rather than only one cell and to move in a window. This is a kind of extra capabil-
ity which is much like allowing several tapes or several heads. Though it does modify the
model, it does preserves its core feature: successive local actions.

(4) For machine models having programs like RAMs and SMM (Schönhage Storage Modi-
cation Machines), there are two slight modifications. First, allow bounded blocks of parallel
and/or successive actions. Second, remove the program and the program counter in favor
of a transition function (much in the vein of Turing machines) which, though operating
on an infinite set (the contents of the accumulator and of the addressed registers in the
case of RAMs) is very simply definable in terms of the original program. Thus, we replace
an operational item (the program) by a denotational one (the transition function). Again,
though it does modify the model, it does preserves its core feature: indirect addressing (for
RAMs), dynamic storage topology (for Schönhage pointer machines).

EMAs versus ASMs. In our opinion, ASMs and EMAs are complementary models.
EMAs generalize any type of machine: it is the unification model. As for ASMs, they are
closer to programming. Indeed, the functioning of a EMA goes through the iteration of a
functional. To program an EMA, we need to add some operational information on how to
use this functional and this leads back to a program, hence to an ASM. . . Thus, ASMs are
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420 S. GRIGORIEFF AND P. VALARCHER

EMAs plus the instructions for using the functional: ASMs refine EMAs (in the sense of
software engineering) and EMAs are a (more) abstract version of ASMs.

2. From ASMs to EMA s: the deterministic case

2.1. How EMAs differ from ASMs

We detail the diverse features which are peculiar to EMAs.

A functional in place of a program. As said in the introduction, the main difference
between evolving multialgebras and Gurevich’s ASMs is as follows: the program (i.e. a
syntactic object) of an ASM is replaced by a functional (i.e. a semantic object) which does
exactly what the program tells to do. Thus, an operational feature is removed.

Multi-domains and multialgebras. The above modification leads to another very minor
one, really kind of “semantic sugar”: the universe of an ASM is broken into its natural
constituents and becomes a multi-domain. The reason for such multialgebras is that they
make it possible to type the symbols of the signature as functions (or elements) between
the diverse sets of the multi-domain.

Multialgebra operations with values in products of domains. Set theoretically,
a map F : A → B × C is identified with the pair of its component maps (FB , FC) where
FB : A → B and FC : A → C. We do view such an F as the pair (FB , FC) plus a correlation
condition: one cannot fire one of these two component maps without firing the other one,
and both have to be fired on the same argument.
We allow operations in the multialgebra to take values in products of domains. The above
condition leads to a notion of multiterms and a constraint in the definition of formulas
associated to the signature of an EMA. It is used in §?? to deal with Schönhage machines.

Halt/Fail and EMA status. In EMAs, the ASM program is replaced by the functional
which does exactly what the program tells to do. There are still the questions:
- is the functional to be applied or not on given arguments?
- if not, does it “halts and accepts” or “halts and rejects” or “get stuck”?
To deal with the three first alternatives, EMAs have a three valued dynamic component:
the status. Of course, there is no formal component carrying the information “stuck”.

Inputs and ASMs. In most presentations, Gurevich does not give any formal status to
inputs (his paper [4] with Dershowitz being an exception). When dealing with question
(Q2) it turns out that it is important to give a formal status to inputs. This is the case
for EMA characterizations of machines having some read-only tapes (e.g., finite automata).
We consider that inputs appear in two ways:
- as values of some particular static symbols,
- as initial values of dynamic symbols.
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EVOLVING MULTIALGEBRAS UNIFY ALL USUAL SEQUENTIAL COMPUTATION MODELS 421

2.2. Deterministic Evolving MultiAlgebras

Definition 2.1. Let n ≥ 1 and D = (Di)i=1,...,n be a sequence of n non empty sets (which
we call an n-multiset). An n-sort type is a triple (k, α, ℓ) where k ∈ N, ℓ ∈ {1, . . . , n} and
α is a map {1, . . . , k} → {1, . . . , n}. Its associated D-type (k, α, ℓ)D is the family of all
partial functions Dα(1) × . . . × Dα(k) → Dℓ. A D-type is functional if k ≥ 1. In case k = 0,
the D-type (0, ∅, ℓ)D is the family of partial functions {∅} → Dℓ, i.e. the set of “partial
elements” of Dℓ, i.e. Dℓ augmented with an “undefined element”.
Intuition: there are k arguments, α gives their types, and ℓ is the type of the range.
Typed ground terms and their types are defined in the obvious way.

