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Intermediate submodels and generic
extensions in set theory

By SERGE GRIGORIEFF

In this paper we show that various types of submodels of models of
Zermelo-Fraenkel set theory (ZF) have the property that the passage from
the submodel to the whole model is generic. These results lead to various
applications such as Theorem A below on the iteration of the HOD operation.
We also characterize the symmetric submodels of Cohen extensions of a model
of ZF and show that these submodels have the above property.

Our main results are the following:
Let L[x] denote the smallest transitive inner model of ZF containing all
ordinals and {x}.

THEOREM A. There exists a formula E(a, v, w) of the language of set
theory (a is a variable ranging over the ordinals) such that the following are
provable in the theory ZF:

(i) (ve3y, E(a, z, y)) A (E(O, z, 2) = L[z] = L[z]);

(i) (E(e, x, y) A E(a + 1, z, 2)) = L[z] = (HOD)*® (where (HOD)* de-
notes the class constructed in X of sets hereditarily ordinal de ﬁnable);

(i) (0= x=UNA EQ, x,y) = Llyl = N {L[z]: E(e, x, 2) for some
a <\

(iv) (@=UaV(@=0A2cOn)=(B=aAE@, = y)AE@p,z, 2)=
Lly] is a generic extension of L[z]).

By 91 = (N, ¢) we denote a model of ZF and by M we denote an inner
model of 9, i.e., M is a transitive class in 91, M contains the ordinals of 91
and (M, ¢ | M?) satisfies ZF. For x € N we let M[x] denote the smallest inner
model of 91 which includes M and contains x as an element.

THEOREM B. Suppose D is a generic extension of M (i.e., N = M[G] for
some M-generic subset G of an ordered set in M). Let A = (U, ¢ | U?) be a
submodel of O which satisfies ZF and includes M. Then 9U is a generic
extension of AUl if and only if U = M|x] for some x € N.

Let 9T be a B-generic extension of M, where B is a complete boolean
algebra (c.b.a) in M. By the symmetric submodels of 91 we mean those sub-
models associated (3 la Fraenkel-Mostowski) to normal filters of subgroups of
automorphisms of .
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By HOD X we denote the family of sets hereditarily ordinal definable
from elements in X.

THEOREM C. Let B be a c.b.a in M and suppose D is a B-generic exten-
ston of M.

() If I =(X, e X? is a submodel of 9 which satisfies ZF and is
such that X = (HOD (M U X))”, then X = (HOD M[z])™ = M[x] for some
x € N and 91 is a generic extension of .

(i) The symmetric submodels of 9 are exactly the classes (HOD M|[z])™,
x varying over N.

THEOREM D. Suppose N = M[a] for some a C M, ac N. Let A be a
subset of N such that A C {y € N: yex} for some x € N and such that 9 is a
generic extension of M[z] forallze A. Set U = N {M[z]:z€ A}. Then U =
(U, e | U® satisfies ZF if and only if 9 is a generic extension of AU and
U = M[t] for some te U.

The basic tools that we employ are Cohen’s forcing method and the
machinery developed by R. Solovay in [13]. We also make essential use of
two deep results of P. Vopénka and P. Hajek [15] (which appear in our paper
as 3.5, Theorem 1 and 9.1, Theorem 1). It can be noted that the technique of
forcing is used not to produce models yielding relative consistency results
but to construct auxiliary models which are tools to prove theorems in ZF or
model-theoretic results about models of ZF.

Chapters 1 and 2 are devoted to a presentation of definitions and results
in ordinal definability and forcing. The treatment of forcing follows Shoen-
field (unramified forcing [11]). Proofs in these chapters are omitted (but for
a few which have not appeared in the literature).

In Chapters 3, 4, 5 we prove further results on forcing which will be
used in the sequel.

Chapter 6 gives the proof of Theorem B (cf. 6.1, Thm. 1).

In Chapter 7 we prove Theorem C, (i) (cf. 7.4, Thm. 3) which is basic for
the proofs of Theorems A and D. Theorem C, (ii) is proved in Chapter 8.

Finally Theorems D and A are proved in Chapters 9 and 10 (cf. 9.4, Thm.
3 and 10.2, Thm. 1).

We would like to thank J-L. Krivine and K. McAloon with whom we had
stimulating discussions on the subject of this paper and who brought to our
attention many interesting questions. Also, we would like to thank the
referee who suggested many interesting remarks.

Note: Some chapters can be read independently of others; the following
diagram indicates the logical connections among the various chapters:
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1. Families of hereditarily definable sets

1.1. We denote Zermelo-Fraenkel set theory by ZF, the axiom of choice
by AC and ZF + AC by ZFC.

Let U, U’ be unary predicate symbols; (ZF)” is the theory obtained by
relativizing the axioms of ZF to U; ZF(U, U’) is ZF plus all instances of the
replacement scheme for formulas which involve the predicates U and/or U’.

1.2. Let 91 = (N, ¢) be a model of ZF. Given a subset X of N we let
(91, X) denote the expansion of 9T in which X is the interpretation of the
unary predicate symbol U. We say that X is a class for 9Uif (91, X) is a
model of ZF(U) and we then write 91 £ ZF(X).

1.3. A subset X of N is definable in 9 (resp. (91, Y)) froma,, ---, a, if
for some formula of set theory F' (resp. of the language (=, €, U )) with free
variables v,, v,, ---, v,

X={;9 = Fla, a, -+, a,)} (resp. X = {a; (9, Y) = Fla, a,, -+, a,)})
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A subset X of N is definable in 9T if it is definable from the empty
sequence. Clearly if Y is a class for 91 and X is definable in (97, Y) from
a, +-, a,, then X is a class for 9T (and even for (97, Y), i.e., (91, X, Y) E
Z¥ (U, U")).

1.4. The letters «, B, v, - - vary over ordinals of 91; V is the function
on ordinals defined by V, = Us<. P(V3).

We say that M is an inner model of 9T if M is a class for 91 which is e-
transitive, contains the ordinals and such that (M, ¢ | M?) is a model of ZF.

LEMMA 1 (Jech [3]). Let X be a class for 9. If X is e-transitive, closed
under the eight Godel operations and almost universal (i.e., Va(@z e X)(X N
V.C x)) then X is an inner model of 9.

LEMMA 2. Let M be an inner model of 91 and let X be a class for OUsuch
that X © M and 9 = ZF(M, X). If forall o, (XN V,e€ M) then M = ZF(X),
i.e., X is a class for M. In particular, if X is an inner model of DUthen X
1s an inner model of M.

Proof. Let E(u, v) be a formula of the language (e, =, U) with para-
meters in M which defines a functional relation in (M, X) and let a € M. The
rangeof Eonaisasetbe N, bc M. Let 8 be larger than the ranks of a, b
and the parameters in E. Using the reflection principle in (91, M, X) we get
an ordinal @ > @ such that [E(x, ¥)]"* < [E(z, y)]7«"*"«"* for all x, y e
(V,N M). Since (V,N X)e M we see that b is definable in M from elements
of M, whence be M. Thus M = ZF(X).

1.5. Let X be a class in 97; we define in (91, X) an inner model L[X] of
91 which is the smallest subset Y of N such that forall @ (XN V,)eY), ¥
is e-transitive, Y D On and (Y, ¢ | Y?) is a model of ZF.

The construction of L[X] is as follows:

L[X] = U {L.[X]; « € On}
where the sequence L,[X] is defined by induction in (97, X):

LIX] = U{X 0 LIXT}U {o 0 LilX]; v & TCX0} U Def (LilX1); 8 < a}
(where TC(X) is the class of sets in the transitive closure of some element in
X and Def (a) is the set of subsets of @ which are definable in a by a formula
of the language (€, =) with parameters in a).

