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Abstract

Eilenberg, Elgot and Shepherdson showed in 1969, [9], that a rela-
tion on finite words over a finite, non-unary alphabet with p letters is
definable in the first order logic with p + 2 predicates for the relations
equal length, prefix and last letter is a (for each letter a ∈ Σ) if and only
if it can be recognized by a finite multitape synchronous automaton,
i.e., one whose read heads move simultaneously. They left open the
characterization in the case of infinite alphabets and proposed some
conjectures concerning them. We solve all problems and sharpen the
main theorem of [9].

1 Introduction

The purpose of this work is

(A) to propose a notion of multitape synchronous automaton for an infinite
alphabet,

(B) to answer a few related questions raised by Eilenberg, Elgot, Shep-
herdson in [9],

(C) to sharpen their main theorem with restrictions of the logical language.

The answers we give to questions (B) somehow suggest that our proposal
for (A) is robust.

For the reader familiar with the theory of rational relations over free
finitely generated monoids as exposed in several textbooks such as [3], [8]
and [12], we recall that the importance of the family of synchronous relations
is due to the fact that they are a good trade-off between
- the general family of rational relations which have high expressive power
but for which very few properties are decidable and most closure properties
fail,
- and the subfamily of recognizable relations with rich closure and decid-
ability properties but weak expressive power.

It is not surprising that this is the family which is most often considered
in several applications, e.g., in database theory [2, 5], model checking [13, 7]
and in automatic group theory [10].
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1.1 The problems left open by Eilenberg & al.

We consider a few questions raised by Eilenberg, Elgot, Shepherdson in
[9]. Their main result is a characterization, in terms of n-tape finite au-
tomata whose reading heads move synchronously and which we shall call
EES-automata, of the n-ary relations on words (i.e., subsets of the direct
product Σ∗ × · · · × Σ∗) which are definable in the first order theory of the
free monoid Σ∗ with

- the binary predicate Pref which means “x is a prefix of y”,

- the binary predicate EqLen which means “x and y are of equal length”

- and the unary predicates Lasta which mean “x ends with the letter a”
(one predicate for each letter a ∈ Σ).

This result holds only when the number of letters is finite and greater than
one. Simple counter-examples are given which show that the automata
model is strictly more powerful than the logic when the number of letters
is equal to one (cf. [9, Theorem 9.1]) or when it is infinite (cf. [9, §10, Ex-
ample 1]). When the alphabet is finite, EES-automata are exactly what
is now called synchronous automata. In case the alphabet is infinite, the
transitions of EES-automata involve arbitrary (possibly non computable)
sets of n-tuples of symbols, a rather surprising feature for automata. This
is why Eilenberg & al. suggest ([9, §10, Problem 2]) to restrict the notion
of relation recognizable by EES-automata to relations on words which are
invariant under all the permutations of Σ which act as the identity on some
finite subalphabet Σ0. Let’s call such relations Σ0-finitary. Eilenberg & al.
state three open problems for the case of an infinite alphabet.

• Problem 1. Are the binary relation EqLenEqLast which means “u and
v have the same length and end with the same letter” and its restriction
{(xz, yz) | x, y, z ∈ Σ} to words of length 2 definable with Pref, EqLen
and the Lasta’s?

There exist very simple automata recognizing the relation EqLenEqLast, so
more generally they ask

• Problem 2. If a relation is recognized by an EES-automaton and is
Σ0-finitary for some subset Σ0 ⊆ Σ, is it definable with Pref, EqLen
and the Lasta’s?

The special case where Σ0 is empty leads to the last question which does
not involve automata

• Problem 3. If a relation is definable with Pref, EqLen and the Lasta’s
and is invariant under all permutations of Σ, is it definable without
the Lasta predicates?
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Automata for
recognition

Logics on Σ∗

for definability
Relations

EES see Alexis Bès [4]

right invariant
congruence
of finite index (†)

Σ0-synchronous
Pref, EqLen, (Lasta)a∈Σ0 ,
EqLenEqLast

(†) + Σ0-finitary (*)
(†) + ≡sync

n,Σ0
-saturated

oblivious Σ0-synchronous
(if Σ0 6= ∅) Pref, EqLen, (Lasta)a∈Σ0 (†) + ≡obl

n,Σ0 -saturated

constant-free oblivious
synchronous

Pref, EqLen, (modk,`)k<` (†) + ≡obl
n,∅-saturated

non-counting oblivious
constant-free synchronous

Pref, EqLen
(†) + non-counting

+ ≡obl
n,∅-saturated

Figure 1: Automata and logic for relations on words. (*) is valid only if Σ
is infinite.

Let’s add to these problems the following refinement of Problem 3.

• Problem 3bis. If a relation is definable with Pref, EqLen and the
Lasta’s and is Σ0-finitary for some subset Σ0 ⊆ Σ, is it definable with
Pref, EqLen and the Lasta’s, for a varying in Σ0 ?

1.2 Our contribution

We clarify the relation between automata and the above logic and solve
all three problems. Also, we consider the logic obtained by restricting the
predicates Lasta’s to a ∈ Σ0, a finite subalphabet of Σ. Except for a few of
them, all results are valid for both finite and infinite alphabets Σ.

This can be summarized as follows (cf. also the table in Figure 1).

1. We impose on the transitions of EES-automata the Σ0-finitary condition.
Indeed, we show that, for words over an infinite alphabet, a relation recog-
nized by some EES-automaton satisfies the Σ0-finitary condition if and only
if so do all of its transitions, cf. Theorem 3.4. We thus obtain a reasonable
notion of automata for infinite alphabets which we call Σ0-synchronous and
which also makes sense for finite alphabets. Concerning the relationship be-
tween automata and logic, we prove that the relations recognized by these
automata are exactly those definable with the predicates Pref, EqLen and
Lasta for a ∈ Σ0 along with the predicate EqLenEqLast (meaning “same
length and same last letter”), cf. Theorem 4.1. This result is valid for both
finite and infinite alphabets.

2. We introduce the subclass of oblivious Σ0-synchronous automata and
characterize the family of relations recognized by such automata in terms
of EES-automata and saturation under a suitable equivalence involving Σ0,
cf. Theorem 3.12. When Σ0 6= ∅, we prove that the relations recognized by
these automata are exactly those definable with the predicates Pref, EqLen
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and Lasta for a ∈ Σ0, cf. Theorem 4.3. This leads to a positive answer to
Problem 3bis, cf. Corollary 4.4. As a by-product, this also leads to a nega-
tive answer to Problem 1, cf. Corollary 4.4, and therefore to Problem 2.

The particular case Σ0 = ∅ must be handled differently. We prove that
the relations recognized by our notion of constant-free oblivious synchronous
automata are exactly those definable with the predicates Pref, EqLen and
the unary predicates modk,` meaning “the length of u is congruent to k mod-
ulo `”, cf. Theorem 4.5. This solves Problem 3, see §4.5. Also, we prove
that the relations recognized by non-counting constant-free oblivious syn-
chronous automata are exactly those definable with the sole predicates Pref
and EqLen, cf. Theorem 4.8. Finally, we show quantifier elimination in the
logics (Pref, EqLen, (modk,`)k<`) and (Pref, EqLen) for simple extensions of
these languages, cf. Propositions 4.6 and 4.9.

The reader will find some common flavor between the notion of oblivi-
ous synchronicity and that of “regular prefix relation” due to Angluin and
Hoover, 1984 [1], rediscovered by Laüchli and Savioz, 1987 [11] (cf. Choffrut,
2006 [6]). Nevertheless, the two notions are not comparable, cf. §4.7.

3. We prove that adding generalized quantifiers ∃∞ (meaning there are in-
finitely many solutions) and ∃k mod ` (meaning the number of solutions is
finite and congruent to k modulo `) does not extend the expressive power
of (Pref, EqLen, EqLenEqLast, (Lasta)a∈Σ0) and (Pref, EqLen, (Lasta)a∈Σ0),
cf. Theorem 4.10.

4. From these results, we obtain (cf. Theorem 4.11) the decidability of the
first order theory (with quantifiers ∃∞ and ∃k mod ` allowed) of the structure

〈Σ∗; Pref, EqLen, EqLenEqLast, (Lasta)a∈Σ〉

The paper is organized as follows. In §2 we discuss the problem of extending
the notion of finite automata to possibly infinite alphabets, which we call
EES automata after the three authors Eilenberg, Elgot and Shepherdson
and study the particular case where the labels, which are subsets of the
alphabet, are invariant under all permutations fixing all the elements of some
finite subset. This allows us to define in §3 the family of synchronous finite
automata over infinite alphabets and the subfamily of oblivious synchronous
automata and the corresponding relations. We investigate their general
closure properties and give characterizations in terms of special equivalences
which are used in the last section. In §4 we are concerned with the different
logical structures using the natural elementary predicates such as those in
the table in Figure 1 and prove the equivalence between families of automata
and families of logics as suggested by the first two columns of the table.
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2 Finite automata over an infinite alphabet

The purpose of this section is to look at various notions of finite n-tape
automata that can be used to recognize n-tuples of words over infinite al-
phabets and to establish some properties of the class of relations over words
that they define. The ultimate goal is to establish a correspondence between
these families of relations and those definable in the diverse logics introduced
in section 4.

2.1 Words

Let Σ be a finite or infinite alphabet and let Σ∗ be the free monoid it
generates, i.e., the set of all finite sequences of elements in Σ, also called
words. The length of u ∈ Σ∗ is denoted by |u|. For 1 ≤ k ≤ |u|, u[k] denotes
the k-th letter of u and u¹k the prefix of u of length k. We denote by ε the
empty word, i.e., the word of length 0. The concatenation product of two
words u and v is denoted by uv, so that u (resp. v) is a prefix (resp. suffix)
of the word uv.

Given an integer n > 0, the direct product

n times︷ ︸︸ ︷
Σ∗ × · · · × Σ∗ has the struc-

ture of a monoid with componentwise concatenation. Considering a new
symbol # not in Σ, we pad all short components of any n-tuple (w1, w2, . . . , wn) ∈
(Σ∗)n with as few occurrences of # as necessary to make the length of all
components the same:

(w1, w2, . . . , wn) 7→ (w1#e1 , w2#e2 , . . . , wn#en)
with ei = (max1≤j≤n |wj |)− |wi| for i = 1, . . . , n

(1)

This transformation can be viewed as an homogenization and we denote the
element thus obtained by Hn(w) or simply H(w) when n is understood. For
example, with w = (ab, cdab, ε, bab) we getH(w) = (ab##, cdab, ####, bab#).
We extend the above notation to all subsets of (Σ∗)n: H(R) = {H(w) |
w ∈ R}. In particular, the set H((Σ∗)n) is a subset of the free monoid
generated by (Σ ∪ {#}) × . . . × (Σ ∪ {#}). Call support of an element
(a1, . . . , an) ∈ (Σ∪{#})× . . .× (Σ∪{#}), the set {i ∈ {1, . . . , n} : ai 6= #}.
An element of the free monoid generated by (Σ∪{#})× . . .×(Σ∪{#}) is in
H((Σ∗)n) if and only if it is the concatenation of generators with nonempty
nonincreasing supports with respect to the inclusion relation.