Multialgebras. The notion of multisort algebra is a direct extension to multiset domains
of the usual notion of algebra of partial functions on a unique domain.

Definition 2.2 (Multialgebras). Let n ≥ 1 and S be an n-sort typed signature containing
function symbols ϕ1, . . . , ϕp. An S-multialgebra A is an n-multiset D = (Di)i=1,...,n endowed
with partial functions F1, . . . , Fp which interpret the symbols ϕi’s (Care: arity 0 symbols
with type Di are interpreted by elements of Di but can also be undefined).
If defined, the value, relative to A, of a ground S-term t is denoted by [[ t ]]A (it is an element
of some Di).

Semialgebraic functionals. Semialgebraic functionals are those which can be described
by ASM programs. They modify the interpretations in the multialgebra of constant and
functions symbols. For function symbols, this modification affects the values of only finitely
many points in the domain. These points and the associated new values of the argument
are given by ground S-terms. As in ASMs programs, there is a disjunction of cases for the
choice of the affected points and their associated new values.

First, a convenient notion.

Definition 2.3 (The ⊕ operation). Let F,G be partial functions X1 × . . . × Xk → Y and
Z ⊆ X1 × . . . × Xk. We define the partial function F ⊕Z G as follows:

Domain(F ⊕Z G) = (Domain(F ) \ Z) ∪ (Domain(G) ∩ Z)

(F ⊕Z G)(~x) =

{

F (~x) if ~x /∈ Z
G(~x) if ~x ∈ Z

In case p = 0, F,G are “partial elements” of Y and Z ⊆ {∅} and F ⊕Z G = F if Z = ∅ and
F ⊕Z G = G if Z = {∅}.

Definition 2.4 (Semialgebraic functionals). Let
• D = (Di)i=1,...,n be an n-multiset,
• S be an n-sort typed signature containing function symbols ϕ1, . . . , ϕp,
• A be a multialgebra with signature S \ {ϕ1, . . . , ϕp} on D,
• F1, . . . ,Fp be the D-types associated to ϕ1, . . . , ϕp,
• m ∈ {1, . . . , p} and (k, α, ℓ) be the n-sort type of ϕm.
• Ti be the family of ground S-terms of type Di,

For any p-tuple of functions ~F = (F1, . . . , Fp) ∈ F1 × . . . × Fp, let us denote by A(~F ) the
multialgebra A expanded to the signature S in which the ϕi’s are interpreted by the Fi’s.
A partial functional Φ :

∏

j=1,...,p Fj −→ Fm is (S,A)-semialgebraic if there exists a map

β : Boolq → Pfin(Tα(1) × . . . × Tα(k) × Tℓ) (where Pfin(X) is the family of finite subsets of
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422 S. GRIGORIEFF AND P. VALARCHER

X) and ground S-terms t1, . . . , tq, t′1 . . . , t′q such that, for any ~F ∈ G1 × . . . × Gp,

Φ(~F ) is defined if and only if










(a) all [[ ti ]]A(~F )’s, [[ t′i ]]A(~F )’s are defined

(b) ∀(u1, . . . , uk, v) ∈ β(. . . , [[ ti ]]A(~F ) = [[ t′i ]]A(~F ), . . .) all [[uj ]]A(~F )’s are defined

(c) ∀(~u, v), (~w, z) ∈ β(. . . , [[ ti ]]A(~F ) = [[ t′i ]]A(~F ), . . .) [[uj ]]A(~F ) 6= [[wj ]]A(~F ) for some j

Φ(~F ) = Fm ⊕Z G where
Z = {([[u1 ]]A(~F ), . . . , [[uk ]]A(~F )) | ∃v (~u, v) ∈ β(. . . , [[ ti ]]A(~F ) = [[ t′i ]]A(~F ), . . .)}

G = {([[u1 ]]A(~F ), . . . , [[uk ]]A(~F ), [[ v ]]A(~F )) | (~u, v) ∈ β(. . . , [[ ti ]]A(~F ) = [[ t′i ]]A(~F ), . . .)}

The tuple (β, t1, . . . , tq, t
′
1 . . . , t′q) is called a presentation of Φ.

