Every Recursive Linear Ordering has a Copy in Dtime-Space $(n, \log (n))$

Serge Grigoriefl

The Journal of Symbolic Logic, Vol. 55, No. 1. (Mar., 1990), pp. 260-276.

Stable URL:
http://links jstor.org/sici?sici=0022-4812%28199003%2955%3 A1%3C260%3AERLOHA%3E2.0.CO%3B2-7

The Journal of Symbolic Logic is currently published by Association for Symbolic Logic.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/asl.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Thu Mar 23 17:18:46 2006

THE JOURNAL OF SYMBOLIC LogGic
Volume 55; Number 1, March 1990

EVERY RECURSIVE LINEAR ORDERING HAS A COPY
IN DTIME-SPACE(n, log(n))

SERGE GRIGORIEFF

§1. Introduction. This paper is a contribution to the following natural problem in
complexity theory:

(*) Is there a complexity theory for isomorphism types of recursive countable
relational structures? l.e. given a recursive relational structure £ over the set N of
nonnegative integers, is there a nontrivial lower bound for the time-space
complexity of recursive structures isomorphic (resp. recursively isomorphic) to #£?

For unary recursive relations R, the answer is trivially negative: either R is finite
or coinfinite or (N, R) is recursively isomorphic to <N, {x € N: x is even}).

The general problem for relations with arity 2 (or greater) is open.

Related to this problem, a classical result (going back to S. C. Kleene [4], 1955)
states that every recursive ordinal is in fact primitive recursive.

In [3] Patrick Dehornoy, using methods relevant to computer science, improves
this result, showing that every recursive ordinal can be represented by a recursive
total ordering over N which has linear deterministic time complexity relative to the
binary representation of integers. As he notices, his proof applies to every recursive
total order type o such that the isomorphism type of « is not changed if points are
replaced by arbitrary finite nonempty subsets of consecutive points.

In this paper we extend Dehornoy’s result to all recursive total orderings over N
and get minimal complexity for both time and space simultaneously.

THEOREM. Let a be an integer, a > 2. Every recursive total ordering (N, R) has an
isomorphic copy {N, S such that, relative to the a-ary representation of integers, S is
computable in realtime using log space.

Moreover, if the order type of R is not of the form w + Z.a + w* for some a,
then one can suppose the isomorphism to be recursive.

Our proof proceeds in two steps. ‘

First, we show (§4.1, theorem) that any recursive linear ordering (N, R) has a
recursively isomorphic copy <A,S) such that A and S are in DTIME-SPACE
(n,log(n)). The idea is convert the algorithmic complexity of R into high disper-
sion of the domain A.

Received June 29, 1988; revised January 16, 1989.
Ce travail a bénéficié du soutien du PRC “Mathématiques et Informatique” du CNRS.

©1990, Association for Symbolic Logic
0022-4812/90/5501-0017/$02.70

260

RECURSIVE LINEAR ORDERINGS 261

Second, we show (§§5 and 6) how to fill the set N\ A. Two exhaustive cases are
considered (cf. 5.4 and 6.1): First, we assume that (NN, R) has order type w + Z.4
+ w* for some 4. Second, we assume that there is an R-increasing sequence which
is recursive and cofinal in (N, R) or which has a supremum in (N, R), or that there
is an R-decreasing sequence which is recursive and coinitial in (N, R) or which has
an infimum in (N, R). In the second case we get a recursive isomorphism.

REMARKS. 1°) This result is optimal in the following sense: a linear speed-up for
space complexity—which does not affect the computation time—is always valid;
however, realtime computability in space o(log) implies computability by finite
automaton (cf. Stearns, Hartmanis and Lewis [9]; see also Wagner and Wechsung
[11, Theorems 8.15 and 8.28]).

2°) In recent work, D. Cenzer and J. B. Remmel [1] give contributions to the
above problem (). In particular, they prove that there exists a recursive linear
ordering on N with isomorphism type @ + w* which is not recursively isomorphic
to any polynomial time linear ordering with domain N (cf. also Remark 7.2). This
has been generalized by Remmel (private communication) to linear order-
ings with isomorphism type w + Z.A + w*.

Thus, the second assertion in Theorem 7.1 cannot be improved.

3°) For related questions, cf. also R. Watnick [10], M. Moses [5] and J. B.
Remmel [6], [7].

§2. Some definitions.

2.1. All Turing machines considered below have semi-infinite input tapes and
worktapes. In order to be recognized during the computation, the first cell of each
tape receives special symbols which duplicate those (including the blank one) used
for the other cells.

2.2. The length of a word u is denoted |uj.

DEeFINITION. A Turing machine M with m input tapes (and some more worktapes
and output tapes) is said to be realtime if it is deterministic and if the following
conditions hold:

a) The head of each input tape of M constantly moves rightwards until it meets
the first blank to the right of the input. Afterwards, it stays still.

b) When the heads of all the input tapes scan a blank cell then M enters a final
state and stops.

Thus, if u,,...,u, are the initial contents of the input tapes of a realtime Turing
machine, the whole computation involves exactly Sup{|u,|,...,|u,|} computation
steps.

In the special case where there is no worktape nor output tape, M is merely a finite
automaton.

2.3. The following definition presents several complexity classes (some classical,
others less usual).

DEFINITION. Let X be a finite alphabet and Z* be the set of all words over 2. Let ¢,
s and « be nondecreasing functions over N such that t(n) > Sup{«(n), s(n), n} for all n.

1°) An m-ary function F with domain a subset D of some [2*]™ and values in Z*
has deterministic time-space complexity (t,s) (or, briefly, is in the class DTIME-
SPACE(t, s)) if there exists a deterministic Turing machine M with m input tapes, an

262 SERGE GRIGORIEFF

output tape (and some more worktapes) such that, for all inputs u,,...,u, dis-
tributed on these m input tapes:

i) M halts within no more than t(Sup{|u,|,...,|u,|}) computation steps.

ii) The head of each input tape moves between cell 1 and the first cell to the right
of the input and can change no symbol.

ili) M uses no more than s(Sup{|u,l,...,|u,|}) cells on its output tape and
worktapes.

iv) M halts in an accepting state if and only if (u,,...,u,,)isin D.

v) When (and if) M halts in an accepting state, the contents of its output tape is
the word F(uy,...,u,,).