In case Σ is finite, the relation R ⊆ (Σ∗)n is synchronous if H(R) is a
recognizable subset of the free monoid ((Σ∪{#})×. . .×(Σ∪{#}))∗, which is
equivalent to saying, according to Kleene theorem, that there exists a finite
automaton over the alphabet ((Σ∪{#})× . . .× (Σ∪{#}) which recognizes
H(R). The next paragraph is a discussion on how to extend these notions
to infinite alphabets.
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2.2 Finite automata over infinite alphabets

The obvious extension to an infinite alphabet Σ of the definition of finite
automaton keeps the set of states Q finite and introduces an infinite set of
transitions ∆ ⊆ Q × Σ ×Q. For q, r ∈ Q, let’s call the set ∆q,r = {a ∈ Σ :
(q, a, r) ∈ ∆} the label of the transition from q to r. The transition relation
∆ can also be viewed as a function Q×Q → P (Σ), where P (Σ) denotes the
power set of Σ, which maps (q, r) to ∆q,r and that we shall also denote by ∆.
Allowing arbitrary labels in P (Σ) with Σ infinite is not in the spirit of finite
automata. To get a more reasonable notion, let’s fix some finite Boolean
algebra A of subsets of Σ and consider the class of A-automata obtained by
requiring that all labels be in A. Thus, we consider a finite A-automaton
as a quintuple A = (Q,Σ, ∆, I, F ) where Q is the finite set of states, I and
F are the sets of initial and terminal (or final) states and ∆ : Q × Q → A

is the functional representation of the transition relation. We recall that a
run in A is a sequence of transitions

q0
X1−−→ q1

X2−−→ q2 · · · qi−1
Xi−→ qi

It is initial if q0 is an initial state and successful if furthermore qi is a
final state. Its label is the subset concatenation X1X2 · · ·Xi. The subset of
Σ∗ recognized (or accepted) by A is the union over all successful runs of the
concatenation of their labels. Another equivalent definition of an automaton
consists of viewing the transition set as a finite subset of triples of the form
(q, X, p) where q, p are states and X is a subset of the algebra A. In that
case, several transitions may be associated with the same pair of states (q, r).
The conversion from one definition to the other is straightforward since it
consists of splitting a transition or conversely merging transitions.

The main elementary notions and results of finite automata over finite
alphabets extend easily to infinite alphabets and we shall use them without
further references: deterministic A-automata are defined in the expected
way; the classical subset construction extends with no problem implying
thus that the family of subsets of Σ∗ accepted by finite A-automata is a
Boolean subalgebra of P (Σ∗); there exists a minimal automaton which is
unique up to isomorphism and which is equivalent to a given A-automaton
and this automaton is also an A-automaton; recognizable subsets are exactly
the subsets which are unions of classes in a right invariant congruence of Σ∗,
etc . . .

2.3 EES automata and EES relations over possibly infinite
alphabets

In order to speak of automata recognizing n-tuples of words over the possibly
infinite alphabet Σ, we proceed as in the case of finite alphabets. Indeed, let
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# be the padding symbol as in paragraph 2.1 and consider the free monoid
generated by the subset (Σ ∪ {#})n.

Definition 2.1. Let Σ be a finite or infinite alphabet.
1. An n-tape EES automaton or simply an EES automaton when n is
understood, is an A-automaton where A is a finite Boolean subalgebra of
P ((Σ ∪ {#})n).

2. An n-ary relation R ⊆ (Σ∗)n is EES if Hn(R) is recognized by some EES
automaton.

We shall somehow improperly say that R – instead of Hn(R) – is rec-
ognized by some EES automaton. For future use, we mention the following
folklore closure result. Since this concept of folklore is arguable, we briefly
sketch the proof which will be probably skipped by most readers.

Proposition 2.2. The family of EES relations is closed under projections
and Cartesian product. The family of n-ary EES relations is closed under
Boolean operations.

Proof. Closure under the Boolean operations follows from the following
equalities, where R, S ⊆ Σ∗ × · · · × Σ∗ are n-ary EES relations and the
trivial observation that H(Σ∗ × · · · × Σ∗) is itself EES as can be readily
verified.

H(R∪S) = H(R)∪H(S), H((Σ∗×· · ·×Σ∗)\R) = H(Σ∗×· · ·×Σ∗)\H(R)

Now, let p : (Σ∗)n → (Σ∗)n−1 be the projection which maps (u1, . . . , un)
onto (u1, . . . , un−1). Consider the morphism π : ((Σ ∪ {#})n)∗ → ((Σ ∪
{#})n−1)∗ between free monoids associated to the projection (Σ∪{#})n →
(Σ ∪ {#})n−1 between their sets of generators. I.e., π maps the generator
(a1, . . . , an) to the generator (a1, . . . , an−1). Also, denote by gk, for an arbi-

trary k, the morphism of ((Σ ∪ {#})k)∗ into itself which erases (

k times︷ ︸︸ ︷
#, . . . ,#)

and leaves all other elements invariant. Then we have

Hn−1(p(R)) = gn−1(π(Hn(R)))

Concerning the direct product, we consider an n-ary EES relation R ⊆
(Σ∗)n and an m-ary EES relation S ⊆ (Σ∗)m. Denote by π1 : ((Σ ∪
{#})n+m)∗ → ((Σ∪{#})n)∗ and π2 : ((Σ∪{#})n+m)∗ → ((Σ∪{#})m)∗ the
morphisms between free monoids which map the generator (a1, . . . , an, an+1, . . . , an+m)
to (a1, . . . , an) and (an+1, . . . , an+m) respectively. Then we have

H(R×S) = gn+m


π−1

1


H(R)(

n times︷ ︸︸ ︷
#, . . . ,#)∗


 ∩ π−1

2


H(S)(

m times︷ ︸︸ ︷
#, . . . , #)∗







The result follows from the previous closure properties. 2
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2.4 The algebras Fn
Σ0

of finitary labels over a possibly infinite
alphabet

To tame an excess of generality for the transitions defined by EES automata
and to restrict them to simple effective subsets, we consider the collection
of relations on Σ ∪ {#} which are definable in the structure

SΣ0∪{#}
Σ∪{#} = 〈Σ ∪ {#}; =, (a)a∈Σ0∪{#}〉 (2)

for some finite subalphabet Σ0 ⊆ Σ where # is some fixed symbol outside
Σ. We shall see that this amounts precisely to the suggestion of Eilenberg
et al. In other words, we shall not develop the general theory of n-tape
A-automata over infinite alphabets and EES relations. We shall merely use
this general notion in the statements of Theorems 3.4 and 3.12. Actually,
in the vein of this paper, Alexis Bès [4] worked out more general notions
of finite automata over an infinite alphabet related to richer logics on the
alphabet.

Let Θ be a quantifier-free formula constructed with n free variables
x1, · · · , xn, the equality symbol and constant symbols associated with all
elements of Σ0 ∪ {#}. We shall denote by [[Θ ]] the subset of (Σ ∪ {#})n

defined by Θ in the structure SΣ0∪{#}
Σ∪{#} , i.e,

[[ Θ ]] = {(a1, . . . , an) ∈ (Σ ∪ {#})n | Θ(a1, . . . , an)} (3)

Definition 2.3. The Boolean algebra of labels Fn
Σ0

associated to Σ0 is the
trace on (Σ ∪ {#})n \ {#}n of the Boolean algebra of n-ary relations on
Σ ∪ {#} which are quantifier-free definable in the structure SΣ0∪{#}

Σ∪{#} (cf.
(2)). In other words, Fn

Σ0
is the collection of all possible [[ Θ ]]’s which are

disjoint from {#}n. In case Σ0 = ∅, the algebra Fn
Σ0

is called constant-free.

The following result is a straightforward application of the disjunctive
normal form of formulae.

Proposition 2.4. 1. Every n-ary relation in Fn
Σ0

is definable in the struc-

ture SΣ0∪{#}
Σ∪{#} by a finite disjunction of formulae which are conjunctions

ΦS
E,D ∧Ψ where

Ψ is a Boolean combination of expressions of the form xi = a with
1 ≤ i ≤ n and a ∈ Σ0

ΦS
E,D :

∧

i/∈S

(xi = #) ∧
∧

i∈S

(xi 6= #) ∧
∧

(i,j)∈E

(xi = xj) ∧
∧

(i,j)∈D

(xi 6= xj)





(4)
and where S, E, D satisfy the conditions

i. ∅ 6= S ⊆ {1, . . . , n},

9



ii. E ⊆ S2 is an equivalence relation on S,

iii. D ⊆ S2 is a symmetric relation,

iv. D ∩ E = ∅ and E ◦D ◦ E = D.

2. Atoms of Fn
Σ0

are the [[ ΦS
E,D ∧Ψ ]]’s where E∪D = S2 and, for 1 ≤ i, j ≤ n

and a, b ∈ Σ0 such that a 6= b,

(Ψ ` xi = a) ⇔ (Ψ 6` xi 6= a)
(Ψ ` xi = a) ⇒ (Ψ ` xi 6= b)

(i, j) ∈ E ⇒ Ψ ` (xi = a ⇔ xj = a)
(i, j) ∈ D ⇒ Ψ ` (xi = a ⇒ xj 6= a)

Example 2.5. With n = 5, the 5-tuple (a, a, b, b,#) where a and b are
two different letters in Σ, satisfies formula (4) with S = {1, 2, 3, 4} and
E = ({1, 2} × {1, 2}) ∪ ({3, 4} × {3, 4}), D = S2 −E, i.e.,

(x5 = #) ∧ ∧
1≤i≤4(xi 6= #) ∧

(x1 = x2) ∧ (x3 = x4) ∧ (x1 6= x3) ∧ (x1 6= x4) ∧ (x2 6= x3) ∧ (x2 6= x4)

It also satisfies the formula with S = {1, 2, 3, 4} and E = {(1, 1), (2, 2)} ∪
({3, 4} × {3, 4}), D = S2 \ (E ∪ ({1, 2} × {1, 2}).

For readability purposes, we shall sometimes omit trivially deducible
equations and inequations. E.g., if x1 = x2 and x2 6= x3 holds, we can
deduce x1 6= x3 and therefore omit it.

2.5 A characterization of the finitary labels over a possibly
infinite alphabet

In this paragraph we characterize the algebras of finitary labels as those
invariant under all permutations acting as the identity on a fixed finite
subset, as suggested in the paper of Eilenberg et al. In order to avoid
cumbersome notations with the # symbol, we state the results of this section
with alphabets A and A0 which are to be Σ ∪ {#} and Σ0 ∪ {#} in the
applications. Though we still use the term “alphabet”, the semantic is
irrelevant; in this paragraph, A is an arbitrary finite or infinite set.

We denote by SA0(A) the family of permutations of A which act as the
identity on A0. We also denote by ∼n,A0 the equivalence on An such that

(x1, . . . , xn) ∼n,A0 (y1, . . . , yn) ⇔
∧

1≤i<j≤n

xi = xj ⇔ yi = yj

∧
∧

a∈A0

xi = a ⇔ yi = a

The following Proposition is straightforward.

Proposition 2.6. Let A be a finite or infinite alphabet and x1, . . . , xn, y1, . . . , yn ∈
A. Then (x1, . . . , xn) ∼n,A0 (y1, . . . , yn) if and only if there exists a permu-
tations in SA0(A) which exchanges (x1, . . . , xn) and (y1, . . . , yn).
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We shall need Proposition 2.6 and Condition ii of the next result for the
proof of Theorem 3.4.