For I ⊆ {1, . . . , p}, a functional Ψ :
∏

j=1,...,p Fj −→
∏

m∈I Fm is (S,A)-semialgebraic if so
are all its components.

Remark 2.5. Condition (a) in Definition 2.4 insures that all equality tests ti = t′i can be

achieved. Conditions (b) and (c) insure that, in equality Φ(~F ) = Fm ⊕Z G, the finite set Z
can be computed and G is a functional graph.
We do not require the [[ v ]]A(~F )’s to be defined (i.e. Domain(G) = Z): though this is incom-

patible with a call by value strategy, it makes sense with a call by name strategy.

Definition 2.6 (Deterministic EMAs). A deterministic evolving multialgebra (EMA)

is a tuple A = (n; Ssta,S
sta
input,S

dyn
input,Sdyn; D; Msta,Mini; Φ) consisting of the following

items.

• An n-multiset D = (Di)i=1,...,n such that Dn = {go, acc, rej}.
Intuition. Sets D1, . . . ,Dn−1 are the n − 1 different sorts of objects and Dn =
{go, acc, rej} is the set of possible statuses of the (evolving) multialgebra during the
run: “go on”, “halt and accept”, “halt and reject”.

• Four disjoint n-sort typed finite signatures Ssta,S
sta
input,S

dyn
input,Sdyn and two struc-

tures Msta,Mini with respective signatures Ssta,Sdyn. There is only one symbol s

which involves the sort n : it is a constant of type Dn in Sdyn
input.

Intuition. Msta is the static framework on D which remains fixed during any run.
Ssta

input is the signature for the static part of the input: its interpretation remains

fixed (hence accessible) during a run. Sdyn
input is the signature for the dynamic part

of the input: its interpretation can be modified (hence become inaccessible) during
a run. Mini initializes the part of the dynamic environment which is not initialized
by the input. The interpretation of s represents the status of the multialgebra.

• Let S = Ssta∪Ssta
input∪Sdyn

input∪Sdyn. Φ is a (S,Msta)-semialgebraic partial functional

Φ :







∏

ϕ∈Ssta
input

Fϕ






×






{go} ×

∏

ϕ∈(Sdyn∪S
dyn
input

)\{s}

Fϕ






−→

∏

ϕ∈Sdyn∪S
dyn
input

Fϕ

where Fϕ denotes the semantic type of the function symbol ϕ. In particular, Φ rules
the evolution of the status. The sole status which can be an argument of Φ is “go”:
a multialgebra with status “acc” or “rej” is halted and does not evolve any more.
However, in the image of Φ the status can take any value.
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EVOLVING MULTIALGEBRAS UNIFY ALL USUAL SEQUENTIAL COMPUTATION MODELS 423

A state of A is any multialgebra on D with signature S which expands Msta.

Definition 2.7 (Runs of deterministic EMAs). We keep the notations of Definition
2.6. A run of A is a sequence (Mt)t∈I of states of A such that
• I is a finite or infinite non empty initial segment of N,
• [[ θ ]]M0

= [[ θ ]]Mini
for all θ ∈ Sdyn,

• If t ∈ I then [[ θ ]]Mt
= [[ θ ]]M0

for all θ ∈ Ssta
input,

• If t ∈ I then t + 1 is in I if and only if [[ s ]]Mt
= go and Φ is defined on ([[ϕ ]]M})ϕ∈S\Ssta

,
• If t + 1 ∈ I then ([[ θ ]]Mt+1

)
θ∈Sdyn∪S

dyn

input

= Φ(([[ϕ ]]Mt
})ϕ∈S\Ssta

).