It is easy to see that L[X] is definable in (97, X) by a Z, formula of the
language (e, =, U). Also, there exists a surjective map from On X

Seq (TC(X)). (Seq (4) is the class of finite sequences of elements in A) onto
L[X] which is definable in (91, X) by a Z, formula too.
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Using 1.4, Lemma 2 we see that X is a class for L[X].

If Xe N then Xe L[X] and L[X] (as well as the surjective map from
On x Seq (TC(X)) onto L[X]) is definable in 9T by a Z, formula of the language
(e, =) with the parameter X.

Note that L[X] satisfies AC when X is included in On.

1.6. Let M be an inner model of 9, then L[M] = M. If a € N we write
M|[a] in place of L[M U {a}]. Thus, M[a] is the smallest subset Y of N which
is e-transitive, contains M U {a} and such that (Y, ¢ | Y?) is a model of ZF.
The model M[a] is definable in (91, M) by a X, formula with the parameter a.
Also, there exists a surjective map from M x Seq (7TC(a)) onto M[a] which
is definable in (91, M) by a X, formula with the parameter a.

We note that M is an inner model of M[a] and that MJa] satisfies AC
when M does and « is a subset of M.

LEMMA 1. Let M be an inner model of 9U. If a, be N are such that
aC M and b Mla] then there exists ce N such that ¢ M and M[a][b] =
Mie].

1.7. We say that an element a in N is definable in 9 from a,, - -+, a, if
for some formula of set theory F' with free variables v, v,, +-+, v,, @ is the
unique set such that 91 & F(a, a,, ---, a,). We say that a is definable if it is
definable from the empty sequence.

Note that a is definable in 91 from a,, ---, a, if and only if {b; bea} is
definable in 91 as a subset of N.

We let D™ be the subset of N consisting of elements which are definable
in 91, and we let OD™ be the subset of N consisting of elements which are
ordinal definable in 91. We shall omit the superseript 91 when no confusion
can arise.

It is shown in Myhill-Scott ([8]) that there exists a formula of set theory
which defines OD in every ZF-model; there exists also a formula E(v, w) such
that in every ZF-model 91, for all « in 91, « is in OD™ if and only if there
exists an ordinal « such that x is the only set satisfying in 9T the formula
E(v, o).

Hence D is definable in 91 just in the case D = OD (if not, the first ordinal
not in D would lead to a contradiction). Note that this case occurs in the
minimal standard model (Cohen [1]). Also J.B. Paris has shown ([9]) that
every theory containing ZF has a model in which D = OD.

Furthermore (D, ¢ | D? is an elementary substructure of (OD, ¢ | OD?.

1.8. If X is a subset of N we let OD X be the family of elements which
are definable in 91 from ordinals and elements of X. We let HODX =
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{x e N; TC({x}) c OD X} where T'C(y) is the e-transitive closure of y.

If X is a class for 91 then OD X and HOD X are classes for 91 since they
are definable in (97, X).

We note that there exists a formula E (v, w, w) such that for all x in N,
2 is ordinal definable from ¥ if and only if there exists an ordinal & such that
x is the unique set satisfying in 91 the formula E (v, «, y).

1.9. Let X be a subset of N. We say that an element a € N is definable
in (91, X) from q,, -+, a, if for some formula of the language (e, =, U)
with free variables v, v, ---, v,, @ is the unique set such that (91, X) &=
F(a, a, -+, a,). Welet (OD X)* be the family of elements which are definable
in (91, X) from ordinals and elements of X. We let

(HODX)* = {x e N; TC({x}) c (OD X)*} .
LEMMA 1. If X ¢s a class for 9t then (OD X)* and (HOD X)* are classes
for 9. Also, (HOD X)* satisfies ZF, hence it is an inner model of 9.

If X is non-empty then there exist surjective maps from On x Seq (X)
onto (OD X)* and (HOD X)* which are definable in (91, X).

LEMMA 2. If X is a class for 9Usuch that X < (HOD X)* (this occurs in
particular if X is transitive) then

(HOD X)* = U {L[z]; x < On x Seq (X) and x e (0D X)*}.

1.10. Let X beaclass for 9. If (XN V,)eODX for all & then ODX =
(OD X)* and therefore HOD X is an inner model of 91. This is the case when
X is definable in 91 from parameters in X U On or when X is a transitive
almost universal class for 91. Thus, if X = M is an inner model of 91 then
we do not add new sets to ODM when we allow definitions involving a
predicate for M and HOD M is an inner model of 91. 1.4, Lemma 2 shows
that M is a class for HOD M and 1.9, Lemma 2 shows that

HODM = U {L[x]; < M and < HOD M} .
It is then clear that HOD M satisfies AC when M does.

2. Review of forcing

2.1. Let 9N = (M, ¢) be a model of ZF, ae M and X c M. We say that
Xis a subset of a if XC{be M;beca}. We say that X lies in 9N if there
exists an element x in 91 such that X = {b e M; bex}; in this case we need
not distinguish between X and x.

Let (C, <) be an ordered set in 9N, let p, q, r vary over ¢-elements of C.
We say that p and q are compatible if »r < p and » < ¢q for some reC. A
subset D of C is dense if for every p € C there exists ¢ € D such that ¢ < ».
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We say that a subset G of C is C-generic over 9 if
(l) peG; pé‘l:’qeGy

(i) p, g€ G = p, q compatible,

(iii) G meets all dense subsets of C which lie in 1.

Remark 1. If pe Cwelet C, = {geC; ¢ < p}. A subset D of C is said
to be dense below p if D N C, is dense in C,. Let G be C-generic over 9I; then
G meets all subsets of C which lie in 9 and are dense below some element
of G.

Remark 2. We say that X c Cis open if pe X and ¢ < p imply ¢e X,
for all p, ¢ C. We can replace condition (iii) by (iii)": G meets all dense open
subsets of C which lie in 9I.

2.2. An ordered set C is separative if we have for all p, ¢ (p Lq=—
3r < p (r and g are incompatible)).

If B is a boolean algebra we use 0, 1, A, \VV, — with their usual meanings.
Recall that C is separative if and only if there exist in 91t a complete boolean
algebra B and an isomorphism of C into & — {0} whose range is dense in
@ — {0}. Moreover such a boolean algebra is unique up to isomorphism and
can be taken to be the family of regular open subsets of C, denoted %(C), C
being given the order topology. Then the subsets of C which are C-generic
over 9N correspond to the 9l-complete ultrafilters of B(C).

Let B be a complete boolean algebra, we shall say that G is B-generic
over 9 when G is (B — {0})-generic over 9.

Remark 1. Let C be an ordered set; we define an equivalence relation
~ comp ON C: D ~oomp ¢ if and only if for all » (r is compatible with p < r is
compatible with q). We let C/comp be the quotient of C by ~comp- We put on
C/comp the order induced by the following order on C:

p <* q if and only if (V7 < p) (r is compatible with g) .
Clearly, » ~.comp q if and only if p <* q and ¢ =* p. With the induced order-
ing C/comp is a separative ordered set and there is a natural correspondence
between sets C-generic over 91 and sets (C/comp)-generic over 9.