2°) We say that F has deterministic time-space complexity (t, s) with anticipation of
the output at time o (or, briefly, is in the class DTIME-SPACE(t, s)-ANTICIP(«)) if
there exists a deterministic Turing machine M satisfying conditions i) to v) above
and such that, for some subset P of the set of states of M, called the set of prefinal
states, which contains the set of final (accepting or rejecting) states, the following
conditions hold:

vi) When (and if) M enters a prefinal state then all subsequent states are prefinal
and the contents of the output tape remains unchanged until M halts.

vii) If (uy,...,u,) is in the domain D then M enters some prefinal state after at
most a(Sup{|u,],...,|u,|}) computation steps.

Thus, the word F(u,,..,u,,) is written on the output tape as soon as machine M
gets in the prefinal states (which are distinguished ones), and this happens at time no
greater than a(Sup{|u,|,...,|unl}).

3°) F has realtime-space s complexity (or, briefly, is in the class REALTIME-
SPACE(s)) if there exists a realtime Turing machine M with m input tapes (and some
more worktapes) satisfying conditions iii) to v) above.

4°) The function F has realtime-space s complexity with anticipation of the output
at time o (or, briefly, is in the class REALTIME-SPACE(s)-ANTICIP(«)) if there
exists a realtime Turing machine M satisfying conditions iii) to vii) above.

In particular, the length of F(u,,...,u,,) is at most a(Sup{|uy|,...,|unl}).

5°) An m-ary relation R over X* (or a subset of X*) is in the class DTIME-
SPACE(t, s)if there exists a deterministic Turing machine M with minput tapes (and
some more worktapes) satisfying conditions 1), ii), iii) above and the condition

iv*) M halts in an accepting state if and only if (u,,...,u,)isin R.

Risin the class REALTIME-SPACE(s) if there exists a realtime Turing machine
M with m input tapes (and some more worktapes) satisfying conditions iii) and iv*).

6°) For functions and relations dealing with integers, the above classes are defined
relative to the representation of integers within some base a > 2,i.e. over the alphabet
{0,...,a — 1}.

2.4. REMARK 1. Due to the linear speed-up for space complexity (which does not
affect the computation time), condition iii) in 2.3.1°) above can be replaced by

iii*) M uses no more than s(Sup{|u,|,...,|u,|}) cells on each one of its output
tape and worktapes.

REMARK 2. For low time complexities, in particular for REALTIME complexity,
the base dependence in 6°) of the above definition seems a priori necessary (see
A. Cobham [2] for a related result which, due to a result in [9], can be viewed as a
base dependence for space complexity o(loglog)).

RECURSIVE LINEAR ORDERINGS 263

REMARKS 3.1°) If a function F is in one of the above classes then its domain D,
considered as an m-ary relation over X2* or N, also belongs to this class.

2°) If a total function (i.e. with domain some [X*]™ or N™) is in DTIME-
SPACE(t, s)- ANTICIP(a), then it is in fact in DTIME-SPACE(q, s).

3°) The class REALTIME-SPACE(s) and the class REALTIME-SPACE(s)-
ANTICIP(«) are included in DTIME-SPACE(n, s(n)) for all «.

4°) Let m be a positive integer. The class of m-ary relations which belong to
REALTIME-SPACE(s) is closed under Boolean operators.

2.5. It will be convenient in the sequel to consider an m-ary function F with
domain a subset D of N™ as an m-ary N-valued relation over D. Though formally the
very same objects, they have to be distinguished as concerns the classical notions of
transportation of structures via a bijection @ from N onto a set A:

a) If F is considered as a function (with partial domain D) in the structure <N, F)
then, in order that @ be an isomorphism between <N, F) and <A, ®(F)), the image
@(F) has to be the function (with partial domain ®(D)) such that Graph(®(F)) is
the image of Graph(F) via the bijection (®,..., P, ®) from N™*! onto A™*!. Thus,
SF)=PoFo(d ..., 0 Y) | (D,..., D)D)

b) If F is considered as an N-valued relation over D in the structure (N, F) then,
in order that @ be an isomorphism between (N, F) and <A, ®(F)), the image ®(F)
has to be the N-valued relation over the subset @(D) such that Graph(®(F)) is the
image of Graph(F) via the bijection (®,...,®,1d) from N™*! onto A™ x N, where
Id is the identity function over N. Thus, ®(F) = F o (®71,...,® 1) [(D,..., ®)(D).

Ordinary relations can be considered as N-valued relations with values in {0, 1}.

The notions of time-space complexity for N-valued relations are exactly those of
the corresponding functions.

§3. Some technical facts.

3.1. We use the notations Bin(p), 0”7 and u " v to denote the binary representation
of the integer p, the word consisting of p successive letters 0, and the word obtained
by concatenating u and v. We denote by w (resp. w*, resp. Z, resp. Q) the order types
of the set of positive integers (resp. negative integers, resp. arbitrary integers, resp.
rational numbers).

We denote by «.f the order type of the sum of a family of copies of « indexed by
the ordered set B, i.e. the order type of the right to left lexicographical ordering on the
cartesian product a x f:

(a,b) < (a’,b’) ifandonlyif b<b'orb=>b'anda<a'

We shall need the following fact in §5.4.

PROPOSITION. Let a be an integer, a > 2. There exist total orderings over {0, 1,...,
a — 1}* (resp. N) which have respective order types Q, Z.Q and w + Z.Q + w* and
are recognizable by finite automata, i.e. are in REALTIME-SPACE(0) (resp. relative
to the a-ary representation of integers).

PROOF. 1°) We restrict to the case a =2. Let I be the set of dyadic rational
numbers in]—1,+1[. We define two bijections ¢:{0,1}* > and y:N
— 1 U {1/3} as follows:

@(empty word) =0 and ¢(a,a, -a,) = X{(2a; — 1)/2": 1 <i<n} with g€
{0,1} for all i. (0) = 1/3 and Y(x) = ¢(u) if x € N\ {0} and Bin(x) = 1 "u.

264 SERGE GRIGORIEFF

Let R and S be the relations

R = {(u,v) e [{0,1}*]* o) < 0(v)},
S ={(x,y) e N2 yY(x) < y(y)}.

The structures ({0, 1)*, R) and (N, S) are dense total orderings without endpoints,
hence isomorphic to the ordered structure of the set of rational numbers.

It is easy to see that that R is recognizable by a finite automaton. As for the binary
representation of S, notice that y(0) = 1/3 = X{(—1)"/2"**: i e N} = limit of the
sequence (¢[(10)°]), cw.

2°) To get orderings with order type Z.Q, one can consider the following
bijections:

E{0,1}* >Z x [Tu{1/3]] and #:N-{(1/2,00} UZ x [T U {1/3}].