In particular, if [[ s ]]M0
6= go then I = {0}. Also, if t + 1 ∈ I then [[ s ]]Mt

= go.

3. Turing machines

In order to identify Turing machines with a simple class of EMAs, we introduce a slight
variant of Turing machines, which we call “window Turing machines”: 1) the head is allowed
to scan a small window instead of a single cell, and to move inside a window in a single
step, 2) halting (be it accepting or rejecting) is not related to the current state but to the
current local configuration: the state plus the contents of the scanned window.

Definition 3.1. A deterministic k-window n-tape (bi-infinite tapes) Turing machine is
a tuple (n, k,Σ = {σ0, . . . , σs−1}, Q = {q0, . . . , qr−1}, F

+, F−, δ, ωi, µi)i=1,...,n where, for
i = 1, . . . , n,

• Σ and Q are finite sets (the alphabet and the set of states),

• F+, F− ⊆ Q × Σn(2k+1) (accepting/rejecting final local configurations),

• δ : Q × Σn(2k+1) → Q (state transition),

• τi : Q × Σn(2k+1) → Σn(2k+1) (read/write on tape i),

• µi : Q × Σn(2k+1) → {−k, . . . ,−1, 0, 1, . . . , k} (move on tape i).

On each tape, the head scans the cell on which it is positioned and the k cells to the left
and the k cells to the right, a total of 2k+1 cells. The argument of type Σn(2k+1) in δ, ωi, µi

is the contents of the n(2k + 1) cells scanned on the n tapes. The effect of a transition is
to change the state according to δ, to modify the contents of the scanned cells of tape i
according to ωi and to move its head according to µi.
The notions of run, halt, acceptance and rejection are defined as usual.

Remark 3.2. Usual deterministic n-tape Turing machines are the 1-window ones.

Definition 3.3 (The class of EMAs for Turing machines). We denote by C
(n)
wT the

class of EMAs A = (n + 3; Ssta,S
sta
input,S

dyn
input,Sdyn; D; Msta,Mini; Φ) which satisfy the

following conditions for some r, s ∈ N (for clarity, we abusively denote by the same letter
static constant symbols and the elements which interpret them in the structure D).

(1) The multidomain of A is D = (Z(1), . . . , Z(n), Q,Σ,S) where the Z
(i)’s are fixed pair-

wise disjoint copies of Z (for instance, Z
(i) = Z×{i}), Q,Σ are finite sets with r, s elements

respectively, and S = {go, acc, rej}.

(2) The static framework signature Ssta contains r constants q0, . . . , qr−1 of type Q, s con-
stants σ0, . . . , σs−1 of type Σ and three constants go, acc, rej of type S which are interpreted
in the obvious way in Msta. It also contains, for each i = 1, . . . , n, two unary functions
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424 S. GRIGORIEFF AND P. VALARCHER

symbols Succ(i),Pred(i) of type Z
(i) → Z

(i) which are interpreted in Msta as the successor
and predecessor functions in Z

(i).

(3) The signature Ssta
input is empty.

(4) The signature Sdyn (for the dynamic environment non initialized by the input) contains,

for each i = 1, . . . , n, one constant pos(i) of type Z
(i) one constant q of type Q, and one

constant s of type S, which are respectively interpreted in Mini as 0, q0 and go.

(5) The signature Sdyn
input (for the dynamic environment initialized by the input) contains,

for each i = 1, . . . , n, one unary function c(i) of type Z
(i) → Σ.

Thus, the EMAs in C
(n)
wT are defined as those having particular signature, multidomain, static

framework and initialization of some dynamic symbols with no condition on the functional
Φ (other than its semialgebraicity).

Theorem 3.4 (EMA representation theorem for Turing machines).
Any deterministic n-tape window Turing machine is literally identical to some EMA in the

class C
(n)
wT . Conversely, any EMA in C

(n)
wT is literally identical to some deterministic n-tape

window Turing machine.