2.3. We recall the definition of forcing: Forcing for atomic formulas,
plxecy and p I« = y where p varies over C and x, y vary over M, is
defined by a joint induction on the ranks of « and y:
plixzecy if and only if (Vg<p)@r=¢)32z@s=1)((7, s)ey and rI-z=1),
pl-2=uyif and only if (Vg < p)V2(Vs = ¢){((z, s) ey — ¢ I zc ) and

(2, 8)ex = qI-zey)}.
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For other formulas we follow the usual induction:
pi-EANE ifandonlyif pi-E and p E’,
plI—-1TE if and only if (Vg <p)IqI+ E,
P - VoE(v) if and only if (Vae M)p - E(x) .
We define in 9N a function ~: M — M by induction on rank:
a@={0, p);peCbeal}.
We can extend forcing to formulas of the language (e, =, U) putting
p = Ulx) if and only if (Vg < p)@r < ¢)3ar - x = a.
WeletI' = {(p, p); peC}.

2.4. Main results about forcing: Let E be a formula of the language
(e, =, U) with parameters in M. If p > q and p I~ E then Q- E. If Eis
an axiom of ZF(U) then p |- E for all peC. Also, p - (E@, ---, a,))” if
and only if 9 = E(a, ---, a,), and moreover p |- “U is transitive and con-
tains the ordinals” for all p e C.

Let C be separative, then p |- g e ' if and only if p < gand p - x e T if
and only if (Vg < p)@r < ¢)@s = 7r)r |-« = 3.

The maximum principle: let M satisfy AC, if p |- IvE(v) then there
exists a such that p - E(a).

2.5. We define [E] as {peC; p I E}. This last set is a regular open
subset of C; thus [E] e B(C).

Using the inductive definition of forcing we see that
[ENE]=[E]AN[E'], [TE]= —-[E],
and
[VvE®)] = Inf {[E(2)]; x € M} .
Hence we can consider M as the field of the boolean valued model where
[ .1 gives the value of any formula. We write M%© to denote this boolean
model. Since [E] =1 when E is an axiom of ZF(U), M* satisfies ZF(U)
as a boolean model. Moreover [I" is C-generic over U ] =1;if D is a dense
subset of C then p |- pe T' N D for all p e D; hence [T meets D] = 1. Also,
[U is transitive and contains the ordinals] = 1. Finally, if 9 = E (a, ---, a,)
then [(E@, ---, @,))'] = 1.
Let T be a theory containing ZF (in the language (e, =, C)). The above
construction gives a finitistic proof of the following fact: a closed formula E
is provable in T if and only if its relativization (E)Y is provable in the theory

ZF(U) plus “U is an inner model and U(C), and there exists a set which is
C-generic over U” plus (T)".



INTERMEDIATE SUBMODELS AND GENERIC EXTENSIONS 455

This will serve to convert proofs where we consider models and sets
generic over these models into syntactic proofs (see 10.3).

2.6. Let G be C-generic over 9ll. Following Easton [2], there exists a
model 9N, = (M,, ¢) of ZF such that M is an inner model of 9N, G lies in M,
and M, = M[G]. Moreover, such a model is unique up to isomorphism and
there is a surjective map Val, from M onto M[G] which has the following
inductive definition inside 9M,: Val; (x) = {Val, (¥); 3p e G, (¥, p) € x}.

Let E(v,, -, v,) bea formulaand z,, - - -, bein M. Therelation between
forcing and truth is as follows:

M, = E(Vals (x), -+ -, Vals (x,)) if and only if 3peG, p - E(z, -+, @)

If 91 is transitive then 91, is well-founded and will be taken as the
transitive model in the isomorphism class.

Remark 1. Let X be a class for 9. We can extend forcing to formulas
involving a predicate symbol U’ to represent X, putting

p - U'(x) if and only if (Vg < p)Ar = ¢)@ecX)ri-xz=a.
The equation between forcin and truth is still valAid and we have 91, =
ZF(M, X). We shall write X in place of U’, where X = {%; z € X}.
2.7. We define by induction a family V¢, a e On:
Vi = Use P(VF x C) .
An easy induction shows that Valy V¢ = (V,)"%.
LEMMA 1. Let B be the rank of C, then VI C Viys, for all a.

LEMMA 2. Let B be the rank of C and suppose that a is a limit ordinal
greater than B-w; then Val, maps (V,)" onto (V)"

Proof. We note that the hypothesis on a implies 8 + 3-a = «a; thus
V¢ (V,)", whenee Valy (V)" = (V)"

2.8. ExXISTENCE LEMMA. If (P(C))", the power set of C in M, is count-
able then there exist sets which are C-generic over .

Note that if M is countable so is M[G].

2.9. Let 2 € M[G]; we use T for an element of M such that Val; (Z) = «;
Z is called a term denoting .
We shall need the following operation on terms. Let p e C; we define
t | p by induction on the rank of the term ¢:
tlp={t1p,¢:q=pand 3r =g, r)et}.
Clearly p - t = t | p; hence if p € G then Val, (t) = Val,; (¢ | p).
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2.10. Let C’ be a dense subset of C. If G’ is C’-generic over 9Il then
{peC:31p e G, p' < p} is C-generic over 9N; also, if G is C-generic over IN
then G N C’ is C’-generic over 9. This establishes a bijection between the
set of C-generic filters over 91, and the set of C’-generic filters over 9I.
This allows us to replace the ordered set C by its complete boolean algebra
RB(C), more exactly by B(C) — {0}.

2.11. Let (C, =,) and (C,, =,) be ordered sets of 9. We define C =
(C, x C,, £) as follows: (p,, p,) = (q,, ¢,) if and only if p, <, ¢, and p, <, q.

The following two facts are proved in Solovay [13]. A subset G of C is
C-generic over M if and only if G = G, X G, where G, is C,-generic over M
and G, is C,-generic over M|[G,]. Moreover if G = G, X G, is C-generic over
M then M[G]N M[G,] = M, M|[G,], M[G,] being considered as subsets of
M[G].

The general iteration lemma is as follows:

LEMMA 1. Let C be an ordered set in 9N, let G be C-generic over 9N, let
D be an ordered set in M[G], and let H be D-generic over M|[G]. Then there
extist an ordered set E in M and a subset K of E which is E-generic over O
and such that M|G][H] = M[K].

2,12, LEMMA 1. Let 91 be a model of ZF, let M, M’ be inner models of
9 such that M c M', let C be an ordered set in M and let G be C-generic over
M'. If M|G] = M'[G] then M = M.

Proof. We first prove the lemma when M is a class for M.

We reduce to the case M is countable. Using 2.6, Remark 1, we see that
there exists p ¢ G such that p - M['] = J/ll\’[F] (C-forcing over M’). Let H
be C-generic over M’[G] such that p € H, then M[H] = M’'[H] and G x H is
(C x C)-generic over M’'. Applying 2.11, we get M = M[G] N M[H] and
M = M'|[G] N M'|H], whence M = M'.

We now prove the lemma in the general case.

For all « we have (V,N M’)e M[G] and M is a class for M[V,N M’']
(see 1.6). Since M[V,N M’']c M’ we have M[V,N M'][G] = M[G]. Apply-
ing the previous case we get M[V,N M'] = M for all «. Thus M =
U.M[V,N M’'] = M’, which proves the lemma.

2.13. Let B be a complete boolean algebra (in 91) and let @ be (in 9M) a
complete subalgebra of B. If b, ccB we let bAc = (b —¢) V (¢ — b) and
b® = Inf {x € @; x = b}. We note that (b VV ¢)® = b2 \/ ¢4,

Let H be @-generic over 91t. We define in M[H] an equivalence relation
~; on P as follows: b ~, ¢ if and only if (bAc)®¢ H. We denote by [b],
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the equivalence class of b and B/H the set of equivalence classes (%/H is a
set in M[H]); B induces a structure of boolean algebra on B/H.
The following theorem is implicit in Solovay-Tennenbaum [14, Sec. 5].