Theorem 2.7. Let A be a finite or infinite set and Γ ⊆ An. The following
conditions are equivalent for all finite subsets A0 ⊆ A :

i. Γ is invariant under all permutations in SA0(A)

ii. The family {π(Γ) | π ∈ SA0(A)}
- is finite if A is infinite,
- has at most max(1, |A \A0| − n) elements if A is finite

iii. Γ is quantifier-free definable in the structure 〈A; =, (a)a∈A0〉
iv. Γ is first-order definable in the structure 〈A; =, (a)a∈A0〉
v. Γ is saturated under the equivalence ∼n,A0 (i.e., Γ is a union of classes)

Proof. Implications i ⇒ ii and iii ⇒ iv ⇒ i are trivial. Also, Proposition 2.6
yields iii ⇔ v. We prove ii ⇒ iii by induction on n ≥ 1.
We suppose A is finite, the proof in case A is infinite being similar. We
also suppose |A \ A0| ≥ 2 otherwise every relation on A is definable in the
structure 〈A; =, (a)a∈A0〉 and iii is trivial.

Basic step n = 1. We prove the following more precise property:

either Γ ⊆ A0 or Γ ⊇ A \A0 (*)

Let k = |Γ \ A0| and ` = |A \ A0|. If (*) were false, then we would have
0 < k < ` implying

(
`
k

)
> `. Now, any two subsets of A\A0 with cardinality

k can be exchanged by a permutation in SA0(A). In particular, {π(Γ) | π ∈
SA0(A)} has at least

(
`
k

)
> `− 1 elements. Which contradicts ii.

Inductive step: from n to n+1. Let Γ ⊆ An+1 satisfy ii. For a1, . . . , an ∈
A, set Γa1,...,an = {a | (a1, . . . , an, a) ∈ Γ}. Let also Aa1,...,an

0 = {a1, . . . , an}∪
A0. Then

{π(Γa1,...,an) | π ∈ SA
a1,...,an
0

(A)} = {π(Γ)a1,...,an | π ∈ SA
a1,...,an
0

(A)}
⊆ {π(Γ)a1,...,an | π ∈ SA0(A)}

Since Γ satisfies condition ii, we have

|{π(Γa1,...,an) | π ∈ SA
a1,...,an
0

(A)}| ≤ |{π(Γ) | π ∈ SA0(A)}|
≤ max(1, |A \A0| − (n + 1))
≤ max(1, |A \Aa1,...,an

0 | − 1)

Using the above basic step, this last inequality allows us to use (*) for the
set Γa1,...,an with Aa1,...,an

0 in place of A0. Thus, Γa1,...,an is included in

11



Aa1,...,an
0 or contains A \ Aa1,...,an

0 . Let’s introduce the following relations
where X ⊆ A0 and I ⊆ {1, . . . , n} :

µX,I = {(a1, . . . , an) ∈ An | Γa1,...,an = X ∪ {ai | i ∈ I}}
νX,I = {(a1, . . . , an) ∈ An | Γa1,...,an = X ∪ {ai | i ∈ I} ∪A \Aa1,...,an

0 }
Γµ

X,I = {(a1, . . . , an, an+1) | (a1, . . . , an) ∈ µX,I ∧ an+1 ∈ X ∪ {ai | i ∈ I}}
Γν

X,I = {(a1, . . . , an, an+1) | (a1, . . . , an) ∈ νA,I

∧ an+1 ∈ X ∪ {ai | i ∈ I} ∪ (A \Aa1,...,an
0 )})

For any X, I and π ∈ SA0(A) we have

π(µX,I) = {(π(a1), . . . , π(an)) ∈ An | (π(Γ))π(a1),...,π(an) = X ∪ {π(ai) | i ∈ I}}
= {(b1, . . . , bn) ∈ An | π(Γ)b1,...,bn = X ∪ {bi | i ∈ I}}

Therefore |{π(µX,I) | π ∈ SA0(A)}| ≤ |{π(Γ) | π ∈ SA0(A)}|. In particular,
this implies condition ii for µX,I . A similar property holds with νX,I . Using
the induction hypothesis, µX,I and νX,I are quantifier-free definable in 〈A; =
, (a)a∈A0〉 and so are Γµ

X,I and Γν
X,I . Since Γ =

⋃
X,I(Γ

µ
X,I ∪Γν

X,I), this leads
to a quantifier-free definition of Γ in 〈A; =, (a)a∈A0〉. 2

The rest of this paragraph investigates definability with different finite
subsets A0 ⊆ A. The results will be used in Section 3.1. Let’s introduce two
convenient notations in the vein of (2) : for B ⊆ A,

SA = 〈A; =, (a)a∈A〉 SB
A = 〈A; =, (a)a∈B〉

Proposition 2.8. Let A1, A2 be two finite subsets of A such that A1∪A2 6=
A. Then a relation Γ ⊆ An is definable in SA1

A and in SA2
A if and only if it

is definable in SA1∩A2
A . In particular, if A is infinite, then for every relation

Γ definable in SA there exists a smallest finite subset A0 ⊆ A such that Γ is
definable in SA0

A .

Observe that the condition A1∪A2 6= A always holds if A is infinite and
that the statement fails when A1 ∪ A2 = A. For instance, if A = {ai, bi |
i = 1, . . . , k} and Ai = A \ {ai, bi} and R = {(ai, bi), (bi, ai) | i = 1, . . . , k}
then the Ai’s are the minimal subalphabets B ⊆ A such that R is definable
in SB

A .

Proof. Using Theorem 2.7, we are reduced to prove that if Γ is invariant
under all permutations in SA1(A) ∪SA2(A) then it is also invariant under
all permutations in SA1∩A2(A). In order to simplify notations, we identify
A1 ∪A2 with a set of positive integers and we assume

A1 \A2 = {1, . . . , p}
A2 \A1 = {p + 1, . . . , p + m} A1 ∩A2 = {p + m + 1, . . . , p + m + q}
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We show that Γ is invariant under all permutations π fixing each element
of (A1 ∩ A2) ∪ {1, . . . , p − 1} = A1 \ {p}, which proves the statement by
induction on the cardinality of A1 \A2.

Since π leaves each element in A1∩A2 invariant, we have π(p) /∈ A1∩A2.
Consider first the case where π(p) /∈ A2 \A1. Then both p, π(p) are outside
A2. Let α be the transposition exchanging π(p) and p. Then α = α−1 ∈
SA2(A), hence α−1(Γ) = Γ. Also, since π leaves each element in {1, . . . , p−
1} ∪ (A1 ∩ A2) invariant, απ leaves invariant each element in {1, . . . , p} ∪
(A1 ∩ A2) = A1 invariant, hence απ ∈ SA1(A) and απ(Γ) = Γ. Thus
π(Γ) = α−1απ(Γ) = Γ.
Now, if π(p) ∈ {p + 1, . . . , p + m} = A2 \ A1, consider the transposition β
exchanging π(p) with some element outside A1 ∪A2. It leaves each element
in {1, . . . , p} ∪ (A1 ∩ A2) = A1 invariant, hence β = β−1 ∈ SA1(A) and
β−1(Γ) = Γ. Furthermore we have βπ(p) /∈ {p + 1, . . . , p + m} and βπ fixes
each element in {1, . . . , p − 1}. Because of the previous discussion we have
βπ(Γ) = Γ. Finally, we obtain π(Γ) = β−1βπ(Γ) = Γ. 2

Proposition 2.9. Let A be finite or infinite alphabet. There is an algorithm
which, given two finite subsets A1 and A2 of A and a definition in SA1

A of a
relation Γ, decides whether or not Γ is definable in the structure SA2

A .

Proof. To check whether Γ ⊆ An is definable in SA2
A , we use condition iv of

Theorem 2.7. Let ψ(x1, . . . , xn, y1, . . . , yn) be the formula
∧

1≤i≤n

∧

a∈A2

(xi = a ⇔ yi = a) ∧
∧

1≤i<j≤n

(xi = xj ⇔ yi = yj)

which defines the equivalence ∼n,A2 in SA2
A . Given a formula φ(x1, . . . , xn)

using constants in A1 which defines a relation Γ in SA1
A , we know that Γ is

definable in SA2
A if and only if it is ∼n,A2-saturated. This is expressible in

SA1∪A2
A as follows:

∀x1 . . . ∀xn ∀y1 . . . ∀yn

(ψ(x1, . . . , xn, y1, . . . , yn) ⇒ (φ(x1, . . . , xn) ⇔ φ(y1, . . . , yn)))

Since the structure SA (with all possible constants) admits effective quanti-
fier elimination, the above formula can be effectively tested. 2

3 Synchronous and oblivious synchronous relations

The families of automata mentioned in the table of Figure 1 are specified via
the families of labels of their transitions. This section is devoted to their in-
vestigation. These families make sense and are interesting no matter whether
the alphabet Σ is finite or infinite. Indeed, for a finite alphabet Σ (and a
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subalphabet Σ0 satisfying |Σ\Σ0| ≥ 2), the families of Σ0-synchronous n-ary
relations and that of oblivious Σ0-synchronous n-ary relations are Boolean
algebras which lie strictly between the class of recognizable relations and
that of synchronous (in the usual sense) relations.

Though some key results hold only in case Σ is infinite, most of them, espe-
cially in §4 hold in both cases and lead to a refinement of the main theorem
of Eilenberg et al. [9].

3.1 Synchronous automata and synchronous relations

Definition 3.1. Let Σ be a finite or infinite alphabet.
1. Let Σ0 be a finite subalphabet of Σ. An automaton A is Σ0-synchronous
if its labels lie in the finite Boolean algebra Fn

Σ0
, i.e., A is an n-tape Fn

Σ0
-

automaton in the sense of §2.3. Furthermore, the automaton is constant-free
synchronous whenever Σ0 = ∅ holds.

For convenience, we shall often split a transition q

⋃
1≤i≤m [[ ΦSi

Ei,Di
∧Ψi ]]−−−−−−−−−−−−−−−→ r

into m transitions q
[[ ΦSi

Ei,Di
∧Ψi ]]−−−−−−−−−−→ r, i = 1, . . . , m.

2. A relation R ⊆ (Σ∗)n is Σ0-synchronous if there exists an n-tape Σ0-
synchronous automaton such that H(R) (cf. §2.1) is the union of the labels
of all successful runs. Constant-free synchronous relations are defined ac-
cordingly.

3. An automaton or a relation is synchronous if it is Σ0-synchronous for
some finite subalphabet Σ0 of Σ.

Of course, if Σ is finite then Σ-synchronous means synchronous in the
usual sense. However, for Σ0 ( Σ, Σ0-synchronous relations constitute a
proper subclass of usual synchronous relations.

Let’s introduce one more notion.

Definition 3.2. We denote by ≡sync
n,Σ0

the equivalence relation on n-tuples
of words in Σ∗ such that (u1, . . . , un) ≡sync

n,Σ0
(v1, . . . , vn) if the following

conditions hold: for 1 ≤ i ≤ n and 1 ≤ j < k ≤ n,

1. |ui| = |vi|
2. for ` ≤ |ui|, if ui[`] or vi[`] is in Σ0 then ui[`] = vi[`]
3. for 1 ≤ ` ≤ min{|uj |, |uk|}, uj [`] = uk[`] if and only if vj [`] = vk[`]

The following result is straightforward.