Proof. The argument is based on the following literal identifications between the components
of a Turing machine (TM) and the interpretations of symbols of the EMA signature:

(1) (TM) i-th tape and the way the read/write head moves on it.

(EMA) the copy Z
(i) of Z structured as 〈Z(i),Succ(i),Pred(i)〉.

(2) (TM) diverse states and letters.
(EMA) interpretations of the static symbols q0, . . . , qr−1 and σ0, . . . , σs−1.

(3) (TM) current state, positions of the n heads and contents of the n tapes.

(EMA) current interpretations of the dynamic symbols q, pos(i), c(i).
(4) (TM) non final or final accepting/rejecting character of the current state.

(EMA) current interpretation of the dynamic symbol s.
(5) (TM) transition function.

(EMA) semialgebraic functional.
(6) (TM) initial configuration.

(EMA) interpretations of the ci’s in the initial multialgebra and of Sdyn
dyn in Mini.

The non trivial identifications are those of points 4 and 5.
Keeping the notations of Definition 2.4, let (βϕ, t1,ϕ, . . . , tqϕ,ϕ, t′1,ϕ . . . , t′qϕ,ϕ)ϕ∈S int

dyn
be a pre-

sentation of the semialgebraic functional Φ of an EMA:

βϕ : Boolqϕ → Pfin(Tαϕ(1) × . . . × Tαϕ(kϕ) × Tℓϕ
)

Observe that terms of type Z
(j) are of the form ξ1(ξ2(. . .))(pos(j)) where the ξk’s are Succ(j)

or Pred(j). Let k be the maximum value of the |ξ1(ξ2(. . .))(0)| for all terms of type some

Z
(j) which is among the ti,ϕ, t′i,ϕ or among the finite sets given by the βϕ’s.

First, let us look at the equalities ti,ϕ = t′i,ϕ which govern the domain of Φ.

• If ti,ϕ, t′i,ϕ have type Z
(j) then, as said above, they are of the form ξ1(ξ2(. . .))(pos(j)).

Hence any equality ti,ϕ = t′i,ϕ is trivially true or false independently of the current value of

pos(j).
If ti,ϕ, t′i,ϕ have type S then they are of the form s or go, acc, rej. Since Φ and β are restricted
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EVOLVING MULTIALGEBRAS UNIFY ALL USUAL SEQUENTIAL COMPUTATION MODELS 425

to values where s = go, all possible equalities are trivial.
Thus, we can suppose that there is no term with type Z

(j) or S among the ti,ϕ, t′i,ϕ’s.

• If ti,ϕ, t′i,ϕ have type Q then they are of the form q or qj (j = 0, . . . , r − 1). Since any
equality qj = qk is trivially true or false, we can suppose that there is at most one equality
between terms of type Q and that it is of the form q = qj.

• If ti,ϕ, t′i,ϕ have type Σ then they are of the form c(j)(ξ1(ξ2(. . .))(pos(j))) where the ξk’s

are Succ(j) or Pred(j). The equalities between terms of type Σ are all comparisons of letters
among the values of c(1)(−k), . . . , c(1)(k),. . . , c(n)(−k), . . . , c(n)(k) where k is defined above.

This shows that the values of Φ depend solely on the value of q and those of the
c(j)(pos(j) + i)’s for j = 1, . . . , n and i = −k, . . . , k). This is exactly to say that what
matters is the current state and the current letters in the n windows of diameter 2k + 1
centered at the positions of the n heads. Otherwise said, the tuple of arguments of the
functional Φ is literally identical to the current values of the state plus the contents of the
windows, that is a tuple in Q × Σn(2k+1).

Let us look at the image of Φ which is given through finite families of tuples of terms given
by the βϕ’s. Since the only terms of type Q are q and the qi’s. Thus, Φ can leave the
dynamic symbol q unchanged or modify it to any value. The same is valid for the dynamic
symbol s (using what is said above about the domain of Φ, this proves the non easy direction
of point 4).