Here £(17) = ((—1)"[p/21, 1/3), where p may be zero, (17" 0u) = ((—1)"p/21, p(w)),
[p/2]being the smallest integer greater than or equal to p/2, 7(0) = (1/2,0), and 5(x)
= {(u) if x e N\ {0} and Bin(x) = 1" u.

3°) Easy modifications of the above bijections lead to orderings with order type
o+ 7Z.Q + o*.

3.2. DErINITION. Let 4 be the injection from {Bin(x): x € N} into {00,11,01}*
defined by

Mayay - a,) = (104D *a,a,"(10)*®"a,a, "+~ (10)*" " a,a,

where 4(1) = 1, 4(i)) = 2 for i > 2.

The reason to introduce such a function 4 is as follows:

a) A sequence of words can be trivially coded using concatenation and a new
letter as separator.

b) Due to the base dependence stressed in 2.4, Remark 2, we want to keep codes
within the {0, 1} alphabet. Coding 0 and 1 as 00 and 11, we get 01 and 10 as “auxiliary
letters”. This leads us to code a,a, - a, as a,a,a,a, - a,a,.

(c) Such codes give rise to a realtime decoding function which requires linear
space (since we do count space on the output tape). In order to get a log-space
complexity, we have to lengthen codes so as to make them exponentially long. This
can be done using the “letter” 10.

d) However, it is not sufficient to add long suffixes: words which are not codes also
have to be recognized within log-space. This requires that from a given prefix with
length k of the code of u, we can get at most log(k) bits of u.

e) This is the reason for inner padding factors: for any i, the space needed to store
the prefix a,a, ‘- - a; and move a head right to it (i.e. i + 1 cells) has to be at most the
log of the length of the part of the input already read. This leads usto code a,a, - a,
as A(a,a, - a,) with 4 such thati + 1 < log[|A(a,a, - a;)|] for all i. The particular
choice of 4 is a mere convenience.

PROPOSITION. The function A~' (with domain Range(d)) is in REALTIME-
SPACE(log).

Proor. 1°) We first define a “wasting time” one-tape Turing machine A4 with
input alphabet {0, 1}.

a) Started with its head scanning cell i + 1, the computation of 4 involves 2i x 2}

RECURSIVE LINEAR ORDERINGS 265

steps, and the final contents of the tape and the position of the head are exactly the
initial ones.

b) The working alphabet of A4 is {(0,0), (0, 1),(1,0), (1, 1)}, so as to get two levels on
the tape.

c) The action of A4 is to write the successive integers 1,2,...,2° — 1 as binary
words with length i on the second level of cells 1 through i, retaining in the first level
the initial contents. The head moves from cell i + 1 to cell 1 to perform the
incrementation and then moves back to cell i + 1.

d) Duringits very last return, 4 restores the initial contents (memorized in the first
level).

2°) We describe below a realtime Turing machine L with one input tape and one
output tape which computes A~ ! within log-space.

a) A finite automaton mechanism allows L

€ to analyse the input w as a concatenation of successive factors:

w = (10)*'“a,a, "(10)**"aya," - -~ (10)* " a,a," w’,

where n > 0 and 10 is not a prefix of the word w’; and
¢ tocheckif aja, - a,isin {Bin(x): x € N} (i.e.n # Oand neither 00norOlisa
prefix).

b) If L is not in the dead state then the input factor a;a; is read while the head of
the output tape scans cell i; then L copies g; on the output tape, moves its output
head onto cell i + 1 and starts to simulate 4 on its output tape.

¢) This simulation of A allows L to compare k; and A4(i) (recall that L, being
realtime, constantly moves its input head rightwards). If k; # 4(i) then L enters a
dead state which leads to rejection and forbids any further move of the output head.

d) L halts in an accepting state if and only if it is not in the dead state and the
factor w' is empty.

3.3. PROPOSITION. For every recursive function t from N into N there exists a
strictly increasing function t* such that t < t* and

DTIME(t) = DTIME-SPACE(t*,log(t*))

and a deterministic one-tape Turing machine M,+ which works on any input v € {0,1}*
in time exactly t*(|v)), visiting (at most) log(t*(|v|)) cells.

PrOOF. Let M be a one-tape machine which, on input », computes the unary
representation of ¢(Jv]). One can suppose that the computation time of M is strictly
increasing with the length of the input.

Machine M+ is a one-tape machine which alternatively simulates one step of
machine M and then the whole computation of machine A (described in the pre-
ceding proof).

We define t# (k) as the computation time of M, on inputs of length k.

Let N be a machine working in time . Modifying M,» so as to simulate N during
the sole computation steps when M, simulates M, we get a machine simulating N
and working in time t* and space log(t*).

§4. Representation of a recursive structure over a sparse subset of N. The
following general theorem has been independently obtained by D. Cenzer and J.
Remmel [1] in a weaker form dealing solely with linear time complexity.

266 SERGE GRIGORIEFF

4.1. THEOREM. Let o and t be nondecreasing recursive functions from N into N, and
K > 0. We suppose that o is unbounded and that a(n) < n for all n. There exists a
recursive and increasing bijection @ between N and a subset A of N such that:

1°) 1) The set A is in REALTIME-SPACE(log).

ii) @ maps any N-valued relation (over a subset of N™) which is in DTIME(¢) onto an
N-valued relation (over a subset of A™) which is in REALTIME-SPACE(log)-
ANTICIP(x).[Le.if D = N™and R: D — N and R (hence also D) is in DTIME(t), then
S=Ro(®7L..., 0 Y[(D,..., D)D) is in REALTIME-SPACE(log)-ANTICIP(«).
In particular, @ maps sets in DTIME(t) onto sets in REALTIME-SPACE(log).]

iti) The integers ®(0) and @(x + 1) — &(x), x in N, are all greater than K.

2°) In particular, let # = (X, R,,...,R,) be an N-valued relational structure with
domain X included in N and such that X,R,,...,R, are all in DTIME(t). Then, the
restriction F of @ to X defines an isomorphism from R onto an N-valued structure
& =(Y,S,;,...,S,) such that

i) A is in REALTIME-SPACE(log) and S,,...,S, are in REALTIME-
SPACE(log)-ANTICIP(x), and

ii) F(x) > K and F(y) — F(x) > K for all x and y in X such that x < y.

Subsections 4.3 to 4.7 are devoted to a proof of part 1°) of this proposition.