Proposition 3.3. (u1, . . . , un) ≡sync
n,Σ0

(v1, . . . , vn) if and only if for ev-
ery ` ≤ max{|ui| : i = 1, . . . , n}, we have H(u1, . . . , un)[`] ∼n,Σ0∪{#}
H(v1, . . . , vn)[`] (where ∼n,Σ0∪{#} is the equivalence defined in §2.5).

14



In the case of an infinite alphabet, the following theorem justifies the
suggestion of Eilenberg et al. to consider relations invariant under all per-
mutations acting as the identity over a finite subset of Σ. As for the case
of a finite alphabet, one has to consider level-by-level permutations, i.e.,
infinite sequences of permutations π = (πk)k≥1 which operate on words by
substituting πk(ak) for the k-th letter ak

π(a1 · · · ar) = π1(a1) · · ·πr(ar)

Theorem 3.4. Let Σ be a finite or infinite alphabet, let Σ0 be a finite
subalphabet of Σ and let R ⊆ (Σ∗)n. The following conditions are equivalent:

i. R is Σ0-synchronous

ii. R is an EES relation which is ≡sync
n,Σ0

-saturated

iii. R is the ≡sync
n,Σ0

-saturation of an EES relation

iv. R is an EES relation which is invariant under all level-by-level permu-
tations of Σ which, at every level, act as the identity on Σ0

In case Σ is infinite, one can add a fifth equivalent condition:

v. R is an EES relation which is invariant under all permutations of Σ
in SΣ0(Σ) (i.e., those which act as the identity on Σ0)

The implication v ⇒ i fails when Σ is finite and |Σ\Σ0| ≥ 2 (and is trivial
if |Σ \Σ0| ≤ 1). For instance, R = {aa | a ∈ Σ \Σ0} is EES (even (Σ \Σ0)-
synchronous) and invariant under all permutations fixing each element in
Σ0 but is not Σ0-synchronous.

Proof. i ⇒ ii. Let A be a Σ0-synchronous automaton recognizing R. Using
Theorem 2.7, we know that the labels of transitions of A are ∼n,Σ0∪{#}-
saturated. Using Proposition 3.3, we deduce that the labels of runs of A are
≡sync

n,Σ0
-saturated. Hence R is ≡sync

n,Σ0
-saturated.

Implication ii ⇒ iii is trivial. Let’s prove iii ⇒ i. Suppose R is the ≡sync
n,Σ0

-
saturation of an EES relation S recognized by the EES automaton A. Let
B be obtained by saturating the labels of A for ∼n,Σ0∪{#}. Then B is a
Σ0-synchronous automaton. Obviously, B recognizes all elements of S hence
also all elements of its saturated R. Using Proposition 3.3, we see that
any element of (Σ∗)n recognized by B is ≡sync

n,Σ0
-equivalent to some element

recognized by A, hence is in R. Thus, B recognizes R.

ii ⇒ iv. Observe that if the level-by-level permutation π = (πk)k≥1 acts as
the identity on Σ0 then (π(u1), . . . ,π(un)) ≡sync

n,Σ0
(u1, . . . , un). Using ii, we

obtain π(R) ⊆ R. Arguing with π−1 = (π−1
k )k≥1, we obtain π−1(R) ⊆ R

and then, applying π, we obtain R ⊆ π(R). Whence R = π(R).
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iv ⇒ i. Straightforward from Propositions 3.3 and 2.6 and Theorem 2.7
(equivalence i ⇔ v).

The above arguments prove the equivalence of i, ii, iii and iv. We now deal
with v.
iv ⇒ v is trivial. We prove v ⇒ i. This implication requires Σ to be infinite.
Consider the minimal deterministic n-tape automaton D recognizing R. Let
π(D) be obtained from D by applying π to the labels. Then π(D) recognizes
π(R) and, due to the uniqueness, it is the minimal deterministic n-tape
automaton recognizing π(R). Now, R is invariant under all permutations
π ∈ SΣ0(Σ) (i.e., those which are the identity on Σ0). Thus, if π ∈ SΣ0(Σ)
then π(D) and D are the same automaton up to some renaming of states.
This proves that the labels of π(D) are among the labels of D. In particular,
for every label X of D, the family {π(X) | π ∈ SΣ0(Σ)} is included in the
family of labels of D hence is finite. Applying Theorem 2.7, we see that every
label X of D is in Fn

Σ0
. In other words, D is a Σ0-synchronous automaton

which recognizes R. 2

Proposition 2.8 has an analog with synchronous relations.

Theorem 3.5. Let Σ1 and Σ2 be two finite subsets of Σ such that Σ1∪Σ2 6=
Σ (which is always the case if Σ is infinite). Then a relation R ⊆ (Σ∗)n is
Σ1 and Σ2-synchronous if and only if it is (Σ1 ∩ Σ2)-synchronous.
In particular, if Σ is infinite then for every synchronous relation R there
exists a smallest finite subset Σ0 ⊆ Σ such that R is Σ0-synchronous. Fur-
thermore, this smallest subalphabet Σ0 can be effectively computed.

Observe that the condition Σ1∪Σ2 6= Σ is necessarily satisfied for infinite
alphabets. For finite alphabets, the result no longer holds when the inequal-
ity fails. Indeed, it suffices to consider the counterexample of Proposition 2.8:
a SΣ0∪{#}-definable relation in Σn is, in particular, a Σ0-synchronous rela-
tion in (Σ∗)n.

Proof. The relation is Σi-synchronous if and only if the transitions of its
minimal automaton are definable in 〈Σ∪{#}; = (a)a∈Σi∪{#}〉. We conclude
using Propositions 2.8 and 2.9 with A = Σ∪{#} and Ai = Σi∪{#}. 2

Observe that the the closure properties of EES relations mentioned in
Proposition 2.2 are also valid for the family of ≡sync

n,Σ0
-saturated relations.

Therefore, using condition ii in Theorem 3.4, we can extend these closure
properties of EES relations to synchronous relations.

Corollary 3.6. Let Σ1 and Σ2 be two finite subsets of Σ and let R1 be a
Σ1-synchronous relation and R2 be a Σ2-synchronous relation. Let p be the
projection defined by p(w1, . . . , wn) 7→ (wi1 , . . . , wik) where n is the arity of
R1 and the ij’s are among 1, . . . , n.
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Then p(R1) and (Σ∗)n \ R1 are Σ1-synchronous and R1 ×R2 is (Σ1 ∪ Σ2)-
synchronous. If R1 and R2 have the same arity then R1 ∪ R2 and R1 ∩ R2

are (Σ1 ∪ Σ2)-synchronous.
Moreover, all these closure properties are effective in terms of synchronous
automata.

Using the decidability of the emptiness problem, we obtain the following
corollary.

Corollary 3.7. Let Σ be finite or infinite alphabet. There is an algorithm
which, given two synchronous automata, decides whether or not they recog-
nize the same relation on Σ∗.

Let’s state a last decision property.

Theorem 3.8. Let Σ be finite or infinite alphabet. There is an algorithm
which, given finite subalphabets Σ0 and Σ1 of Σ and a Σ1-synchronous au-
tomaton A, decides if the relation R recognized by A is Σ0-synchronous.

Proof. As in the proof of iii ⇒ i in Theorem 3.4, from A we effectively
construct an automaton B which recognizes the ≡sync

n,Σ0
-saturation of R. Now,

by the equivalence i ⇔ ii of Theorem 3.4, the relation R is Σ0-synchronous
if and only if the two automata A and B recognize the same relation. 2

3.2 Oblivious synchronous automata and oblivious synchronous
relations

Extending the main result of [9] to infinite alphabets requires to introduce
a new type of synchronous automata. We call them oblivious because their
ability to detect equality of the letters on a given pair of distinct tapes van-
ishes after the first negative check for that pair.

Before giving a formal definition of our class of automata, we describe in-
tuitively how they work. The idea is to view a computation on an n-tuple
(w1, . . . , wn) ∈ H (Σ∗)n (cf. §2.1) as the following process involving time:

(*) At time t the automaton reads the t-th letters (w1[t], . . . , wn[t]) of each
component simultaneously.

(**) Equality between a pair of components of an n-tuple may be tested if
and only if it was previously true without interruption. After an inter-
ruption, the automaton is no longer able to test equality or inequality
between these two components at any further step. For example, the
automaton may require the first two components to be equal up to
the value t, namely w1[1] = w2[1], w1[2] = w2[2],. . . , w1[t] = w2[t],
but if the automaton fails to maintain this requirement at t + 1, i.e.,
if w1[t + 1] 6= w2[t + 1], it will no longer be able to test w1[t′] = w2[t′]
for t′ > t + 1.
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With this in mind we turn to the formal definition of an oblivious syn-
chronous automaton O for a finite or infinite alphabet Σ. It consists of
restricting the possible labels of a transition leaving a given state.

Definition 3.9 (Oblivious synchronous automaton). 1. An n-tape Σ0-synchronous
automaton O (cf. Definition 3.1) is oblivious if the following condi-
tions are satisfied.

i. The states are of the form (q, S, E) where

- q belongs to a finite set Q,
- ∅ 6= S ⊆ {1, . . . , n} tells which components are in Σ,
- E is an equivalence relation on S.

ii. A state is final if its first component belongs to a specific subset
F ⊆ Q.

iii. Initial states are the triples (q, {1, . . . , n}, {1, . . . , n}×{1, . . . , n})
where the first component belongs to a specific subset I ⊆ Q.

iv. The transitions with non empty labels are of the form

(q′, S′, E′)
[[ Φ ]]−−→ (q, S, E)

where [[ Φ ]] and Φ ≡ ΦS
E,D ∧Ψ are as in (3) and (4) (cf. §2.4) and

Proposition 2.4. Furthermore the following conditions hold

S ⊆ S′ , E ⊆ E′ , E′ ∩ S2 = E ∪D (5)

2. A relation R ⊆ (Σ∗)n is oblivious Σ0-synchronous if it is recognized by
an oblivious Σ0-synchronous automaton.
Constant-free oblivious synchronous automata and relations correspond
to the case Σ0 = ∅.

3. An automaton or a relation is oblivious synchronous if it is oblivious
Σ0-synchronous for some finite subalphabet Σ0 of Σ.

Of course, if Σ is finite then oblivious Σ-synchronous means synchronous
in the usual sense. However, for Σ0 ( Σ, none of the following implications
can be reversed:

oblivious Σ0-synchronous ⇒ Σ0-synchronous ⇒ usual synchronous

We would like to draw the attention to the touchy point of the definition
since it is the crux of our characterization. Inclusions S ⊆ S′, E ⊆ E′ and
D ⊆ E′ amount to inclusion E′ ∩S2 ⊇ E ∪D and convey the “only if” part
of condition (∗∗) (cf. top of this §). The converse inclusion E′∩S2 ⊆ E ∪D
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Figure 2: A constant-free oblivious synchronous automaton

conveys the “if” part. Indeed, if the variables xi and xj are maintained
equal, i.e., if (i, j) ∈ E′ then we may impose to keep them equal or to make
them non-equal, but if (i, j) /∈ E′ then there is no way we can control their
equality or inequality, except via equality or inequality with some constant
in Σ0.