Terms of type Σ name the contents of some c(j) at positions which are at distance ≤ k of
the position of the j-th head. Thus Φ can modify the values of the c(j) in the windows
around the positions of the heads.
Terms of type Z

(j) name an integer at distance k of the position of the j-th head. Thus Φ
can move any head left or right of at most k cells. This proves the non easy direction of

point 5. Thus, an EMA in C
(n)
T is literally identical to some window Turing machine. The

converse is proved in a similar (much easier) way.

Remark 3.5. A slight variation in the EMA model can have strong effect. For instance,
suppose we add a constant 0 to the static signature and interpret it as 0 in the structure
Msta. Then we get window Turing machines in which the head can jump to cell 0.

4. Random access machines

In order to identify RAMs with a simple class of EMAs, we introduce a slight variant of
RAMs, which we call “transition RAM” (TRAM): 1) a bounded number of registers can be
modified in one step, 2) it can test for equality to 0 and equality between combinations (via
the fixed set of operations on N) of the contents of the addressed registers, 3) the program
is replaced by a transition function. Though this function operates on an infinite domain,
it is finitarily defined via ground terms.

Definition 4.1 (n-transition RAMs). Let f1, . . . , fp operations on non negative integers,
A n-transition RAM (n-TRAM) with operations f1, . . . , fp is a tuple

(n, k,Q = {q0, . . . , qr−1}, F
+, F−, δ, ρi, τi,j)i=1,...,n, j=1,...,k

where

• n is the number of distinguished registers,
• Σ and Q are finite sets (the alphabet and the set of states),
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426 S. GRIGORIEFF AND P. VALARCHER

• F+, F− ⊆ Q × Bool
p (accepting/rejecting final local configurations),

• δ : Q × Bool
p → Q (state transition),

• ρi : Q × Bool
p → T (modification of register i) for i = 1, . . . , n, where T is a

finite family of terms built with the operations f1, . . . , fp and n(1 + k) constants
(representing the contents of the addressed registers),

• τi,j : Q× Bool
p → T (modification of the register addressed through an iteration of

j successive addressing, starting with register i), for i = 1, . . . , n, j = 1, . . . , k.

At any time the n-TRAM accesses registers 1, . . . , n and the registers addressed addressed

through at most k iterated addressing by these registers. The p = n(1 + k)(1 + n(1+k)−1
2 )

Boolean arguments in the δ, ρi, τi’s test equalities or equalities to 0 of the contents of the
n(1 + k) adressed registers. Map δ tells how the state is modified. Maps ρi, τi,j’s tell how
the contents of the accessed registers are modified.
The notions of run, halt, acceptance and rejection are defined in the usual way.

Definition 4.2 (The class of EMAs for TRAMS). Let f1, . . . , fp operations on non

negative integers. We denote by C
(n)
TRAM the class of EMAs A which satisfy the following

conditions.

(1) A has 4 sorts and its multidomain is D = (N, Naddr, Q,S) where N
addr is a copy of N,

Q is a finite set with r elements, and S = {go, acc, rej}.

(2) The signature Ssta (for the static framework) contains n + r + 3 constants: 1, . . . , n
of type N, q0, . . . , qr−1 of type Q, “go”, “acc”, “rej” of type S, and n + 1 unary function
symbols cast of type N → Naddr, and, for each i = 1, . . . , n, fi of type N

ki → N. Their
interpretations in Msta are as follows: i) fi is interpreted as the given operation on N, ii) the
cast function is interpreted as the identity from N to its copy Naddr, iii) 1, . . . , n, the qi’s
and “go”, “acc”, “rej” are interpreted in the obvious way.

(3) The signature Ssta
input is empty.

(4) The signature Sdyn contains two constants q, s of types Q and S. Their interpretations
in Mini are q0 and “go”.

(5) The signature Sdyn
input contains one unary function c of type N

addr → N.

Thus, the EMAs in C
(n)
TRAM are defined as those having particular signature, multidomain,

static framework and initialization of some dynamic symbols with no condition on the
functional Φ (other than its semialgebraicity).

Theorem 4.3 (EMA representation theorem for TRAMs).

Any n-TRAM is literally identical to some EMA in the class C
(n)
TRAM. Conversely, any EMA

in C
(n)
TRAM is literally identical to some n-TRAM.