4.2. REMARK. The above theorem is false if functions are considered (instead of
N-valued relations). For example, let Suc be the successor function. The graph of
Suc is a relation in REALTIME. However, for any isomorphic copy (A,) of the
structure (N, Suc) —where Suc is considered as a function and not as an N-valued
relation—there exists x in A such that |Bin(g(x))| > |Bin(x)|, hence a(x) cannot be
written (hence computed) in time |Bin(x)|.

4.3. Recall that u" v denotes the word obtained by concatenating u and v. Let t*
and M,» be defined from ¢t as in Proposition 3.3.

Since the function o (considered in the statement of the proposition) is recursive
and unbounded, one can define a strictly increasing recursive function f over N as
follows:

B(p) = the smallest integer g such that a(g) > 4p2? + t*(p) + K,

where K is the constant in the statement of Theorem 4.1. Let f* and M;« be defined
from B as in Proposition 3.3.

Since « is nondecreasing and B < B*, it is clear that B* satisfies a(B* (p)) > 4p2°
+t*(p) + K.
4.4. We define a recursive, injective and increasing function @ from N into N as
follows: @(x) is the integer with binary representation

Bin(®(x)) = A(Bin(x))"01" 1/Bin)| A gt*(Bin(x)) A 1 8*(IBin(x)])

We let A be the range of @.
The definition of @ is motivated by the following idea:
(@) When Bin(®(x)) is read by some adequate Turing machine, then
a) A(Bin(x)) can be recovered as the longest prefix in {00, 11, 10} *,
b) Bin(x) can be recovered from A(Bin(x)) and stored on some tapes,
c) the heads on these tapes can be back while the factor 1B"™! js read,
d) any computation involving t(|Bin(x)|) steps can be simulated in space

RECURSIVE LINEAR ORDERINGS 267

log[*(|Bin(x)|)] while the factor 0**(Bi"®)D s being read, and

e) due to a pertinent choice of B, the reading of the suffix 1£*(Bin®D Jasts long
enough so that the output of the preceding simulation is obtained with convenient
anticipation.

4.5. Since B*(p) = a(B*(p)) = K, there are at least K digits to the right of
A(Bin(x)) in Bin(®(x)).

Thus @(0) >2X> K and &(x + 1) — &(x) > 2¥ > K, which proves iii) in
Theorem 4.1.1°).

4.6. Let L be a realtime Turing machine with one input tape and one output tape
which computes A~ ! within log-space (cf. 3.2).

We describe a realtime Turing machine U, with one input tape and two worktapes,
recognizing A. On input word u from alphabet {0, 1}, machine U acts as follows:

i) A finite automaton mechanism allows U to analyse the input u as a
concatenation of successive factors: u = u; “u, oru = u; “01"17*0?" 1" u,, where
p,q,rarein N, u, is the longest prefix of u lyingin {00, 11, 10}*,|u,| < 1 and lisnota
prefix of uj.

ii) If u = u;"u, then machine U stops and rejects (recall that machine U is
realtime, hence stops when the input has been read). If 5 is not empty then U enters
a dead state, which leads to rejection and forbids any further move of the worktape
heads.

iii) While the input head reads the factor u,, U simulates L on input u, and copies
the output v on both worktapes 1 and 2.

iv) If L rejects then machine U enters the above dead state. If L accepts, then
worktapes 1 and 2 contain v and their heads scan the last letter of v. Then, machine U
checks whether p, g, r are equal to |v|, s*(|v]) or B*(|v]), as follows:

a) While the input head reads the factor 17, machine U moves its worktape heads
leftwards. The equality p = |v| holds if and only if the heads of worktapes 1 and 2
reach the first letter of v at the very same computation step when the head of the
input tape of U leaves the factor 17.

b) While the input head reads the factor 0%, machine U simulates on worktape 1
the computation of machine M,# (with input v). The equality g = s*(|v|) holds if and
only if this simulation is completed exactly when the head of the input tape leaves
the factor 0%

¢) While the input head reads the factor 1", machine U simulates on worktape 2
the computation of machine Mg+ (with input v). The equality r = *(|v|) holds
if and only if this simulation is completed exactly when the head of the input tape
leaves the factor 1".

v) If and when one of these three equalities is recognized not to be valid, then
either the input head reads a blank and machine U stops and rejects, or machine
U enters the dead state. If all equalities hold—and if u; is empty (cf. ii))—then U
halts and accepts.

It is clear that machine U uses no more than log(|u|) cells on each of its worktapes
and recognizes the set {1(v)" 01 1?10 (eD~ 18*09D: 4 jg in {Bin(x): x € N}}, i.e. the
set A. Using 2.4, Remark 1, this proves that A is in REALTIME-SPACE(log).

4.7. We now show that @ maps any m-ary N-valued relation R lying in DTIME(z)
onto an N-valued relation ®(R) lying in REALTIME-SPACE(log)-ANTICIP(«).

268 SERGE GRIGORIEFF

Since DTIME(t) = DTIME-SPACE(t*, log(t*)) (cf. Proposition 3.3), there exists
a Turing machine P which computes R within time t* and space log(t*). Let P have
m input tapes, p worktapes and one output tape.

Let U be the above realtime Turing machine which recognizes the set A and works
in log-space.

Developing the ideas sketched in 4.4 (®), we describe a realtime Turing machine
V, with m input tapes, 3m + p worktapes and one output tape, which computes the
N-valued relation S with anticipation of the output at time a.

On input words u,,...,u,, distributed on the m input tapes, machine V acts as
follows:

i) The ith input tape and two worktapes are devoted to the simulation of the
computation of U on input u;. Thus, V can check whether u,,...,u, are in
{Bin(x): x € A}. If V has to simulate a dead state or a rejection of U on some of the
u;’s, then V enters a dead state.

ii) For i = 1,...,m, phases iii) and iv)a) of the simulations of U on input u; are
duplicated on a devoted worktape : v; is written and the head is then moved back to
cell 1; then the head stays still up to the moment when all heads of these duplication
tapes scan their first cells. If all inputs u; are in A, this happens at time step
Sup{|A(v)* 01 1"": i = 1,...,m}.

iii) Then machine V starts simulating machine P on inputs vy,...,0,, Written on
these duplication tapes. This uses p more worktapes; the output tape of V' simulates
that of P.

iv) Being realtime, machine V stops when all inputs u,,...,u,, have been read. It
stops in an accepting state if and only if the m simulations of U on inputs u,,...,u,,
all lead to accepting U-states and that of P on inputsv,,...,v, leads to an accepting
P-state. The output of V is exactly that one which comes from the simulation of P.