Of course, if Σ is finite then Σ-synchronous means synchronous in the usual
sense. Therefore, for Σ0 ( Σ, Σ0-synchronous relations constitute a proper
subclass of usual synchronous relations.

3.3 Examples of synchronous and oblivious synchronous re-
lations

The automaton in Figure 2 recognizes the constant-free oblivious synchronous
relation

R = {(ua, uav, ub) | u, v ∈ Σ∗, |v| ≥ 1, |u| = 1 mod 2, a, b ∈ Σ, a 6= b}

The second and third components in the states (i.e., the S and E in the
expression (q, S, E)) are defined as follows

S1 = S2 = {1, 2, 3}
S3 = {1, 2, 3}
S4 = {2}

E1 = E2 = {1, 2, 3}2

E3 = {1, 2}2 ∪ {3}2,
E4 = {2}2

Observe that from state 2 to state 3 the label contains the condition x1 6= x3

which is allowed because the transition leaves state 2 where x1 and x3 are
supposed to be equal. The same condition could not possibly be part of a
label of a transition leaving state 3 because from that state on, x1 and x3

can no longer be compared. Though not explicitly written, the subformulae
ΦS

E,D and Ψ are understood from the context.

Example 3.10. The binary relation EqLenEqLast (cf. §1.1, Problem 1) is
recognized by the constant-free synchronous automaton in Figure 3, where
Diag = {(a, a) ∈ Σ× Σ : a ∈ Σ} = [[x1 = x2 ]].
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Figure 3: A constant-free synchronous automaton for EqLenEqLast
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Figure 4: An {a}-synchronous automaton for the predicate Lasta

The unary relation Lasta is recognized by the {a}-synchronous au-
tomaton in Figure 4 where the two labels of transitions are Σ \ {a} =
[[x1 6= # ∧ x1 6= a ]] and {a} = [[x1 = a ]].

The unary relation modk,` (cf. §1.2, Point 5) is recognized by the constant-
free synchronous automaton in Figure 5 where all labels are Σ = [[x1 = x1 ]].

The relation EqLen is recognized by the constant-free oblivious syn-
chronous automaton in Figure 6. Denoting by (S0, E0) and (S1, E1) the
second and third components in states 0 and 1, we have S0 = S1 = {1, 2}
E0 = {1, 2} × {1, 2} and E1 = {(1, 1), (2, 2)}. Due to condition iii about
initial states in Definition 3.9, this relation is recognizable by no oblivious
automaton with a unique state.

The relation Pref is recognized by the constant-free oblivious synchronous
automaton in Figure 7 where S0 = {1, 2}, S1 = {2}, E0 = {1, 2} × {1, 2}
and E1 = {(2, 2)}.

3.4 Relationship between synchronous and oblivious syn-
chronous

The general problem is the following: given a Σ0-synchronous automaton,
is it recursively decidable whether or not it is oblivious Σ0-synchronous? or
oblivious Σ1-synchronous for some given finite subset Σ1? Our proof relies
on the following notion which is the oblivious analog of that of Definition
3.2.
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Definition 3.11. We denote by ≡obl
n,Σ0

the equivalence relation on n-tuples
of words in Σ∗ such that (u1, . . . , un) ≡obl

n,Σ0
(v1, . . . , vn) if the following

conditions hold: for 1 ≤ i ≤ n and 1 ≤ j < k ≤ n,

1. |ui| = |vi|
2. for ` ≤ |ui|, if ui[`] or vi[`] is in Σ0 then ui[`] = vi[`]
3. for 1 ≤ ` ≤ min{|uj |, |uk|}, uj ¹` = uk ¹` if and only if vj ¹` = vk ¹`

The next result summarizes the connections between the notions of being
synchronous, oblivious synchronous and saturated.

Theorem 3.12. Let Σ be a finite or infinite alphabet, let Σ0 be a finite
subalphabet of Σ and let R ⊆ (Σ∗)n. The following conditions are equivalent.

i. R is oblivious Σ0-synchronous

ii. R is an EES relation which is ≡obl
n,Σ0

-saturated

iii. R is the ≡obl
n,Σ0

-saturation of an EES relation

For all finite subalphabets Σ1, Σ2 such that Σ1∩Σ2 = Σ0 and |Σ\(Σ1∪Σ2)| ≥
n holds, there is a fourth equivalent condition:

iv. R is Σ2-synchronous and oblivious Σ1-synchronous
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Pref

The implication iv ⇒ i fails when |Σ \ (Σ1 ∪ Σ2)| < n. For instance, if
|Σ \Σ1| ≤ 1, then any synchronous relation (in the usual sense) is oblivious
Σ1-synchronous. Whereas, if |Σ \ Σ2| ≥ 2 then there are Σ2-synchronous
relations which are not oblivious Σ2-synchronous.

Proof. i ⇒ ii. A routine argument shows that the label of a run of an
oblivious automaton is ≡obl

n,Σ0
-saturated.

The implication ii ⇒ iii is trivial. Let’s prove iii ⇒ i. The idea is as
in the proof of the similar implication in Theorem 3.4: we consider an EES
automatonA which recognizes a relation T and transform it into an oblivious
Σ0-synchronous automaton O which recognizes the ≡obl

n,Σ0
-saturation R of T .

However, the construction is a bit more technical.
First, observe that the equivalence ≡sync

n,Σ0
refines ≡obl

n,Σ0
. Therefore R is also

the ≡obl
n,Σ0

-saturation of the ≡sync
n,Σ0

-saturation U of T . Using Theorem 3.4,
we know that U is Σ0-synchronous. Thus, we are reduced to the case where
T is itself Σ0-synchronous. Let A = (Q,Σ,∆, I, F ) be a Σ0-synchronous
automaton which recognizes T . After possibly splitting the labels, we may
assume that all labels [[ ΦS

E,D ∧Ψ ]] of the transitions are atoms of the algebra
Fn

Σ0
, cf. Proposition 2.4. Define the oblivious Σ0-synchronous automaton

O = (Q̃,Σ, ∆̃, Ĩ, F̃ ) as follows:

(a) Q̃ is the set of triples (q, S, E) where q ∈ Q and ∅ 6= S ⊆ {1, . . . , n}
and E is an equivalence relation on S.

(b) Ĩ is the set of triples (q, {1, . . . , n}, {1, . . . , n}×{1, . . . , n}) where q ∈ I.

(c) F̃ is the set of triples (q, S,E) ∈ Q̃ such that q ∈ F .

(d) ∆̃ is the set of transitions (q′, S′, E′)
[[ ΦS

Ẽ,D̃
∧Ψ ]]

−−−−−−−−→ (q, S, Ẽ) such that

q′
[[ ΦS

E,D ∧Ψ ]]
−−−−−−−−→ q is in ∆ S′ ⊇ S

Ẽ = E′ ∩ E
ΦS

Ẽ,D̃
∧Ψ satisfies conditions

i–iv of Proposition 2.4
D̃ = E′ ∩D





(6)
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Observe that the condition E′ ∩ S2 = Ẽ ∪ D̃ for oblivious automata holds
because the label [[ ΦS

Ẽ,D̃
∧Ψ ]] is an atom, so that E ∪D = S2.

Let’s denote by T̃ the oblivious Σ0-synchronous relation recognized by O.
In order to get i, we prove that R = T̃ , i.e., that T̃ is the ≡obl

n,Σ0
-saturation

of T . Using i ⇒ ii, we know that T̃ is ≡obl
n,Σ0

-saturated. So that it suffices
to prove the two following properties:

(a) T ⊆ T̃

(b) Every element of T̃ is ≡obl
n,Σ0

equivalent to some element of T .

Let’s prove (a). We assign to every initial run ρA of A an initial run ρO of
O, such that ρA is successful if and only if so is ρO and such that the label
of ρA is included in the label of ρO. To this end, consider an initial run ρA

q0

[[ ΦS1
E1,D1

∧Ψ1 ]]
−−−−−−−−−−→ q1 . . . q`−1

[[ ΦS`
E`,D`

∧Ψ` ]]
−−−−−−−−−−→ q` (7)

and assign it the run ρO

(q0, S0, Ẽ0)
[[ ΦS1

Ẽ1,D̃1
∧Ψ1 ]]

−−−−−−−−−−→ (q1, S1, Ẽ1) · · ·

· · · (q`−1, S`−1, Ẽ`−1)
[[ ΦS`

Ẽ`,D̃`
∧Ψ` ]]

−−−−−−−−−−→ (q`, S`, Ẽ`) (8)

such that S0 = {1, . . . , n}, Ẽ0 = {1, . . . , n} × {1, . . . , n} and, for 0 < k ≤ `

Ẽk = Ẽk−1 ∩ Ek−1 and D̃k = Ẽk−1 ∩Dk−1 holds. Observe that (q0, S0, Ẽ0)
is initial in O and (q`, S`, Ẽ`) is final in O if and only if q` is final in A. Let
(w1, . . . , wn) be an n-tuple such that H(w1, . . . , wn) belongs to the label of
ρA and set ` = maxi=1,...,n |wi|. Then we have

{(i, j) | wi ¹k = wj ¹k} = Ẽk

{(i, j) | wi ¹(k − 1) = wj ¹(k − 1) ∧ wi ¹k 6= wj ¹k} = D̃k

which means that (w1[k], · · · , wn[k]) satisfies [[ ΦSk

Ẽk,D̃k
]]. This proves the in-

clusion claim (a).
As for property (b), observe that, due to the definition of O, the n-tuples
belonging to the label of an initial run of O are precisely the elements of a
unique ≡obl

n,Σ0
equivalence class of the label of an initial run of A.

The implication i ⇒ iv is trivial. We prove iv ⇒ ii. As a preliminary
observation, without loss of generality, we may assume that Σ2 = Σ0 ⊆
Σ1. Indeed, since the relation is oblivious Σ1-synchronous, it is a fortiori
Σ1-synchronous, thus by Theorem 3.5, it is Σ1 ∩ Σ2-synchronous, i.e., Σ0-
synchronous. Let A be a Σ0-synchronous automaton recognizing R. The
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hypothesis implies |Σ \ Σ1)| ≥ n. We prove that R is ≡obl
n,Σ0

-saturated. Let
u = (u1, . . . , un) and v = (v1, . . . , vn) be in (Σ∗)n. Supposing u ∈ R and
u ≡obl

n,Σ0
v, we now show that v ∈ R.

For every k ∈ {1, . . . , max(|u1|, . . . , |un|)} let Xk, respectively Yk, be the
letters in Σ1 \ Σ0 which occur in {ui[k] | |ui| ≥ k} and {vi[k] | |vi| ≥ k}.
Because of |Σ\Σ1| ≥ n, there exist some permutations πk and ρk of Σ which
act as the identity on Σ0 and which map Xk, respectively Yk, into Σ \ Σ1.
Let u′ = (u′1, . . . , u

′
n) be obtained from u by applying πk on the letters of

rank k, for each k ∈ {1, . . . ,max(|u1|, . . . , |un|)}. Let v′ = (v′1, . . . , v
′
n) be

defined similarly with v and the ρk’s.
Since the πk’s and ρk’s act as the identity on Σ0, we have (a) u ≡sync

n,Σ0
u′ and

(b) v ≡sync
n,Σ0

v′. Since u ≡obl
n,Σ0

v and the equivalence ≡sync
n,Σ0

refines ≡obl
n,Σ0

, we
deduce (c) u′ ≡obl

n,Σ0
v′. Now, u′ and v′ have no letter in Σ1 \ Σ0, hence (c)

implies (d) u′ ≡obl
n,Σ1

v′.
Since u ∈ R and R is ≡sync

n,Σ0
-saturated, (a) implies u′ ∈ R. Since R is ≡obl

n,Σ1
-

saturated, using (d) we get v′ ∈ R. Using (b) and again the fact that R is
≡sync

n,Σ0
-saturated, we finally obtain v ∈ R. 2

Theorem 3.5 has an analog with oblivious synchronous relations.