Proof. Analogous to the proof of Theorem 3.4.

5. Other models

Similar results can be proved with finite atomata, stack automata Schönhage machines.

Let us mention an interesting feature occurring in the EMA modelization of Schönhage
Storage Modification Machines (SMM) which illustrates what has been said in §2.1 about
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EVOLVING MULTIALGEBRAS UNIFY ALL USUAL SEQUENTIAL COMPUTATION MODELS 427

operations with values in products of domains. The tape of an SMM is a dynamic graph
which may grow or loose nodes. To manage the current set of nodes of this graph-tape, it
is convenient to introduce the following items:
• Among the sets of the multi-domain D, there is an infinite set X (where all nodes are
taken) and the set Pfin(X) of finite subsets of X. There is no structure on X nor on Pfin(X).
• In the signature Sdyn, there is a constant symbol U of type Pfin(X) (it tells which nodes
are in the current graph-tape).
• In the signature Ssta, there is a function symbol new with type Pfin(X) → X × Pfin(X).
It is interpreted as a choice function A 7→ (a,A ∪ {a}) which picks in X a point outside A,
i.e. such that a /∈ A.

To add a new node to the graph tape, we apply new to U . The constraint that both
components of new have to be fired simultaneously and on the same argument insures that
when a new node is picked, it is automatically added to (the interpretation) of U with no
condition on the functional Φ.

6. Uniformly bounded non determinism

Uniformly bounded non determinism allows at each step at most k choices where k
is some fixed constant independent of the step. EMAs with ‘such non determinism are
defined as are deterministic EMAs with the following modification: replace the semialgebraic
functional Φ by finitely many such functionals. All litteral identity results mentioned in the
previous sections extend easily to the non deterministic cases.

7. External non determinism

We now deal with a more powerful kind of non determinism: that given by external
choices which may be done during the run. This is the action of Gurevich’s “Choose”
instruction. To deal with such an “external non determinism”, we enrich EMAs with a
fifth signature: the “external dynamic” signature Sext. We illustrate this notion with the
example of Chomsky type 0 grammars.

Definition 7.1. A grammar is a finite set of rules (ui, vi)i=1,...,n where the ui, vi’s are words
in an alphabet Σ. The associated relation R ⊆ Σ⋆ × Σ⋆ is defined as follows: a pair (U, V )
is in R if and only if there exists a finite sequence U = U0, . . . , Uk = V such that, for all
j < k there exists words P, S and some i = 1, . . . , n such that Uj = PuiS and Uj+1 = PviS.

Definition 7.2. We denote by Cgra the class of non deterministic EMAs

A = (3; Ssta,S
sta
input,S

dyn
input,Sdyn,Sext; D; Msta,Mini; Φ)

which satisfy the following conditions.

(1) A has 3 sorts and its multidomain is D = (N,Σ∗,S) where Σ is a finite set.

(2) The signature Ssta (for the static framework) contains finitely many binary function
symbols substi, i = 1, . . . , n of type N × Σ∗ → Σ∗. There is some family (ui, vi)i=1,...,n of
pairs of words such that the interpretation in Msta (the static framework) of substi is the
function which acts on a pair (p, U) as follows: if U contains the factor ui in position p then
it is replaced by vi, else U is not modified.

(3) The signatures Ssta
input and Sdyn are empty.
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428 S. GRIGORIEFF AND P. VALARCHER

(4) The signature Sdyn
input contains one constant w of type Σ∗.

(5) The signature Sext (the external dynamic environment) contains one constant Choose
of type N. Its interpretation during the run is given as an external action: its value changes
at each step.

Thus, the EMAs in C
(n)
gra are defined as those having particular signature, multidomain, static

framework and initialization of some dynamic symbols with no condition on the functional
Φ (other than its semialgebraicity).

Using the fact that iteration of substitutions is also a substitution, one can prove :

Theorem 7.3. Any grammar is literally identical to some EMA in the class Cgra. Con-
versely, any EMA in Cgra is literally identical to some grammar.
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