W now prove that V computes @(R) in log-space.

A) If some input y; is not the representation of an integer in A, then machine V
rejects.

B) Suppose now that each input u; is in A. Let u; = Bin(y;), y; = @(x;) and v,
= Bin(x;). Then V starts the simulation of P on inputs v,,...,v, When it starts
reading the factor 0" of the longest input u;. Since P works in time t*, this
simulation can be completed while V reads this factor. Thus, V does output the value
R(x4,...,X,,), hence computes P(R)(yy,---» Vm)-

C) V delivers its output computation while reading the factor 0**1* of the
longest input u;. Thus, this output is obtained by time 7, where

T < Sup{|A(v) 01~ 1) i = 1,...,m} + t*(Sup{|o): i = 1,...,m}).
Letn = Sup{|y;|:i=1,...,m}.
From the definition of 4 (cf. 3.2), we get |A(v)| < 4|v|(2!"! — 1) whence,
T<4n2" — 1) + n+ 2 + t%(n) < 4n2" + t%(n),
7 < a(B*(n)) by the very definition of S (cf. 4.3),
© < Sup{a(B*(Jv;]):i = 1,...,m} since « and B* are increasing,
T < Sup{luf:i=L,...,m}) since f%(|v;]) < |Bin(®(x;))| = |u;| for all i.

Thus, machine V delivers the value R(x,,..., x,,) With anticipation at time no greater
than a(Sup{|u;|:i = 1,...,m}).

RECURSIVE LINEAR ORDERINGS 269

D) It is clear that machine U uses no more than log(Sup{|u]: i = 1,...,m}) cells
on each one of its worktapes.

Points A) to D) (and 2.4, Remark 1) prove that A is in REALTIME-SPACE(log).

This completes the proof of Theorem 4.1.

§5. Restricted versions of the main theorem.

5.1. From Theorem 4.1 we know that it is possible to get a copy in REALTIME-
SPACE(log) of any recursive, relational or N-valued relational structure over N, the
domain of the copy being a sparse subset of N.

The problem now is to go from such a sparse domain back to the domain N. Our
strategy to do this is as follows:

1) Isolate a “very simple” infinite part X of the original structure over N.

2) Apply Theorem 4.1 to the restriction to N\ X of the original structure, thus
getting a copy in REALTIME-SPACE(log) of this restriction over a sparse (hence
coinfinite) subset A of N.

3) Copy the restriction to X of the original structure over the set N\ A.

If the “very simple” infinite part X is also simply related to the N\ X part, then the
two structures obtained in 2) and 3) can be combined into a REALTIME-
SPACE(log) copy over N of the original structure.

5.2. First, we give a direct application of this method to the case of recursive
ordinals which (strengthens and) gives another proof of Dehornoy’s result [3].

THEOREM. Let a be an integer, a > 2. Every infinite recursive ordinal a can be
represented by a total ordering S over N which is in REALTIME-SPACE(log) relative
to the a-ary representation of integers.

PROOF. 1°) The case w < a < @ + w is obvious.

2°) If &« > w + w then a = w + f, where f is an infinite recursive ordinal. Using
Theorem 4.1 with a recursive ordered structure (N, R) of type B, we get a total
ordering S’ over a coinfinite subset A of N such that A and S’ are in REALTIME-
SPACE(log) and <A, S") has type .

Let S = <[N\A U [(N\A) x A] u §’ (where < denotes the restriction of the
usual ordering). It is clear that S is in REALTIME-SPACE(log). Also, S is a total
ordering over N for which N\ A is an initial segment and A is a final segment. Thus, S
has order type w + B, i.e. a.

REMARKS. 1°) Itisimportant to notice thatif p is a recursive total ordering over N
which has an initial segment of type w, then this initial segment is not necessarily
recursive. In fact, using a priority argument, S. Tennenbaum has proved (see J. G.
Rosenstein [8, p. 453], or R. Watnick [10]) that there is a recursive copy of o + w*
in which the w part is not recursive.

2°) Of course, in case p is an ordinal, then every proper initial segment has a
supremum, hence is of the form {x: p(x, b)} for some b and so is recursive.

5.3. The above proof can be applied to get the following particular extension of
Theorem 5.2:

THEOREM. Let {N, R) be a recursive ordering for which there exists a partition of N
into three recursive subsets U, V, W such that U is an initial segment of R, W is a final
segment of R, and the restriction of R to V has order type @ + w*. Then there exists a
REALTIME-SPACE(log) total ordering S over N which is isomorphic to R.

PROOF. Suppose U U W is infinite (otherwise the result is trivial).

270 SERGE GRIGORIEFF

Applying Theorem 4.1 (with K > 2) to the relational structure
CUuW,RINU U W),UW),

we get an isomorphic copy <A,S’, X,Y) in REALTIME-SPACE(log). Due to
condition iii) and the fact that K > 2, we see that N\ A contains infinitely many odd
and infinitely many even integers. Thus, S’ can be extended to a total ordering S over
N as follows:

a) Order (N\A) N (2N + 1) via the usual < ordering, and order (N\A) n 2N via
the reverse ordering >.

b) Let X, (N\A) n (2N + 1), (N\A) n 2N, Y be successive intervals of S.

It is clear that S is in REALTIME-SPACE(log) and that (NN, R) and {N, S) are
isomorphic.

5.4. Recall that a. denotes the order type of the sum of a family of copies of «
indexed by the ordered set § (cf. 3.1).

THEOREM. Let A be any total order type and let {N, R) be a recursive total ordering
with order type o = w + Z.A + w*. There exists a REALTIME-SPACE(log) total
ordering S over N and an isomorphism F between (N, R) and {N, S).

Proor. We consider four cases which exhaust all possibilities.

Case 1. A has a maximal element. Let 1 be of the form A = u + 1. Since Z has order
type w* + w, we see thata = w + Z.u + 0* + o + w*. Thus, there is an element a
in N (namely, the integer in <N, R) which corresponds to the first element in the last
w part of a) such that the sets U = {x € N: R(x,a)} and V = {x € N: R(a, x) or
x = a} have respective order types o + Z.u + o* and o + w*.

Since U and V are recursively defined from R, they are recursive. Setting W = &
and applying Theorem 5.3, we get the desired isomorphic structure <N, S) lying in
REALTIME-SPACE(log).

Case 2. A has a minimal element. This case is similar to the previous one.