Theorem 3.13. Let Σ1 and Σ2 be two finite subsets of Σ such that |Σ \
(Σ1 ∪ Σ2)| ≥ n (which is always the case if Σ is infinite). Then a relation
R ⊆ (Σ∗)n is oblivious Σ1 and obliviuos Σ2-synchronous if and only if it is
oblivious (Σ1 ∩ Σ2)-synchronous.
In particular, if R is oblivious and if Σ is infinite then the smallest finite
subalphabet Σ0 ⊆ Σ such that R is Σ0-synchronous is also the smallest Σ0

such that R is oblivious Σ0-synchronous.
Furthermore, this smallest subalphabet Σ0 can be effectively computed.

Proof. Straightforward consequence of Theorems 3.5 and 3.12. 2

Using condition ii in Theorem 3.12, we can extend the closure properties
of EES relations (cf. Proposition 2.2) to synchronous relations.

Corollary 3.14. Let Σ1 and Σ2 be two finite subsets of Σ, let R1 be an
oblivious Σ1-synchronous relation and let R2 be an oblivious Σ2-synchronous
relation. Let p be the projection defined by p(w1, . . . , wn) 7→ (wi1 , . . . , wik)
where n is the arity of R1 and the ij’s are among 1, . . . , n.
Then p(R1) and (Σ∗)n \ R1 are oblivious Σ1-synchronous and R1 × R2 is
oblivious (Σ1 ∪ Σ2)-synchronous. If R1 and R2 have the same arity then
R1 ∪R2 and R1 ∩R2 are oblivious (Σ1 ∪ Σ2)-synchronous.
Moreover, all these closure properties are effective in terms of oblivious syn-
chronous automata.

Let’s state a last decision property.
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Theorem 3.15. Let Σ is finite or infinite alphabet. There is an algorithm
which, given two finite subalphabets Σ0 and Σ1 of Σ and a Σ1-synchronous
automaton A, decides if the relation R recognized by A is oblivious Σ0-
synchronous.

Proof. As in the proof of iv ⇒ i in Theorem 3.12, from A we effectively
construct an automaton O which recognizes the ≡obl

n,Σ0
-saturated of R. Now,

thanks to i ⇔ ii from Theorem 3.4, the relation R is oblivious Σ0-synchronous
if and only if the two automata A and B recognize the same relation. 2

4 Logics around synchronous relations

4.1 The main logics

The relations considered in [9] are those which are first-order definable in
the following structure

〈Σ∗; Pref, EqLen, (Lasta)a∈Σ〉
where Σ is a finite alphabet with at least two letters. The authors prove
that they are identical with the relations recognized by (what is now called)
synchronous automata. They observe that this result cannot be extended
neither for one-letter alphabets nor for infinite ones: in both cases, the
automata are more powerful than the logic. Here, we investigate the case of
possibly infinite alphabets and consider, for every finite subalphabet Σ0 of
Σ, the structure

〈Σ∗; Pref, EqLen, (Lasta)a∈Σ0〉 (9)

It turns out that the structure obtained by adding the predicate EqLenEqLast
(which was considered by Eilenberg & al. in [9, §10, Problem 1]) is a crucial
one:

〈Σ∗; Pref, EqLen, EqLenEqLast, (Lasta)a∈Σ0〉 (10)

We shall characterize the relations which are definable in structure (10) as
the Σ0-synchronous ones (cf. Theorem 4.1).

In case Σ0 6= ∅, we characterize the relations which are definable in
structure (9) as the oblivious Σ0-synchronous ones (cf. Theorem 4.3). For
the case Σ0 = ∅, we introduce one more structure with no constant:

〈Σ∗; Pref, EqLen, (modk,`)k<`〉 (11)

and we characterize the relations which are definable in structure (11) as
the constant-free oblivious synchronous ones (cf. Theorem 4.5).
Also, we characterize relations which are definable in structure 〈Σ∗; Pref, EqLen〉
(i.e., structure (9) when Σ0 = ∅) as those recognized by non-counting
constant-free oblivious synchronous automata (cf. Theorem 4.8).
All these characterizations hold no matter whether the alphabet Σ is finite
or infinite.
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4.2 Encoding runs

We start with general observations concerning the encoding of a run of a
finite automaton which hold for the synchronous case and the oblivious
synchronous case with at least one constant. Consider such an automaton
with N states and set p = dlog2 Ne so that each state can be encoded as
a length p sequence of 0’s and 1’s. Assume the alphabet of constants Σ0 is
nonempty, and contains an element, say a ∈ Σ0. It is possible to encode
each state of the automaton non uniquely, as a p-tuple σ = (σ1, . . . , σp) ∈ Σp

where σi = a and σi 6= a encode 0 and 1. Denote by 〈σ〉 the state encoded
in such a way. A sequence of ` states can therefore be encoded as a p-tuple
(z1, . . . , zp) of words of length `. For 0 < i ≤ `, the i-th state of the sequence
is encoded as the p-tuple consisting of the i-th letters of all zj , j = 1, . . . , p.
Access to these letters is granted by the predicate Lasta. Observe that in
presence of the predicate EqLenEqLast we can do without constants. Indeed,
add a p + 1-th variable zp+1 to the previous p-tuple (z1, . . . , zp) and encode
the sequence of states as follows: for each 1 ≤ j ≤ p, the j-th binary digit of
(a simple encoding of) the i-th state of the sequence is 1 if and only if the
prefixes of zj and zp+1 of length i end with the same letter.

To logically express the relation recognized by a finite automaton, we
formalize the following property:

Let w = (w1, . . . , wn) be an n-tuple of words and let ` be their
maximum length. The automaton recognizes w if there exists a
sequence q0, q1, . . . , q` of ` + 1 states such that, for each position
0 < j ≤ `, the n + 2-tuple (qj−1, a1, . . . , an, qj) belongs to a
transition of the automaton, where for each i, either |wi| < j
and ai = # or ai is the j-th letter of the input wi. Furthermore,
q` is a final state and q0 is an initial state.

The technical translation below is probably better understood if the reader
has in mind that the sequence of states is encoded with the p-tuple (z1, . . . , zp)
and the position of the heads is encoded with the variable x via its length.

To this end we introduce the following functions and predicates on words
whose purpose should be clear. Fixing some automaton, it is easy to check
that all but the last one are definable from Pref, EqLen and Lasta (where
a is an arbitrary but fixed particular letter in Σ0). As for the last one, it
requires Pref, EqLen et all Lastb’s, b ∈ Σ0.

• Pref|x|(y) is the prefix of y of length |x| and, more generally, Pref|x|+k(y)
is the prefix of y of length |x|+ k for any fixed integer k ∈ Z.

• Stater(z1, . . . , zp) is true if r is a state and z1, . . . , zp are p words of the
same length such that r is encoded by the p-tuple of their last letters,
more precisely, by the p-tuple of Boolean values (Lasta(z1), . . . , Lasta(zp)).
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• SeqOfStates(z1, . . . , zp) is true if and only if z1, . . . , zp are words with
the same length, such that the p-tuple of their first letters encodes
an initial state, the p-tuple of their last letters encodes a final state
and the p-tuple of the letters in any intermediate position encodes an
arbitrary state.

• LabelΦ is a predicate for each label of a transition. It is defined in the
course of the proof.

4.3 The theory of 〈Σ∗; Pref, EqLen, EqLenEqLast, (Lasta)a∈Σ0〉
The following theorem states that the Σ0-synchronous relations are exactly
those which are definable in the above structure. It is worthwhile observing
that the theorem is valid whether the alphabet of constants is empty or not,
which will not be the case for the analogous result with oblivious synchronous
automata and the theory without the predicate EqLenEqLast.

Theorem 4.1. Let Σ be a finite or infinite alphabet and let Σ0 be a finite
subalphabet of Σ. Then a relation R ⊆ (Σ∗)n is Σ0-synchronous if and only
if it is definable in the structure

〈Σ∗; Pref, EqLen, EqLenEqLast, (Lasta)a∈Σ0〉

Observe that this solves Problem 2 for infinite alphabets. As origi-
nally formulated, this question has a negative answer since the predicate
EqLenEqLast is EES and is invariant under all permutations but, as will be
shown in Corollary 4.4, is not definable with Pref, EqLen and the Lasta’s.
The present theorem insures a positive answer when we add this predicate
EqLenEqLast to the logic.

Proof. “If” part. The proof is by induction on the complexity of formulae.
Atomic formulae. The relations defined by the atomic predicates can be
recognized by synchronous automata. Indeed, Example 3.10 exhibits syn-
chronous (even oblivious synchronous but for the first one), automata which
recognize the relations EqLenEqLast, Lasta, EqLen and Pref. This still
holds when we identify variables in the above binary predicates.
Structural induction. It suffices to show that Σ0-synchronous relations are
closed under Boolean operations, projections and Cartesian product. But,
this is a straightforward consequence of Corollary 3.6.

“Only if” part (under the hypothesis Σ0 6= ∅). The following formula ex-
presses, in the language of our logic, that there exists a successful run labeled
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by the n-tuple (w1, . . . , wn).

∃z1 . . .∃zp ∃z (|z1| = · · · = |zp| = |z| ∧ |z| = 1 + max1≤j≤n |wj |)
∧ SeqOfStates(z1, . . . , zp)
∧ ∀x (1 < |x| ≤ |z| ⇒

∨

(r, [[ Φ ]], s)
is a transition




(Stater(Pref|x|−1(z1), . . . , Pref|x|−1(zp))
∧ States(Pref|x|(z1), . . . , Pref|x|(zp))
∧ LabelΦ(x,w1, . . . , wn))








(12)

where Φ = ΦS
E,D∧Ψ is as in Proposition 2.4 and LabelΦ = ΘE∧ΘD∧ΘS∧Θ′

with

ΘE :
∧

(i,j)∈E

EqLenEqLast(Pref|x|(wi), Pref|x|(wj)) (13)

ΘD :
∧

(i,j)∈D

¬EqLenEqLast(Pref|x|(wi), Pref|x|(wj)) (14)

ΘS :
∧

j /∈S

(|wj | < |x|) ∧
∧

j∈S

(|x| ≤ |wj |) (15)

Furthermore, Θ′ is obtained from Ψ by substituting Lasta(Pref|x|(wi)) for
each occurrence of xi = a and ¬Lasta(Pref|x|(wi)) for each occurrence of
xi 6= a.