THEOREM 1. (i) B/H is a complete boolean algebra in M[H].

(i) Set S(H) = {beB; b e H}; the separative quotient of S(H) 1s canon-
ically isomorphic to (B/H) — {0} and this tsomorphism s in M[H].

(i) Let K be (B/H)-generic over M[H] and let G = {beB; [b], € K}.
Then G is B-generic over M and M[H|[K] = M[G].

(iv) Let G be B-generic over M. Then G N @ is @-generic over M and G
is S(G N @)-generic over M[G N (].

Proof of (i). Let Xc B/H, Xe M[H]. Weshow that X has a supremum
in B/H. Let X be a notation for X such that Val, (X) = X. For be® we
set [0] = {(#, —(bA®)"); v € B} Clearly Val, ([8]) = [b]4. We then define

u = Sup {b A [[b] e X]; be B}

(here [---] is a boolean value in @).

We show that [u], is the supremum of X in ®/H. If [b],€ X then
[[6]e X]e Hand b ~, (b A [[8] € X]), whence [«], = [b],. Thus [u], is an
upper bound of X. Now let [v], be an upper bound of X: for every b e S, if
[6],€ X then b — v ~ ;0.

Let be®: (a) either [b], ¢ X, therefore (b A [[6] € X]) ~,0 and (b A
[[6]e X]) — v ~40; or (b) [b], € X, therefore b ~ (b A [[b] € X]), and from
b— v ~,0 weget (b A [[6]e X]) — v ~,0. Thus Sup{(bA [[6]e X]) — »;
beB} ~40,ie., u—v~,0and [u], = [v],. This shows that [u], is the
lowest upper bound of X in B/H.

Proof of (ii). We first note that [b], is not 0 if and only if b%e H; i.e.,
if and only if b e S(H). Thus

{[0l; b e S(H)} = (B/H) — {0} .
Now if p, g are in S(H), keeping the notation of 2.2, Remark 1, we have
p <* ¢ (in S(H)) = (Vo' = p)(p' € S(H)
—— p’ is compatible with ¢ in S(H))
— (VP = p)([P]x # 0 — [p' A gl # 0)
—[p—qs=0
— [p]H = [Q]H .
Therefore p ~ com, ¢ (in S(H)) if and only if [p]l; = [q]a-

Thus the two equivalence relations ~ .o, and ~ , coincide on S(H), whence

the isomorphism between the separative quotient of S(H) and (B/H) — {0}.



458 SERGE GRIGORIEFF

2.14. Let B be a complete boolean algebra and let G be B-generic over
M. Leta € M[G] be such that a — M, there exists a term @ such that Val; (@)=
a. Let a be such that o  (V,)” and define B(@) as the smallest complete
subalgebra of ® which includes {[Zca]: z ¢ (V.)"}. The following fact is
proved in [14]:

PROPOSITION 1. M[a] = M[G N B(@)].

From the above proposition and 2.13, Theorem 1, part (iv) we get:

THEOREM 2 (The Solovay basis result). Let C be an ordered set in a
model O of ZF and let G be C-generic over M. If ac M[G] is included in
M, then Mla] is a generic extension of M and M[G] is a generic extension
of M|al].

The following is a corollary of Proposition 1:

THEOREM 3. Let B be a complete boolean algebra and let G be B-generic
over M. Let N be a model of ZF intermediate between M and M[G]; i.e.,
Mc Nc M[G] and N s transitive in M[G]. If N = U {M[z]: cc Mand x ¢
N} then there exists a complete subalgebra @ of B such that N = M [G Nna@l.

Proof. Pick x < M so that (P(®8) N N)e M[z]c N. By Proposition 1,
N = M[z]; whence, again by Proposition 1, the theorem.

COROLLARY 4. Suppose that M satisfies the axiom of chotce; let B and
G be as 1n the previous theorem. If N is a model of ZFC intermediate
between M and M|[G] then there exists a complete subalgebra @ of B such that
N = M[G N @A].
3. Automorphisms of complete boolean algebras

3.1. Let B be a complete boolean algebra in a model 91 of ZF and let ¢
be an automorphism of B, ¢ ¢ IN.

We define ¢: M — M by induction on rank:
G(x) = (@ — (V x B) U {(@(), o(b)); beB and (y, b)ca} .
LEMMA 1. The map G is an automorphism of M3; i.e., & is a one-to-one
map of M onto M and for every formula E(v, ---, v,) in (e, =, U)
[E(&(xl)y ) 6:(xn))]] = 0([E(xly R xn):ﬂ) ¢
We also note that & is the identity on the class M of 2, xe M. N
Clearly if o, 7 are automorphisms of % then ((;ovr) =Go%. Hence ¢ = 7.

Remark 2. Let b e B; an easy induction shows that (x| b) = () | a(b)
(see 2.9).
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3.2. Let G be B-generic over 91, then ¢”’G (the image of G under o) is
RB-generic over I too. Clearly M[G] = M[o”G]. Moreover

6T = {(@b, ob); be B — {0}}
= {(b, ob); be B — {0}}
and hence Val, (6T) = ¢"G.
LEMMA 1. Val, ., (z) = Val, (6a) for all @ in M.

Proof. By induction on rank,
Val, s (x) = {Val,¢ (¥); 3b e 0”G, (y, b) € a}

— (Val, (6y); 3b e G, (y, ob) c o)

= (Val, (3); 3be G, (3, b) € o)

— Val, (d%) .
3.3. Let B = B(C), then every automorphism of the ordered set C

extends canonically to an automorphism of 3.

3.4. DEFINITION 1. We say that ¢ is involutive if 0 = 7.

LEMMA 2. Let o be an automorphism of B and beB, b = 0. There
exists b’ < b, b’ # 0, and an involutive automorphism t of B such that tx =
ox for all x < b'.

Proof. Either ox = « for all # < b and then we take b" = b, r = Id, or
there exists b’ < b such that gb’ A b’ = 0 and then we define 7 as follows:

(@) = o(@ A b) V ala A ob) V (& — (b V ob)) forall ze % .

As a corollary we see that if G is B-generic over 9N then for every
automorphism ¢ of B there exists an involutive automorphism = of B such
that 0”’G = t”G.

3.5. The following theorem is due to P. Vopénka and P. Hajek ([15]).

THEOREM 1. Let G be B-generic over O (B being a complete boolean
algebra). If a set H in M[G] is B-generic over M and is such that M[H] =
MI[G] then there exists an involutive automorphism o of B such that H =
o"G.

Before proving the theorem we state and prove a lemma:

LEMMA 2. Let f: B — B, fe M, be such that "G < G. Then there exists
b e G such that f(c) = ¢ for all ¢ < b.

Proof of the lemma. Since f’"GC G we see that x—f(x) ¢ G for all x € B.
Therefore b, = Sup {x — f(x); xc B} ¢ G. We then set b = —b,.
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Proof of the theorem. Let H be B-generic over 9 such that M[H] =
M[G], H # G. There are terms G and H in M such that Val, (G) = G and
Val, (4) = H. We define four functions k, [, m, n from @ into B: k(x) =
[2eG], m(zx) = [Ee H], Uz) = Inf{yeB; 2 - ge H}, n(x) = Inf {y e B; « |-
9 € G}. These functions are non-decreasing and clearly (nok)(x) =<2 and
(lom)(x) =x. Moreover ¥'Gc H,!I"Gc H,m"Hc G and n”H_G. We then
set f(x) = k(xz) A l(x) and g(x) = m(x) A n(x). Clearly f and g are non-
decreasing, (9°f)'GC G, (feg9)"HC H, and (g f)(z) < 2 and (fog)(z) < x.
Applying the lemma there are b, € G and ¢, € H such that (g - f)(x) = « for all
x =< b, and (feog)(x) = x for all z < c,.