Case 3. A has two successive elements. Let A be of the form A = 4 + 2 + v. Then
ao=w+2Zpu+ o*+ o+ o*+ o+ Zv+ o* Thus, there are elements a and b
in N such that the sets U = {x € N: R(x,qa)}, V = {x € N: [R(a, x) and R(x,b)] or
x=aor x=>b}and W = {x € N: R(b, x)} have respective order types @ + Z.u +
o*, o + o*and w + Z.v + w*. Since U, V and W are recursively defined from R,
they are recursive subsets of N. Applying Theorem 5.3, we get the desired iso-
morphic structure lying in REALTIME-SPACE(log).

Case 4. A is dense without endpoints. Then A is the order type of the set of rational
numbers, and we conclude via Proposition 3.1.

§6. Recursive linear orderings with good recursive sequences.
6.1. We now apply Theorem 4.1 to a type of orderings satisfying a condition
which appears to cover the cases not relevant to Theorem 5.4.
THEOREM. Let R be a recursive total ordering over N such that there exists a
recursive sequence which is
either strictly R-increasing and cofinal in {N, R),
or strictly R-increasing and has a supremum in (N, R,
or strictly R-decreasing and coinitial in (N, R},
or strictly R-decreasing and has an infimum in (N, R).

RECURSIVE LINEAR ORDERINGS 271

Then (N, R) is recursively isomorphic to some structure {N,S) in REALTIME-
SPACE(log).

The proof of this theorem runs through subsections 6.2 to 6.15 below.

We treat only the case of an R-increasing recursive sequence, the R-decreasing
case being similar.

6.2. Let & be an R-increasing recursive sequence which either is cofinal in (N, R}
or has a supremum m in (N, R). We can suppose that ¢ is also strictly increasing
(hence cofinal) with respect to < (if not, just replace &(p) by Sup{£(i): i < p}). For
such a ¢, strictly increasing with respect to both < and R, the restrictions of Rand <
to the range X of £ coincide.

Let X be the range of & Since ¢ is <-increasing and recursive, its range is an
infinite recursive subset of N.

We define a subset D of N as follows: D = {x e N\X: R(x,m)} if m is the R-
supremum of the sequence & and D = N\X if ¢ is cofinal in {N,R). Being
recursively defined from R and X, the set D is also recursive.

By its very definition, D is the set of elements in N\ X which are majorized by some
element in the range X of ¢. Thus, it is possible to define unary functions ¢ and
with domain D and valuesin N as follows: y(d) = the (< or R) smallest element y of
X such that R(d, y), and ¢(d) = the <-smallest integer p such that R(d, &(p)).

It is clear that a) ¢ and are recursive, b) = & o @, i.e. if d € D then y(d) = the
(p(d) + 1)th element of X, and ¢) if d € D and x € X then

R(d,x) if andonlyif y(d)<x,
R(x,d) if and onlyif y(d) > x.

6.3. From the two substructures (N\X, R N\X) and <X, R | X} (this last one
being the same as <X, < [X)) one can recover the original structure {N, R) via ¢,
using the following partition of R into five subrelations:

(®) R=[RIN\XJU[<[X]UR; uR,u[Xx[N\(XuvD]I]

where R, = {(d,x): d € D and x € X and the (¢(d) + 1)st element of X is at most x}
and R, = {(x,d):de D and x e X and the (¢(d) + 1)st element of X is strictly
greater than x}.

REMARK. In case ¢ is R-cofinal then the set N\ (X U D) is empty; heuce the factor
X x [N\(X u D)] in () is empty.

6.4. To follow the strategy described in 5.1, it is convenient to consider the

recursive N-valued relational structure (N\X, R [N\X, ¢), where ¢ is considered
as a unary N-valued relation over the recursive subset D of N.
We apply Theorem 4.1 to the N-valued structure (N\X, R [N\X, ¢), the antici-
pation function a(n) = Sup{0, [(log,(n/9))/2]}, and the constant K = 23°. We get a
structure {A4,T,0> and a recursive and increasing isomorphism F between
(N\X, R N\X, ¢> and <A, T, 0) such that:

a) A and T are in REALTIME-SPACE(log),

b) 0 is in REALTIME-SPACE(log)-ANTICIP(x), and

¢) any two points of A are distant at least 3, and the first element of A is greater
than 236, ,

6.5. We extend the bijection F between N\ X and A to a recursive bijection G over
N as follows:

272 SERGE GRIGORIEFF

G(p)=F(p) if peN\X,
G(the (n + 1)th element of X) = the (n + 1)th element of N\ A.

Let S = G(R); this G defines an isomorphism between the structures {N, R) and
{N, S>. From equality (®) (cf. 6.3) we see that

(#9) S=GRIN\X)uU G(<1X) U G(R,) U G(R;) U G[X x [N\(X U D)]1.

In order to prove the theorem, we have to prove that S is in REALTIME-
SPACE(log). We shall show that each of the above five components of § is in
REALTIME-SPACE(log).

6.6. Since F is an isomorphism between (N\X, R | N\X, ¢) and <A, T, 0, it is
clear that G(R | N\X) = T. Also, G(< IX) = < [N\A by the very definition of G.
Since T and A are in REALTIME-SPACE(log), so are G(R [N\X) and G(< X).

6.7. From the definition of D we get the following definition of G(D): G(D) =
F(D) = A if ¢ is cofinal in (N, R), and G(D) = F(D) = {a € A: T(a, F(m))} if m is the
supremum of the sequence £. In particular, the set G(D) is in REALTIME-
SPACE(log).

Since G[X x [N\(X u D)]]=G(X) x G[N\(Xu D)]] =N\A x A\G(D) we see
that G[X x [N\(X u D)]] = & if £ is cofinal in {N, R}, and

G[X x [N\(X U D)]] = N\A x {ae A: T(F(m),a) or a = F(m)}

if m is the supremum of the sequence &. Since T and A are in REALTIME-
SPACE(log), so is the set {a € A: T(F(m),a) or a = F(m)}. Thus, the relation
G[X x [N\(X u D)]]is in REALTIME-SPACE(log).

6.8. Let T, = G(R,) and T, = G(R,). The definition of R, shows that

T, = {(G(d), G(x)): d € D and x € X and the (¢(d) + 1)th element of X is at most x}.

Since F is an isomorphism between (N\X, ¢) and (A,), we have ¢ =0 G| D;
hence

T, = {(a,y) € G(D) x N\A: the (6(a) + 1)th element of X is at most G~ '(y)}.
Since G | X exchanges the structures <X, < [X) and (N\A, < [N\A}, we see that
(*) T, = {(a,y) e G(D) x N\A: the (0(a) + 1)th element of N\ A is at most y}.