“Only if” part (under the hypothesis Σ0 = ∅). Encode the sequence of
states with p + 1 words and use the predicate EqLenEqLast as explained at
the beginning of §4.2. 2

As an easy consequence of Theorem 4.1 and 3.5, we have

Corollary 4.2. Let Σ be an infinite alphabet. Given a relation definable in

〈Σ∗; Pref, EqLen, EqLenEqLast, (Lasta)a∈Σ〉

there exists a unique smallest finite subset Σ0 ⊆ Σ such that Γ is definable
in

〈Σ∗; Pref, EqLen, EqLenEqLast, (Lasta)a∈Σ0〉

4.4 The theory of 〈Σ∗; Pref, EqLen, (Lasta)a∈Σ0〉, where Σ0 6= ∅
Here we solve Problem 1 and 3bis for oblivious Σ0-synchronous automata in
the case Σ0 6= ∅. The following result is the desired analog of Theorem 4.1
for oblivious synchronous relations.

Theorem 4.3. Let Σ be a finite or infinite alphabet and let Σ0 6= ∅ be a
finite subalphabet of Σ. A relation R ⊆ (Σ∗)n is oblivious Σ0-synchronous if
and only if it is definable in the structure 〈Σ∗; Pref, EqLen, (Lasta)a∈Σ0〉
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Proof. “Only if part”. The formula is as in (12) in the proof of Theorem 4.1,
except for the interpretation of expressions (13) and (14) in which, using the
oblivious character of the automaton, we replace the EqLenEqLast predicate
as follows:

ΘE :
∧

(i,j)∈E

Pref|x|(wi) = Pref|x|(wj)

ΘD :
∧

(i,j)∈D

(Pref|x|(wi) 6= Pref|x|(wj)) ∧ (Pref|x|−1(wi) = Pref|x|−1(wj))

“If part”. The proof proceeds as in the previous theorem since the family
of oblivious relations enjoys the same closure properties. 2

The solution to Problem 1 and Problem 3bis is a consequence of the
above results. Actually, we obtain a negative answer to Problem 1 and a
positive answer to Problem 3bis in case Σ0 is nonempty.

Corollary 4.4. Let Σ be an infinite alphabet.
1. Neither EqLenEqLast nor {(xz, yz) | x, y, z ∈ Σ} (i.e., the restriction of
EqLenEqLast to words of length 2) are definable with Pref, EqLen and the
Lasta’s for a ∈ Σ.

2. Suppose Σ0 6= ∅. If a relation R ⊆ (Σ∗)n is definable with Pref, EqLen
and the Lasta’s and is invariant under all permutations which are the iden-
tity on Σ0 then it is definable with Pref, EqLen and the Lasta’s for a ∈ Σ0.

Of course, if Σ is finite then EqLenEqLast is trivially definable with
EqLen and all the Lasta’s. Also, it is not definable with the sole Lasta’s,
a ∈ Σ0, if |Σ \ Σ0| ≥ 2, though it is invariant under all permutations.

Proof. 1. It suffices to prove the result with R = {(xz, yz) | x, y, z ∈ Σ}.
Suppose R were definable with Pref, EqLen and the Lasta’s. Let Σ0 be the
finite non empty set consisting of all a’s such that Lasta occurs in a formula
defining R. Theorem 4.3 insures that R is recognizable by some oblivious
Σ0-synchronous automaton. Now, if b, c are distinct letters in Σ \ Σ0 then
we have (bc, cb) ≡obl

n,Σ0
(bb, cb) but (bb, cb) ∈ R and (bc, cb) /∈ R.

2. By Theorem 4.3, R is oblivious Σ1-synchronous for some finite subal-
phabet Σ1 and by Theorem 3.4 it is Σ0-synchronous. Finally, Theorem 3.12
insures that R is oblivious Σ0-synchronous. 2

4.5 The theory of 〈Σ∗; Pref, EqLen, (modk,`)k<`〉
The logical characterization of Σ0-synchronous relations stated in Theo-
rem 4.1 is valid whatever be the finite set Σ0. On the opposite, Theorem 4.3
characterizes oblivious Σ0-synchronous relations when Σ0 6= ∅. It turns out
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that, when Σ0 = ∅, we have to use the extra modular predicates modk,`

(meaning that “the length of u is congruent to k modulo `”). In fact, the
modk,` predicates are easy to define with Pref and Lasta for any fixed a ∈ Σ
: modk,`(u) is true if and only if there exists some v of the same length as u,
ending with the letter a and having an occurrence of the letter a in exactly
the positions equal to k modulo `. However, no predicate modk,` with k < `
is definable without constants, cf. Theorem 4.8 below.

The analog of Theorem 4.3 when Σ0 = ∅ is as follows.

Theorem 4.5. Let Σ be a finite or infinite alphabet and let R ⊆ (Σ∗)n.
Then R is oblivious constant-free synchronous if and only if it is definable
in the structure 〈Σ∗; Pref, EqLen, (modk,`)k<`〉 .

Proof. “If” part. The proof of Theorem 4.1 carries over to this case, by using
the fact that modk,` is oblivious constant-free synchronous (cf. Example 3.10,
Fig. 5).

“Only if” part. Let’s prove that the relation recognized by a constant-free
oblivious synchronous automaton O can be expressed by some formula of
the logic. In the present case, since there is no constant, transitions are
labelled by expressions [[ Φ ]] where Φ is of the form

∧

i/∈SΦ

(xi = #) ∧
∧

i∈SΦ

(xi 6= #) ∧
∧

(i,j)∈EΦ

(xi = xj) ∧
∧

(i,j)∈DΦ

(xi 6= xj)

Given two such expressions Φ′ and Φ we write [[ Φ′ ]] º [[ Φ ]] whenever the
following conditions (which are those for transitions of oblivious automata,
cf. (5)) hold:

SΦ ⊆ S′Φ , EΦ ⊆ E′
Φ , E′

Φ ∩ (SΦ × SΦ) = EΦ ∪DΦ

If furthermore [[ Φ′ ]] 6= [[Φ ]] holds we write [[ Φ′ ]] Â [[ Φ ]]. Observe that if [[ Φ′ ]] º
[[ Φ ]] and SΦ = S′Φ and EΦ = E′

Φ then DΦ = ∅.
Every run of O is of the form

(q0, S0, E0)
[[ Φ′1 ]]−−−→ (q1, S1, E1)

[[ Φ′2 ]]−−−→ . . . (qt−1, St−1, Et−1)
[[ Φ′t ]]−−−→ (qt, St, Et)

where for some sequence 0 < s1 < s2 . . . < sp−1 < sp = t we have

Φ′1 = · · · = Φ′s1
Â Φ′s1+1 = · · · = Φ′s2

Â · · · Â Φ′sp−1+1 = · · · = Φ′t
SΦ′1 = · · · = SΦ′s1

⊇ SΦ′s1+1
= · · · = SΦ′s2

⊇ · · · ⊇ SΦ′sp−1+1
= · · · = SΦ′t

EΦ′1 = · · · = EΦ′s1
⊇ EΦ′s1+1

= · · · = EΦ′s2
⊇ · · · ⊇ EΦ′sp−1+1

= · · · = EΦ′t

Observe that the integer p is bounded by 2n− 2 (where n is the arity of the
automaton). Indeed, associate with Φ the integer 2× |SΦ| − cΦ where cΦ is
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the number of equivalence classes of EΦ. Then the maximum value of this
quantity is 2n − 1 and its minimum value is 1. Also, this quantity strictly
decreases when going from Φ′ to Φ such that Φ′ Â Φ.

Set r1 = s1, ri+1 = si+1 − si for 0 < i < p and Φi = Φ′si
for 0 <

i ≤ p. Observe that ri = 1 if the formula Φi contains an inequality, i.e.,
DΦi 6= ∅. Also, [[ Φ1 ]] Â [[ Φ2 ]] · · · Â [[ Φp ]] and the label of the above run is
[[ Φ1 ]]r1 [[ Φ2 ]]r2 . . . [[ Φp ]]rp .

Now, fix the states (q0, S0, E0), (qs1 , Ss1 , Es1) . . . (qsp , Ssp , Esp). The pos-
sible values of the exponents r1, r2, . . . , rp belong to a rational subset of N,
i.e., the subset of labels obtained by letting the ri’s vary is of the form

[[ Φ1 ]]K1 [[ Φ2 ]]K2 . . . [[ Φp ]]Kp (16)

where the Ki’s are recognizable subsets N (i.e., ultimately periodic subset
of integers). Since the automaton is finite, for each integer 0 < p ≤ 2n − 2
there are only finitely many ways of fixing the p + 1 states (qsk

, Ssk
, Esk

),
k = 0, · · · , p. Therefore, the relation recognized by O is a finite union of
subsets as in expression (16).

Now, the formula φ(w1, . . . , wn) defining the relation (16) is of the form

∃y1∃y2 . . .∃yp

ψ1(y1, . . . , yp) ∧ ψ2(w1, . . . , wn, y1, . . . , yp) ∧ ψ3(w1, . . . , wn, y1, . . . , yp) (17)

where

- |yk| is the maximum length of a component of the prefix of (w1, . . . , wn)
which is in [[ Φ1 ]]K1 · · · [[ Φk ]]Kk ,

- formulae ψ1, ψ2, ψ3 are used to express the different lengths of the
variables w1, . . . , wn and of their pairwise maximum common prefixes.

Formally, for i, j = 1, . . . , n, let λi be the largest index 1 ≤ λ ≤ p such that
i ∈ SΦλ

and let µi,j be the largest integer 0 ≤ µ ≤ p such that (i, j) ∈ EΦµ

holds. Formulae ψ1, ψ2, ψ3 are as follows
ψ1(y1, y2, . . . , yp) : (|y1| ∈ K1) ∧ (|y2| − |y1| ∈ K2) . . . ∧ (|yp| − |yp−1| ∈ Kp)

ψ2(w1, . . . , wn) :
∧

1≤i≤n |wi| = |yλi |
ψ3(w1, . . . , wn) :

∧
1≤i,j≤n |yµi,j | = |MCP(wi, wj)|

where the function MCP(u, v) (which maps (u, v) to their maximum common
prefix) is definable with Pref, and, using the EqLen and modk,` predicates,
we can also define the predicates |u| − |v| = k mod ` and |u| − |v| ∈ K for
any recognizable subset K of N. 2

The above proof can be used to prove elimination of quantifiers.
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Proposition 4.6. Let Σ be a finite or infinite alphabet. The theory of the
structure 〈Σ∗; Pref, EqLen, (modk,`)k<`〉 admits elimination of quantifiers in
the language consisting of
- a predicate |x| − |y| ∈ K for each recognizable subset K of N,
- a constant ε representing the empty word,
- a function MCP(x, y) representing the maximal common prefix of x and
y.

Proof. To eliminate the existential quantifications in formula (17), it suffices
to prove that, for each variable yk in (17), there exists a pair (wi, wj) such
that |yk| = |MCP(wi, wj)|. In fact, |yp| = |wi| = |MCP(wi, wi)| for any
i ∈ SΦp (recall Φi = Φ′si

). For k < p, either SΦk
! SΦk+1

or EΦk
! EΦk+1

.
In the first case, |yk| = |MCP(wi, wi)| for any i ∈ SΦk

\SΦk+1
. In the second

case, |yk| = |MCP(wi, wj)| for any (i, j) ∈ EΦk
\EΦk+1

.
Finally, observe that Pref can be expressed as |MCP(x, y)|− |MCP(x, x)| ≥
0. 2

As a corollary we can solve Problem 3.

Corollary 4.7. Let Σ be an infinite alphabet. If a relation is definable with
Pref, EqLen and the Lasta’s and is invariant under all permutations then

1. it is definable with Pref, EqLen and the modk,`’s for k < `

2. it is definable with Pref, EqLen and only one predicate Lasta, where
a is any letter in Σ.