We write B, for {x e B; x < b}.

Since H # G we can suppose b, A\ ¢, = 0. Setb = b, A g(c,) and ¢ = f(b),
then ¢ = (fog)(c) = ¢, and g(c) = b. Moreover beG and ce H. Also
(01 B)e(f I B)=1d"1 By and (f | B)o(9 B,) = 1d I B.. Hence f} B, is
an isomorphism from ®, onto B, and g | B, is the inverse of f | B,. We then
set o(x) = (f(x A b)) V (9(z A €)) V (x — (b V ¢)); o is the desired automor-
phism of .

3.6. We shall need the following improvement of the previous theorem:

THEOREM 1. Let G be B-generic over DN and let H be a set in M[G] which
18 B-generic over M and such that M[H] = M[G]. Let x be a term, b an
element of Band @ a complete subalgebra of B, @ ¢ M. Suppose that Val,(x)=
Val, (x), beGN H and GN Q@ = HN Q. Then there exists an involutive
automorphism t of B such that "G = H and

(@) [fz=2] =1,

(ii) ce =c for all ¢ < —b,

(i) cp @=1d | Q.

Proof. We first show how to get (i).

Applying the previous theorem, let ¢ be such that ¢ = 3~and "G = H.
Using 3.2, Lemma 1 we have Val, (x) = Val,.¢ (x) = Val, (dz). Therefore
Val, (¥) = Val, () yields [+ = 62] € G. Let b = [ = gx]; since o is involu-
tive b = b. Setz(c) = (d(z A b)) V (¥ — b); 7 is an involutive automorphism
and t’G = H. We show that ¢ satisfies (i).

Using 3.1, Remark 2, we see that #(x) | b = #(x) | b = #(x | b), but an
easy induction shows that (x| ) = é(x | b) (¢ and ¢ coinciding below b); also
G(x) | b= d6(x|b), whence Z(x) | b = &(x) | b.

Using 2.9, we have b < [#(x) = #(x) | b] and b < [¢(x) = &(x) | b]; there-
fore b =< [T(x) = 6(x)]. Since b = [x = ] we deduce b < [z = F(x)].
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Since 7 is the identity on B_, we have similarly
Fx)| —b=2x|—b and —b=[z= T(x)] -

Thus we get [z = #(x)] = 1, which is condition (i).

Let Ty = {(@, a); a € @). The conditions GNA@=HNQAand beGN H
amount to Val, (T'y) = Val, (T'¢) and Val, (T'| —b) = Val, (I'| —b). Noting
that [#(T'y) =T'¢y] =1if and only if 7 18 the identity on @ and that [Z(I' | —b) =
(T'| —b)] = 1 if and only if = is the identity on ®_,, we see that to satisfy
(ii) and (iii) it suffices to satisfy (i) for z, I' | —b and T'g.

3.7. We say that an ordered set C is homogeneous if for all p,q in C
there exists an automorphism ¢ of C such that a(p) and g are compatible; we
say that a complete boolean algebra @ is homogeneous if B — {0} is homoge-
neous. Clearly if C is homogeneous so is B(C).

The following lemma is well-known:

LEMMA 1. Let C be a homogeneous ordered set and let G be C-gemeric
over ON; then (HOD M)"¢ = M.

Note: The above definition of homogeneity for complete boolean algebras
differs from the classical definition (see Sikorski [12]) which says that B is
homogeneous if for all a, be B — {0, 1} there exists an automorphism of B
which maps @ onto b. Let us say that B is strongly homogeneous if it has
this last property. Obviously strong homogeneity implies homogeneity but
the converse is false: consider the complete boolean algebra P(X) where X
is a set with more than two elements. However, R. Solovay has shown that
if ® is homogeneous there is a strongly homogeneous algebra C such that
(€ B: B, = C} is dense in B — {0} (C could be {0, 1}); it follows that & is the
direct sum of copies of C.

3.8. If B is a complete boolean algebra we let B* = {b e %; b is fixed
under all automorphisms of B}. For any complete subalgebra @ of B we let
+ = (beB; b is fixed under all automorphisms of B which are the identity
on @). Clearly, ®* and @" are complete subalgebras of B, @** = A", B* =
({0, 1})* and so B** = B*. Note that @+ depends on the algebra B of which
@ is a subalgebra.

Letting G be B-generic over 9N, we set S ={H e M|[G]|; H is B-generic over
on and M[H] = M[G]}. By Vopénka-Hajek’s theorem (3.5, Thm. 1) § = {¢"G;
o is an automorphism of B}. We set S= U9 and, for any complete sub-
algebra @ of B, Sg = U{HeS HN A = G N @®. Weputon S and Sg the

orderings induced by that of 3.
The definitions of ®* and @' are motivated by the following theorem
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whose part (i) is due to P. Vopénkas:

THEOREM 1. (i) (HOD M) = M[G N B*],
(HOD M[G n Q)Y = M[G N @*].
(i) MI[S] = M[G N B*] and G is S-generic over MI[S];
M[Sg] = M[G N @*] and G is Sq-generic over M[Sq]-
Moreover S and S; are homogeneous ordered sets.

Proof of (i). Since GNA*=N{HNAESHNA=GNA A Heg}, (GN
@*) e (HOD M[G N @))% and M[GN @*] < (HOD M[G N @])*“. We now show
the equality. To do this it suffices to show that if a e (HOD M[G n @]) and
a C M[G N @*] then a € M[G N @] (since if (HODM[G N @]) — M[G N @] #
© then an element in it of minimal rank would be a subset of M[G N a+).
As Valgqq+ maps M onto M[G N @*] and is definable in M[G] from M and
G N @ we can suppose that a M. So, let @ be such that a — V.N M, let
%, € M and E be a formula such that, for all ¢ € V.N M, x € a if and only if
MIG] = E(x, @, GN Q). Since [E(Z, %, I's)] € @ we see that zca if and
only if [E(Z, &, I'g)] € G N @*. Therefore a ¢ M[G N @+*].

Proof of (ii). Since Sy = U{HeS; HNG =GNGA}, S, ¢ (HOD M[G N @)).
Moreover, for all HeS, HN @ = G N @ implies HN @ = G N @* (use 3.6,
Thm. 1), and so G N @* = S; N @*. Therefore M[Sg] = M[G n @*].

In fact S; can be simply recovered from G N @*. Noting that 59" =
Sup {¢b: ¢ is an automorphism of @ which is the identity on @}, we see that
be S, if and only if 59" ¢ G. Thus, with the notation of 2.13, Theorem 1, (ii),
S, = S(G N @"). Therefore G is S,-generic over M [Sgl-

3.9. Let B be a complete boolean algebra in 91 and let G be B-generic
over 9. Letting U be a unary predicate symbol, we consider M [G] as a
structure for the language (e, =, U) where M is the interpretation of U.
Let E(v, w) be a formula in (e, =, U), let z ¢ M|[G], and suppose that the
class X = {y: M[G] = E(z, y)} is an inner model of M[G] which includes M.
We propose to evaluate (HOD M)*.

Let Form be the set of formulas of set theory with one free variable and
let @p(x, @, F, w) be the formula which expresses “F e Form A (Ve {y:
E(z, v)}) & F(u)”.

DEFINITION 1. Let t € M; in N we define B+t as the complete subalgebra
of B generated by

{[®:(t, &, F, @)]: e On, FeForm, u e M} .