Similarly, we have

(**) T, = {(y,a) e N\A x G(D): the (8(a) + 1)th element of N\ A is strictly
greater than y}.

6.9. Using equality (¥) of 6.8, we now show that T; is in REALTIME-
SPACE(log).

Since G(D) and N\ A are in REALTIME-SPACE(log) and 6 is in REALTIME-
SPACE(log)-ANTICIP(«), there exist realtime Turing machines U, V' and W,
working in log-space, such that: U recognizes G(D), V recognizes N\A, and W
computes 0 with anticipation of the output at time «. Machines U, V and W have
one input tape and p worktapes; moreover, W has one output tape.

Equality (*) suggests an obvious algorithm to recognize T;:

i*) Given inputs u and v, check if they represent (in binary) a pair (a,y) €
G(D) x N\A.

RECURSIVE LINEAR ORDERINGS 273

ii*)a) Compute 6(a).

ii*)b) Check if 0,1,2,3,...are in N\ A, up to the obtention of f(a) + 1 elements of
N\A.

ii*)c) Compare y with the (6(a) + 1)th element of N\ A.

All parts of this algorithm can be performed by suitable simulations of U, V
and W.

Parts i*) and ii*)a) can be started simultaneously. As soon as an output 7 is
obtained in ii*)a) then, while still performing i*), points ii*)b) and ii*)c) can be
performed with 7 in place of 0(a). If a € G(D) then # is 0(a). If a ¢ G(D) then 0(a) is
not defined, and when i*) is completed then M will know about it and will just
forget all about the computation done with #.

The main problem to get the REALTIME-SPACE(log) character is whether
ii*)b), ¢) can be completed while performing i*). It happens that a good enough
anticipation function « gives the solution.

We describe below a realtime Turing machine M which performs i*) and deals
with ii*)b), ¢) up to the completion of i*). We shall then prove that M has enough
time to complete ii*)b), c).

Machine M has two input tapes and 4p + 4 worktapes, and acts as follows on
inputs u, v.

i) a) M checks if u and » are in {Bin(x): x € N}. If so, let a and y be such that
u = Bin(a), v = Bin(y). Then,

b) M checks if a is in G(D) via a simulation of U on input u, using p worktapes.
¢) M checks if y is in N\A via a simulation of V' on input v, using p more
worktapes.

i bis) In order to be able, later on, to compare y to some integer (point ii)c)),
machine M makes a copy on some other worktape of input v (which is Bin(y)) asitis
being read on input tape 2.

ii)a) In parallel with i), machine M (using p more worktapes) simulates W on input
u up to the obtention of an anticipated output (i.c. up to the simulation of a prefinal
state of W). The realtime character of U and W allows the input tape of M
containing u to be used for both simulations of W and of U (point i)b), above).

ii)b) When (and if) an anticipated output is obtained—i.e. when a prefinal state of
W is simulated —which is of the form Bin(y), where € N, then M (considers n as the
potential value of 6(a) and) starts computing the (7 + 1)th element of N\A via the
following iterative process:

1) On two devoted worktapes of M are written the binary representations of
some integers j and k whose values are initially set up to 0: j is to vary from O up to
the (n + 1)th element of N\A, while k counts the number of elements of N\A strictly
less than the current value of j.

2) M checks if j is in N\A via a simulation of V on input Bin(,j) (using p more
worktapes).

3) When this simulation is completed then

« cither this simulation ends in a rejecting state of V (i.e. j belongs to A); then
M leaves unchanged the value of k, increases the value of j by one unit and goes back
to point 2), ,

« or this simulation ends in an accepting state of V (i.e. j belongs to N\ A); then
machine M compares the value of k with that of #. If k = # then j is the (7 + 1)th

274 SERGE GRIGORIEFF

element of N\A and M stops this iterative process, else j is less than the (7 + 1)th
element of N\A and M increases by one unit both values of jand k and goes back to
point 2).

ii)c) When the (n + 1)th element of N\A has been found then it is the current value
of j.

* Case 1. Input v, i.e. Bin(y), on input tape 2 is so long that it has not yet been
completely read. Then the length of vis strictly greater than that of Bin(j); hence the
(n + 1)th element of N\A is strictly less than y. Thus, provided the simulations i)b)
and i)c) (which have to be continued up to time step Sup{|ul, |v|}) lead to acceptance,
ie. provided (g, y) is in G(D) x N\A, in which case the anticipated output # is really
0(a), we know that (a, y) is in R,.

* Case 2. Input v on input tape 2 has already been completely read, and
duplicated on some worktape (cf. iv). Then machine M compares, relative to the
usual <-ordering, the value of y with that of the (n + 1)th element of N\ A.

iii) Machine M stops in an accepting state if and only if the following conditions
hold:

1) All checks described in i) are positive (i.e. (a, y) is in G(D) x N\A).

2) There is enough time to complete the computations described in ii)b) and ii)c).

3) The (n + 1)th element of N\ A is less than or equal to y, i.e. either Case 1 of
ii)c) occurs or the comparison done in Case 2 leads to this inequality.

6.10. Let T be the relation recognized by machine M. It is clear from the de-
scription of M that T9 is included in T;.

To prove that every pair (a, y) in T} is in T?, we have to show that if machine M
starts with the binary representations u and v of a and y as inputs then conditions 1),
2) and 3) iniii) hold. The only nontrivial one is 2). Since ii)a) is started without delay
and ii)b) and ii)c) are performed as soon as ii)a) is completed, we see that condition 2)
is implied by the following fact:

Fact. For every element a in G(D) the total time necessary to perform the com-
putation described in ii)a), ii)b) and ii)c) above is less than |u| (hence, is less than the
total duration. Sup(|ul, |v]) of the computation of M).

Subsections 6.11 to 6.14 are devoted to a proof of this fact. All along, we shall
suppose that u = Bin(a) and v = Bin(y) and (a,y) € T;.

6.11. First, we note that only a(ju|) computation steps are necessary to perform
ii)a) (and thus obtain the anticipated output in the simulation of V oninput u). Let N
be the (6(a) + 1)th element of N\ A. The computation time to perform ii)c) is zero in
Case 1. In Case 2, ii)c) asks to compare y and N, hence requires at most |Bin(N)]
steps.

6.12. We now get an upper bound of the time required to perform ii)b). The
iterative process in ii)b) is performed for values of j less than N. For each such j the
computation of M can be analysed as follows:

First, | Bin(j)| steps are used to simulate the computation of ¥ on input Bin(}).