The result fails when Σ is finite, cf. the counterexample given after the
statement of Corollary 4.4.

Proof. 1. By Theorem 4.3, R is oblivious Σ1-synchronous for some finite sub-
alphabet Σ1. Now, by Theorem 3.4, R is constant-free synchronous. Finally,
Theorem 3.12 shows that that R is oblivious constant-free synchronous.
2. Apply point 2 of Corollary 4.4 with Σ0 = {a}. 2

4.6 The theory of 〈Σ∗; Pref, EqLen〉,
We now deal with the original structure considered in [9] via the notion of
non-counting automaton. An automaton is non-counting when all shortest
non empty runs taking some state to itself have length equal to 1. We
shall say that a relation is non-counting EES if it is recognized by some
non-counting EES automaton. Similarly, we shall speak of non-counting
synchronous and non-counting oblivious synchronous.

Theorem 4.8. Let Σ be a finite or infinite alphabet and let R ⊆ (Σ∗)n.
Then R is non-counting oblivious constant-free synchronous if and only if it
is definable in the structure 〈Σ∗; Pref, EqLen〉.
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Proof. Here again the arguments are direct adaptations of those used in the
proof of Theorem 4.5 by using the following observations. For the “only if”
direction, observe that since O is non-counting, the Ki’s are either finite or
cofinite and |u| − |v| ∈ Ki is expressible with Pref and EqLen.

Conversely, observe that the automata for Pref and EqLen in Exam-
ple 3.10 are non-counting and that non-counting EES relations are closed
under projections, Cartesian product and Boolean operations. 2

We also have a simple elimination of quantifiers.

Proposition 4.9. Let Σ be a finite or infinite alphabet. The theory of the
structure 〈Σ∗; Pref, EqLen〉 admits elimination of quantifiers in the language
consisting of
- a predicate |x| − |y| ≥ ` for each ` ∈ N,
- a constant ε and a function MCP(x, y) as in Proposition 4.6.

4.7 Oblivious relations versus “regular prefix relations”

The notion of oblivious synchronous relation has some similarity with that
of “regular prefix relation” introduced by Angluin and Hoover, 1984 [1]. We
now show that the two notions, considered for a finite alphabet Σ, are in
fact incomparable.

Recall that regular prefix relations on Σ∗ constitute the smallest class
of relations containing all regular languages and such that, if R, R1, . . . , Rk

are regular prefix relations then so are the cartesian product R1 × · · · ×Rk

and the concatenation product {
n times︷ ︸︸ ︷

(u, . . . , u) | u ∈ L} R and θ(R) where θ is
a permutation of the components and L is a regular language and n is the
arity of R.

Let Σ be a finite alphabet. Consider the two structures

〈Σ∗; =, (u 7→ ua)a∈Σ〉 , 〈Σ∗; ε,MCP, (PL)L∈Reg(Σ∗)〉
where MCP is as in Proposition 4.9, Reg(Σ∗) is the class of regular languages
included in Σ∗ and PL = {(u, v) | v ∈ uL}.
Laüchli and Savioz, 1987 [11], proved that a relation on Σ∗ is regular prefix
if and only if it is definable by some monadic second-order formula (with
all second-order variables bounded) in the first structure if and only if it is
first-order definable in the second one (cf. Choffrut [6]).

Case |Σ \ Σ0| ≤ 1. Observe that any letter in a finite alphabet Σ is
definable from the other ones: Lasta(u) ⇔ ∧

b6=a ¬Lastb(u). Thus, in the
considered case, Σ0-synchronous, oblivious Σ0-synchronous and synchronous
regular (in the usual sense) are the same notion which encompasses that of
regular prefix.

Case |Σ \Σ0| ≥ 2. Then the class of regular prefix relations is not com-
parable neither with that of Σ0-synchronous relations nor that of oblivious
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Σ0-synchronous relations.
Indeed, EqLen is oblivious constant-free synchronous but not regular prefix.
Also, though PL is Σ0-synchronous for every regular language L ⊆ Σ∗0, there
are regular languages L such that PL is not Σ0-synchronous (a fortiori not
oblivious Σ0-synchronous) for any subalphabet Σ0 such that |Σ \ Σ0| ≥ 2.
For instance, suppose Σ = {a, b, c}, Σ0 = {a} and L = a∗ ∪ b∗ ∪ c∗. The
smallest relation containing PL and invariant under all level-by-level permu-
tations of Σ which, at every level, leave a fixed (cf. the definition given before
Theorem 3.4) is Pa∗∪{b,c}∗ , which properly contains PL. Using condition iv
in Theorem 3.4, we see that PL is not Σ0-synchronous.

4.8 Modular quantifiers

In this paragraph we show that modular quantifiers do not increase the
expressive power of the two main logics. Recall that

• ∃∞wn φ(w1, . . . , wn) is true if there exists infinitely many values for
the variable wn for which the expression is true,

• ∃k mod `wn φ(w1, . . . , wn) (where 0 ≤ k < `) is true if the number of
values of wn such that the expression is true (for given w1, · · · , wn−1)
is finite and congruent to k modulo `.

Theorem 4.10. Let Σ be a finite or infinite alphabet. There is an algorithm
which, given a finite subalphabet Σ0 and a formula of the language

(Pref, EqLen, EqLenEqLast, (Lasta)a∈Σ0) (resp. Pref, EqLen, (Lasta)a∈Σ0))

using quantifiers ∃, ∃∞ and ∃k mod ` (all pairs k < `), associate a Σ0-
synchronous (resp. oblivious Σ0-synchronous) automaton recognizing the
relation defined by the given formula.

Proof. Observe that, for n ≥ 2, if R ⊆ (Σ∗)n is ≡obl
n,Σ0

-saturated then so is
the relation {(w1, . . . , wn−1) | Qwn (w1, . . . , wn−1, wn) ∈ R} where Q is any
of the quantifiers ∃, ∃∞ or ∃k mod `. Also, ≡obl

n,Σ0
-saturation is preserved by

boolean operations and all relations Pref, EqLen and Lasta, for a ∈ Σ0, are
≡obl

n,Σ0
-saturated. This insures that every relation definable in the language

(Pref, EqLen, (Lasta)a∈Σ0) using the mentioned generalized quantifiers is
≡obl

n,Σ0
-saturated. In particular, using Theorem 3.12, this shows that the

statement of the theorem relative to the first structure yields that relative
to the second one.

We shall use variables w1, · · · , wn to vary over words in Σ∗ in formula φ
and variables x1, · · · , xn to vary over letters in Σ in formulae Φ, Ψ.
The intuition of the proof of the result about the first structure is as fol-
lows. Consider the set N` = {0, . . . , ` − 1,∞} with modular addition and
multiplication on {0, . . . , `− 1} extended as follows:

∀ξ ∈ N` ∞+ ξ = ξ +∞ = ∞ξ = ξ∞ = ∞
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In all this paragraph the computations are meant in these laws. Given an
n-tape Σ0-synchronous automaton A recognizing the relation R defined by
the formula φ, we construct an automaton B which recognizes the relation
defined by the formulae ∃∞wnφ(w1, . . . , wn) (resp. ∃k mod `wnφ(w1, . . . , wn))
by specifying which states are final. To that purpose we perform a subset
construction which carries more information than the standard one. Indeed,
along with each state p of a superstate P ⊆ Q we record the number in N`

of runs taking the initial state to p and having the same projection on the
n− 1 first components: ∞ if it is infinite and k if it is finite and congruent
to k modulo `.

We start with a preliminary remark. We claim that it can be easily
decided whether or not the subset of Σ∗ recognized by some one-tape de-
terministic Σ0-synchronous automaton A is infinite and if this is not the
case, whether its cardinality is equal to k modulo `. Indeed, without loss of
generality we can assume that A is trimmed (i.e., all states are accessible
and final states are accessible from any state) and that each label is either a
subset of Σ0 or contains Σ \Σ0. Now, the subset recognized by the automa-
ton is infinite either if there exists a loop or if there exists a successful run
containing a transition labeled by some cofinite subset of Σ. If the language
is finite, it suffices to compute its cardinality modulo `.

We now turn to the proof of the theorem. Without loss of generality,
we can suppose that A is trimmed and deterministic and that the labels
of the transitions are atoms of the algebra Fn

Σ0
. Let Q be its set of states

and F be its set of final states. With each state q ∈ Q associate the value
γ(q) ∈ N` which is the cardinality of the subset of Σ∗ recognized by the
automaton obtained from A by fixing q as initial state and by deleting all
transitions whose labels have a support different from {n}. This function γ
can be computed as explained in the preliminary claim.

The state set of B is the collection of all elements (P, β) where P ⊆ Q
and β : P → N`.
Given an atom [[ Φ ]] of Fn−1

Σ0
, where Φ = ΦS

E,D ∧ Ψ is quantifier-free with
variables x1, . . . , xn−1 (cf. Proposition 2.4), we let F([[ Φ ]]) be the family of
atoms [[ Φ+ ]] of Fn

Σ0
, where Φ+ is quantifier-free with variables x1, . . . , xn−1, xn

such that ∀xn (Φ+(x1, . . . , xn) ⇒ Φ(x1, . . . , xn−1)) is true, i.e., [[ Φ+ ⇒ Φ ]] is
the top element of the Boolean algebra Fn

Σ0
.

Transitions of B with label [[ Φ ]] are of the form

(P ′, β′)
[[ Φ ]]−−→
B

(P, β)

where P is the set of elements p ∈ Q for which there exists p′ ∈ P ′ such that

p′
[[ Φ+ ]]−−−→
A

p is a transition in A with [[ Φ+ ]] ∈ F([[ Φ ]]) (18)
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and β(p) =
∑

p′, [[ Φ+ ]]
λp′,Φ+ β′(p′) where

• (p′, [[ Φ+ ]]) ranges over all possible pairs in P ′ × F([[ Φ ]]) satisfying con-
dition (18),

• and λp′,Φ+ = 1 if Φ+ implies xn = # or xn = a for some a ∈ Σ0 or
xn = xi for some i ∈ {1, . . . , n− 1} and λp′,Φ+ = ∞ otherwise.

The initial state of B is the pair ({q0}, β0) where q0 is the initial state of
A which we may assume without incoming transition and β0(q0) = 1 holds.

The cases of quantifiers ∃∞ and ∃k mod ` differ solely in the choice of the
final states of B. A pair (P, β) is final if and only if the sum


 ∑

p∈F∩P,γ(p)=0

β(p)


 +


 ∑

p∈P,γ(p) 6=0

β(p)γ(p)




is equal to ∞ in the case of the quantifier ∃∞ and to k mod ` in the case of
the quantifier ∃k mod `. 2

4.9 A decidable theory

Theorem 4.11. Let Σ be a finite or infinite alphabet. The first order theory
of the structure

〈Σ∗; Pref, EqLen, EqLenEqLast, (Lasta)a∈Σ〉

is decidable, even if quantifiers ∃∞ and ∃k mod ` are allowed.

Proof. Observe that the emptiness problem for Σ0-synchronous automata is
trivially decidable in a uniform way with respect to the parameter Σ0 varying
among finite subsets of Σ. To conclude, use Theorems 4.1 and 4.10.
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