PROPOSITION 2. Suppose X = {y: M[G] &= E(x, y)} is an inner model of
M[G] which includes M. Lett e M be such that Val, (t) = x; then (HOD M)* =
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MG N B*1].
Proof. By the replacement scheme, there exists «, and u, € M such that
in Definition 1 we can restrict & and w to lie in &, and w,.
Let
A={(a,F u):a<a,ucu, FeForm and (V,)* £ F(u)};

since truth in (V,)* is definable in X, we have Ae(HODM)*. Now,
[Pt & F, @)] e G if and only if («, F, u)e A. Thus, G N "' e (HOD M)~
and hence M[G N B**] < (HOD M)*.

To show that (HOD M)* < M[G N B**] it is sufficient to show that every
subset of M which lies in (HOD M)* also lies in M[G N $**]. In fact, an
element of minimal rank in (HOD M)* — M[G N $°*] would be a subset of
M[G N B%+]; since there is a surjective map from M onto M[G N $°*] which
is definable in X from G N B%*, we would obtain a subset of M lying in
HOD M)* — MI[G N B*].

Let z < (V,)", ze (HOD M)* and let F be a formula of set theory such
that for some sc M we have uez if and only if X = F(<u, s)) for all u e
(V.)™. Since X satisfies ZF, there exists an ordinal 8 such that s e (V)" and
(V3)* reflects the formula F'. Thus, forallu e (V )* we have u € 2 if and only
if (V,)* = F(<u, s)) if and only if [®4(t, B, F, {u, s>)]] e G. This last equiv-
alence shows that z € M[G N ®*], which finishes the proof of the proposition.

Remark. Let E be the formula w = w; then $*2 = $*.

We give an application of Proposition 2.

Let ) be a limit ordinal, let ($,)..; be in M a decreasing family of com-
plete subalgebras of B and set X = M {M[G N B.]: @ e \}. Using 1.4, Lemma
1 it is easy to see that X is an inner model of M[G].

Let E(v, w) be the following formula in the language (¢, =, U): There
exist v,, vy, v; (v = (v, s, vy) and v, is a function with domain v, and for all
ae v, we U, N vy@)]). For g <nweletax, = (G N By, N, (Bsa)acs,) Where
s is such that 8 4+ Xy = .

It is clear that for all 8 < \ we have X = {y: M[G N B;] = E (x5, v)}-

For 8 < \ we let t; be the canonical term such that

~ Py @
[tﬁ = (PfBﬁy >\‘ﬁ’ (gt)’ﬁ+a)aelﬂ)]]' =
We note that ¢, is also the canonical term such that
~ T~ @
[ts = (FsBﬂ, Ng, (g5ﬂ+a)aexﬁ)]] £=1

(recall that T'y = {(@, a): a € @}).
We have
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[V w(E(t, w)) — E(t;, w)]* =1,
hence

[Peltor 6, F, ) = @ults, 8, F, ®)]" =1  forall e On, Fe Form, ue M.
Also,

H:QE(tﬁ’ 3, F’ ﬁ]]% = ”:@E(tﬂy 3; ﬁy @):ﬂmﬁ
whence

RE0 = Rty = BEts for all gen.

DEFINITION 3. We call the algebra B the derivative o f the decreasing
family (Bo)ee; and we denote it by ((%a)ae;)*.

From the above argument and Proposition 2 we deduce

PROPOSITION 4. (i) (HOD M)* = M[G N ((Bu)ses)*],

() ((Baer)* is included in M) {Bo: @ e N} and (Bae)* = ((Bss)ac 1)
Sfor all B e .

3.10. Let @ be a complete boolean algebra in 9. In 9N we define by
induction a decreasing family 3, a varying over the non-limit ordinals, of
complete subalgebras of B: B = B, P+? = (B=)* for all @ and P+ =
((B“),e,)* for all limit ordinals ». We call the B'®’s the successive deriva-
tives of .

The following theorem is a corollary of 3.8, Theorem 1 and 3.9, Proposi-
tion 4:

THEOREM 1. Let G be B-generic over M. Set X, = M[G], X,,, =
M[GNSB] for all a, and X, = N{M[G N B“*"]: a € N} for all limit ordinals
N The X,’s form a decreasing family of inner models of M[G] such that
Xoy = (HOD M)*e for all a and X, = ) {X,: @ e \} for all limit ordinals :.

We shall write (HOD M) in place of X,.

Remark 2. (i) In Chapter 9 we shall prove that for every limit ordinal
A there exists « such that (HOD M)¥® = M([x] (9.5, Thm. 1).

(i) The decreasing family $“, « € On is eventually constant; therefore
the family (HOD M)t is eventually constant.

(iii) The following result is easily deduced from K. McAloon’s methods
of [6]: for every n € @ there exists a generic extension L[z] of L such that

L[2] 2 (HOD){"! 2 (HOD);**' 2 - . - 2(HOD)) = L .
(iv) In [7] K. McAloon constructs two models L[x,], L[x,] which are

generic extensions of L such that the sequence (HOD):*), n ¢ w, is strictly
decreasing and (HOD):[*! == I; moreover (HOD)Z* satisfies AC and (HOD)Lt=n
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does not.

(v) Inrecent work (“Forcing with trees and ordinal definability”) T. Jech
has proved the following theorem: for every regular cardinal £ in L there
exists a generic extension L[G] of L such that the family (HOD):¥, ¢ e &, is
strictly decreasing and (HOD) % = L.

4. Collapsing algebras

4.1. Let C be an ordered set. An antichain of C is a subset of C whose
elements are pairwise incompatible.

Let X, Y be two antichains of C; we say that X < Y if every element of
X is less than an element of Y.

LEMMA 1. Let C be well-orderable and let X, Y be two antichains of C.
Then there exists a maximal antichain Z such that Z < X and Z X Y.

4.2. Let £ be a cardinal. We say that C satisfies the <x-antichain con-
dition if every antichain of C has cardinality strictly less than k.

In ZFC one can prove that if C satisfies the <«k-antichain condition then
[\ is a cardinal] = 1 for all cardinals » = £. Also the smallest £ such that C
satisfies the < k-antichain condition is finite or a regular cardinal.

4.3. Let C be a separative ordered set (see 2.2). An element p of C'is an
atom if no element of C is less than p. Clearly, if C has no atoms below p
then there is an infinite antichain below p.

If C belongs to a model 9N of ZF, a C-generic set G over 9N lies in I
just in case there is an atom p in C and G = {¢ge C; ¢ = p}.

4.4. Let A be a set with at least two elements. We denote by C(A) the
set of functions with domain an integer and range included in A. We order
C(A) by reverse inclusion.

If se A we denote |s| the domain of s. If a € A we let s”a be the function
which contains s, has domain |s| + 1 and has value a at |s|. The ordered
set C(A) is separative, homogeneous and has no atoms.

We let B(A) be the complete boolean algebra associated to C(4) (see 2.2).

The “effect” of C(A) is to collapse A onto w: there is a term f, namely
{((;,\x), [Ape F(@) ep]); x € A, n e ®}, such that [f maps @ onto A] = 1.
R. Solovay [13] has shown that if A is transitive then the countable
set {[f (1) € f(7)]; m, n € w} generates B(A).

4.5. Let £ be an infinite cardinal; C(x) has cardinality £ and collapses £
onto . The following theorem, due to K. McAloon, shows that this property
somehow characterizes C(x). The theorem is proved in ZFC.
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THEOREM 1. Let C be a separative ordered set of cardinality k. Suppose
either £ = w and C is atomless or k£ is uncountable and C collapses k onto @
(i-e., [3f(f maps @ onto K)] = 1). Then C contains a dense subset isomor-
phic to C(k).