After completing this simulation, the head of the tape containing Bin(j) scans the
first cell to the right of Bin(j). Thus, only | Bin(j)| more steps are necessary to replace
Jj by j + 1 while pulling back the head on the first cell.

Since k < j, at most 2|Bin(j)| + 1 steps are necessary to replace k by k + 1 (if
necessary) and pull back the head.

RECURSIVE LINEAR ORDERINGS 275

Atmost 2|Bin(j)| + 1 steps are necessary to compare k with 6(a) and pull back the
heads.

Since 1 < |Bin(j)|, we see that the passage from j to j + 1 takes at most 8 |Bin(j)|
steps. Thus, the total computation time induced by the iterative process of point ii)b)
is at most

8 [|Bin(0)| + |Bin(1)| + --- + |Bin(N)|],

hence at most 8 (N + 1) |Bin(N)|.

6.13. We know that A is sparse: any two distinct points of A are distant of at least
3 and the first element of A is positive (cf. 6.4). Thus, the (n + 1)th element of N\A is
less than or equal to 2n. In particular N < 26(a). Since W anticipates its output 6(a)
at time «, we have |Bin(6(a))| < a(Ju|). Hence,

o(|ul) = Sup{0, [log,(lul/9)/2] — 1} = [log,(|ul/9)/2] — 1
and
<9 x 4D+ < g x 4ol — |y,

6.14. Thus, the total time 7 necessary to perform ii)a), ii)b) and ii)c) can be
bounded as follows:

< a(|ul) + [Bin(N)| + 8(N + 1) |Bin(N)|
< ajul) + [o(lul) + 1] + 8 x 220D+ 1 x [a(|ul) + 1]
< [o(lul) + 1][2 + 8 x 2xuh+1]
< [2«1(|u|)+ 109 x 2a(|u|)+1] — Q x 4ollub+1

Since the input u is the binary expansion of an element of G(D) and the first element
of A (hence of G(D)) has been taken greater than 23°, we see that |u| > 36. Thus,

a(|ul) = Sup{0, log,(|ul/9)/2; — 1} = log,(|ul/9)/2; — 1
and
1<9 x 41D+l £ g 4los2(1ul/9)/2 — ul.

This proves Fact 6.10 and hence that T; is recognized by machine M.

6.15. We observe that M uses only log-space on each of its worktapes:

« This is obvious for those tapes performing simulations of worktapes or output
tapes of machines U, V or W, since these machines work within log-space.

« As for the tapes containing the variables j and k, we know from 6.13 that
k < j < 2n, whence |Bin(k)| < |Bin(j)| < |Bin(n)| + 1 < log(|u[) + 1 since 5 is pro-
duced by W.

Since M is realtime, this shows that T; is in REALTIME-SPACE(log).

The proof that T, is in REALTIME-SPACE(log) is quite similar. Using (*%)
(cf 6.8), we see that only condition ii)c) has to be modified in an obvious way
in 6.9.

Along with (¢) (cf. 6.5), 6.6 and 6.7, this proves that S is in REALTIME-
SPACE(log).

This concludes the proof of Theorem 6.1.

276 SERGE GRIGORIEFF

§7. The main theorem.

THEOREM. 1°) Let a€ N, a > 2. Every recursive total ordering (N,R> has an
isomorphic copy (N, S) for which S is in REALTIME- SPACE(log) relative to the a-
ary representation of integers.

2°) Moreover, if the order type of R is not of the form w + Z. o + w* for some a,
then one can suppose the isomorphism to be recursive.

ProOF. We observe the two following easy facts:

1°) Every total ordering R over N satisfies (at least) one of the following
conditions:

1) R has order type w + Z. a + w* for some o.

2) There is no R-greatest element.

3) There is no R-least element.

4) There exists c suchthat {x: R(x, c)} is nonempty and has no R-greatest element.

5) There exists ¢ such that {x: R(c, x)} is nonempty and has no R-least element.
2°) If Ris recursive, then, for i = 2 to 5, condition i) above implies the existence of

a recursive sequence ¢ satisfying condition i*) below:

2%) & is strictly R-increasing and cofinal in (N, R).

3%*) & is strictly R-decreasing and coinitial in (N, R .

4*) & is strictly R-increasing and has a supremum is (N, R).

5%) & is strictly R-decreasing.and has an infimum in (N, R).

For instance, in case condition 2) holds, we can recursively define & as follows:
£(0) = 0, and &(n + 1) = the <-least element y such that R(£(n), y) and R(i, y) hold
for alli < n.

3°) If condition 1) holds then we conclude via Theorem 5.4, else we conclude via
Theorem 6.1.

REFERENCES

[1] DoucGLas CENZER and JEFFREY REMMEL, Polynomial-time complexity of models (to appear).

[2] ALAN COBHAM, On the base-dependence of sets of numbers recognizable by finite automata,
Mathematical Systems Theory, vol. 3 (1969), 186—192.

[3] PaTRICK DEHORNOY, Turing complexity of the ordinals, Information Processing Letters, vol. 23
(1986), pp. 167-170.

[4] STePHEN C. KLEENE, On the forms of the predicates in the theory of constructive ordinals. II,
American Journal of Mathematics, vol. 77 (1955), pp. 405-428. '

[5] MICHAEL MOSES, Recursive linear-orders with recursive successivities, Annals of Pure and Applied
Logic, vol. 27 (1984), pp. 253-264. :

[6] JerrFrReY REMMEL, Recursive isomorphism types af recursive Boolean algebras, this JOURNAL, vol. 46
(1981), pp. 572-594.

[7] , Recursively categorical linear ordermgs Proceedings of the American Mathematical
Society, vol. 83 (1981), pp. 387-391.

[8] JosepH G. ROSENSTEIN, Linear orderings, Academic Press, New York, 1982.

[9] R. E. STEARNS, J. HARTMANIS and P. M. Lewis, Hierarchies of memory limited computations,
Proceedings of the IEEE conference on switching, circuit theory and logical design, IEEE, 1965, pp. 179—
190.

[10] RICHARD WATNICK, A generalization of Tennenbaum’s theorem on effectively finite recursive
linear orderings, this JOURNAL, vol. 49 (1984), pp. 563569

[11] KrAus WAGNER and GERD WECHSUNG, Computational complexity, Reidel, Dordrecht, 1986.

LABORATOIRE D’INFORMATIQUE THEORIQUE ET PROGRAMMATION
UNIVERSITE PARIS-VII
75251 PARIS, FRANCE