Proof. As C collapses «, using 4.2, we see that if £ is uncountable then
below any element of C there is an antichain of cardinality £. If £ = w the
same conclusion comes from 4.3. and the hypothesis C is atomless.

By the maximum principle there is a term g such that [g maps @ onto
I'l = 1. We say that p decides g at n if there is an se C such that DI
g(n) = 8.

By induction we construct a family p,, s € C(x), of elements of C.

Let X be an antichain of C of cardinality £ and let Y be a maximal anti-
chain of elements which decide g at 0. Use lemma 4.1. to get a maximal
antichain Z < X, Y; Z has cardinality . We let {p,; se C(x) and |s| = {0}
be an enumeration of Z.

Suppose p, is defined. Let X be an antichain below p, of cardinality «
and let Y be a maximal antichain below p, of elements which decide g at [s].
Use Lemma 4.1. to get a maximal antichain Z below p,, Z < X, Y; Z has
cardinality k. We let {p, ~.; @ € £} be an enumeration of Z.

Clearly, for every n € , {p,; | s| = n} is a maximal antichain of C whose
elements decide g at 0, -+, » — 1.

We set D = {p,; se C(x)}. The restriction to D of the ordering of C
makes D an ordered set isomorphic to C(k). We now show that D is dense in
C. Let p be an element of C. As [¢g maps @ onto '] = 1and p I pe T, we
see that p - 3Ine @, g(n) = p. Let ¢ < p and n € w such that q I~ g(#) = p.
There exists s such that [s| = » + 1 and p, is compatible with ¢. Clearly
D - g(n) = p. Hence p, - pel and, by 2.4, we have p, < p. Thus D is
dense in C.

Remark 2. We note that it is provable in ZF alone that if C is a separa-
tive, countable and atomless ordered set then C contains a dense subset
isomorphic to C(w).

4.6. As a corollary of the preceding theorem we get the following result
due to S. Kripke [4]:

THEOREM 1 (in ZFC). Ewvery complete boolean algebra can be embedded
i a B(k).

Proof. Let £ be the cardinality of B; (B — {0}) x C(x) has cardinality &
and collapses £ onto @. By 4.5, Theorem 1 we see that the complete boolean
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algebra associated to (B — {0}) x C(x) is B(x). Hence B can be embedded in
B(K).

4.7. As another corollary of 4.5, Theorem 1 we get the following theorem
due to J. L. Krivine [5]:

THEOREM 1. Let k be a cardinal in a model ON of ZFC, let G be C(k)-
generic over M, and let Xe M[G], X< M. Then either M[X] = M[G] or
there exists in M[G] a set H which is C(k)-generic over M[X] and such that
M[X][H] = M[G].

Proof. Let @ be a complete subalgebra of PB(x) such that M[X] =
MI[G N @] (see 2.14). Let C = {[plena; » € C(x)} (hence we consider C(x) as a
dense subset of P(x)) and G= {[plena; »€ G}. By 2.13, G is C-generic over
M[X].

Let \ be, in M[X], the cardinality of £. Suppose » > ®. Then, in M[X],
C is a set of cardinality » which collapses » onto w. Hence C contains a dense
subset isomorphic to C(\) and so to C(x). As C(x) in M[X] is the same as
C(k) in M we get a set H in M[G], C(x)-generic over M[X], such that
M[X][H] = MI[G]. N ~

Suppose A = w. Either G contains an atom of C whence Ge M[X] and
M[X] = M|G] or there is p e G such that C has no atoms below p, and as
above we get a set H which is C(x)-generic over M[X] and such that
M[X][H] = M[G].

4.8. Since C(x) is a homogeneous ordered set, applying 3.7, Lemma 1
and 4.7, Theorem 1 we get:

THEOREM 1. Let G be C(k)-generic over O and let Xe M[G], X M,
then (HOD M[X])¥®1 = M[X].

4.9. We now prove a result which does not require the axiom of choice
in the ground model.

THEOREM 1. Let C be an ordered set in a model N of ZF and let G be
C-generic over ON. Let B be the rank of C, let « be a limit ordinal greater
than 8- and let H be C((V,)"®)-generic over M[G]. Then there exists a set
K which is C((V,)")-generic over M and such that M[G][H] = M[K].

To prove the theorem we need the following lemma.

LEMMA 2. In ZF it is provable that if o is a limit ordinal then there
exists a bijection between V,and V, x V,.

Proof. Since « is a limit, V, x V, is included in V,. Now there is a
natural injection of V,into V, x V,. Applying the Cantor-Bernstein theorem
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we see that V, and V, x V, are equipotent.

Proof of Theorem 1. By Lemma 2, (V,)"¢ and (V)% x (V,)"¢ are
equipotent in M[G]. Using the Cantor-Bernstein theorem we deduce that
(V)" and (V)" x (V,)" are also equipotent in M[G]. Therefore C(( V)"
is isomorphic in M[G] to a dense subset of C((V,)¥) x C((V,)***!), whence
there exist H, and H, such that H, X H, is C((V.)¥) x C((V.)"*“)-generic
over M[G] and MI[G][H] = M[GI[H][H]. In MI[G, H,] the set (V)" is
countable.

The hypothesis on « makes it possible to apply 2.7, Lemma 2 and so
(V)rel = Valy (V,)”. Therefore (V,)¥% is also countable in M[G, H;]. Thus
C((V,)"€) is isomorphic to C(w) in M[G, H,], whence there exists H’ which
is C(w)-generic over M[G, H,] and such that M|[G, H)|[H'] = M[G, H)[H,].

Now M|[G, H,, H'] = M[H, H’'|[G]. Without loss of generality we can
suppose that C is separative and atomless. Since Ce(V,)” and (V)" is
countable in M[H,, H'], C is countable in M[H, H']. By 4.5, Remark 2 there
exists G’ which is C(w)-generic over M[H, H'] and such that M[H, H'][G] =
MI[H, H'|[G'].

Finally we have M[G][H] = M[H,, H', G’'l and H,x H' x G"is C((V,)") x
C(w) x C(w)-generic over M. Butin M the ordered set C((V,)")x C(®w) x C(w)
contains a dense subset isomorphic to C((V.)"), whence there exists K which
is C((V.)")-generic over M and such that M[G, H] = M[K].

5. The way from (HOD M[xz])"®! to M[G] is generic
This section is devoted to the proof of Theorem 1 which generalizes 3.8,

Theorem 1.

5.1. Let @ be a complete boolean algebra in a model 91U of ZF, let G be
B-generic over I, and set § = {¢”'G: ¢ is an automorphism of R}.

For t e M we define rank* (t) = inf {rank (5(t)): ¢ is an automorphism
of @}. Then if (y, b) € x, rank* (y) < rank* (z), and rank* (x) = rank* (G(x)).
Also, {y: rank* (y) < a} is a set.

Let x ¢ M[G] and % € M be such that Val, () =x. For He 8, set T'(H) =
{(¢, Valy (t)): t € M, rank* (t) < rank* (¥) and [t € TC({Z})] € H} and set

T(H) = {(b, Z):be H, Z is a finite subset of T'(H)} .
Finally we set
T=U{T(H): HeS and Val, (%) = =},

and we put an ordering < on T: (b, Z) = (b', Z') if and only if 6 < b’ in B
and ZD> Z'.
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THEOREM 1. (i) M[T] = (HOD M[x])*t.

(i) In M[T], (T, £) is a homogeneous ordered set. Moreover T(G) is
T-generic over M[T] and M[T][T(G)] = M[G].

Note: The existence of a set T which has the above property is a partic-
ular case of a theorem of P. Vopénka and P. Hajek (see 9.1). However the
significance of the above T is interesting.

5.2. Let o be an automorphism of B such that [6(Z) = Z] = 1; we define
in M[T] an automorphism f, of T: for pe T, if » = (b, {(t, ¥), - --}) then
fAp) = (a(), {(6¢), v), - })-

Let H, K ¢S be such that Val, () = Vali () = « and let o be an auto-
morphism such that K = ¢”H and [6(Z) = Z] = 1; then f, maps T(H)
isomorphically onto T(K).

We note that for all He G such that Val, () = x the elements of T'(H)
are pairwise compatible (in fact 7'(H) is a lattice).

Let p, q be elements of T; there exist H, K €S and an automorphism ¢
of @ such that pe T(H), ge T(K) and ¢""H = K; f,(p) and q both belong to
T(K) and therefore are compatible. Thus T is a homogeneous ordered set
in M[T].

5.3. Let He G be such that Val, (T) = z; then T'(H) and T(H) are
included in M[x]. Thus T is included in M[xz]. But also T e (OD M[x])"'%;
hence T ¢ (HOD M[»])"'® and M[T]c (HOD M[x])™ .

5.4. We now show that T(G) is T-generic over M[T].

Let A be a dense subset of T lying in M[T]; then there exists a formula
E, z,e M, x,, -+, x, € TC({z}) such that for all p = (b, {, v), - -+, (tm, Yn)}) €
T we have p e A if and only if M[G]l=E(b, {(t,, Y1), +*+» G Yn)}s Toy Ty =+ =5 T,)-

Let &, - -+, ¥, € M be such that Val,; (z,) = «,, ---, Vals (%,) = «, and set

D={acB:al ED, {(E,t), -, En t}?, B, Ty, + -, Ta)
for some b = a and t,, -+, t, € M with rank* less than that of {z}} (where
(£, t), - --)® is the canonical term s such that [s = ((E, t), --+1] = 1).

To show that A meets T(G) it suffices to show that D meets G. Noting
that D lies in M we can use the following lemma:

LEMMA 1. Suppose that for all a € G there exists b€ D such that b = a;
then D meets G.

Proof. Let a = Sup (D), if DN G = @ then (1 — a) € G and there is no
be D such that b < (1 — a); contradiction!

Let a € G; then » = (a, {(%, 2.), - -+, (T, 2,)}) € T(G) and there exists ¢ <
p,geA. Welet
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q= (b, (@, @), -+, @, ), (ty 2), *++, (tn, 20))) 5
there exists H € § such that Val, (¥) = x and ¢ € T(H), hence b < a, Val, (F,) =
x, -+, Val, (Z,) = z,,be Hand soa € GN H. By 3.6, Theorem 1 there exists
an automorphism ¢ of @ such that
[6@)y=z]=1, [6@)=7]=1,-.--, [6@)=2]=1,
H = 0¢"G and o(a) = a. 5
Since z, = Valy (t) = Valy(d(t,)) for all i < n, we have

q = Valy (b, {@,, &), « -+, @, T, (£, TE)), -+ (Pw O E)Y)?)
Using the equation between forcing and tI‘lNlth we see that there exists
ce G (we can suppose ¢ < a) such that ¢ |- bed() (recall that H = ¢”G =
Val, (¢(I'))) and

¢ = E(l/)\y {(%h f1)7 Tty (%m En)y (Zly Bl(tl))y ) (Em, 51(tm))}FBy 50\0, fly ) En) .

Applying ¢ and noting that [¢(Z,) = #,] = 1 forall ¢ < n, we get a(c) I
bel and

(7(0) I~ E(i)\r {(%b zl)v ) (i%m ‘,En)y (i\ly tl)! ) (Emy tm)}$7 @\0, :Eiy Tty xn) .

But o(c¢) - b €' amounts to b = o(c); therefore a(c) e D. Also, since
o(a) = a and ¢ < a we have g(c) < a.

Thus, using Lemma 1 we have shown that D meets G. Whence A meets
T(G) and so T'(G) is T-generic over M[T].

Remark 2. In fact we can replace in this proof the hypothesis Ae
M[T] by Ae(HODMJz])"®), thus showing that T(G) is T-generic over
(HOD M [z])™te.

5.5. Since T is homogeneous in M[T], we have (HOD M[T])"® = M[T]
(3.7, Lemma 1). But M[z] < M[T]c (HOD M[z])") and so

(HOD M[x])™ < (HOD M[T))"® = M[T],
whence M[T] = (HOD M[x])™t.

Remark. This last equality can also be obtained using the facts
that M[T]c (HOD M[x])", T(G) is T-generic over (HOD M[x])*, and
M[TI[T(G)] = (HOD M[z])[T(G)] (2.12, Lemma 1).

6. The models M|[x]

6.1. THEOREM 1. Let C be an ordered set in a model 9N of ZF and let G
be C-generic over M. Let X be a model of ZF intermediate between M and
MIG]; i.e., Mc X< M[G] and X is transitive in M[G]. Then M[G] is a
generic extension of X if and only if there exists x € X such that X = M|[x].
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Proof. Suppose that M[G] is a generic extension of X; let D, K be such
that De X and K is D-generic over X and X[K] = M[G]. By the reflection
principle applied in X[K] there exists « greater than the rank of D such that
Ge (XN V,)[K]. Then we have M[XN V,][K] = M[G]. Since M[XN V,]c X
we can apply 2.12, Lemma 1 and we get X = M[X N V,].

Now let a € M[G]; we show that M[G] is a generic extension of M[a].
We can suppose that M is countable. Let o be greater than the rank of a
and let H be C(V, N Mla])-generic over M[G] (recalling that C(4) is the set
of functions with domain an integer and range included in 4, we order C(4)
by reverse inclusion). Then it is easy to see that M[a][H] = M|[r] withr C @
and M[G][H] is a generic extension of M. Applying the Solovay basis result
(2.14, Thm. 2) we see that M[G][H] is a generic extension of M[r]. Since
M][r] is a generic extension of M[a] we obtain that M[G][H] is a generic
extension of M[a] (2.11, Lemma 1). Now, G M[a] and M[a] c M[a][G] =
M[G] < M[G][H]; applying the Solovay basis result we see that M[G] is a
generic extension of M[a].

Remark 2. Using the fact that M is an inner model of M|[x] (a corollary
of 1.4, Lemma 4) we get the following consequence of Theorem 1: let M, X,
N be models of ZF such that M c X c N; if N is a generic extension of both
M and X then M is a class in X.

Question: Can there exist a model N of ZF intermediate between M and
M|[G] such that N == M|[x] for all x € N?

Note: The above question can be generalized as follows: let AU = (U, ¢)
be a model of ZF and let M be an inner model of @ such that U = M|a] for
some a C M; can there exist a model N of ZF intermediate between M and
Usuch that N+ M|x] for all x € N? This question can be answered positively.
In fact, Solovay has shown that if U = L[0%] then there exists a model N of
ZFC with L € Nc L[0*], and in N, {a: 2%« = W, .} is cofinal in On (N is an
Easton type Cohen extension of L); it follows that N # L[x] for any x € N.

6.2. DEFINITION 1. Let M, M' be models of ZF, M' being an inner
model of M. We say that M is a quasi-generic extension of M’ if for some
complete boolean algebra B in M we have [V is a generic extension of M=
1 (see notation in 2.12), the boolean value referring to the B-forcing over M.

LEMMA 2. Let M, M’ be countable models of ZF. Then M is a quasi-
generic extension of M' if and only if M'C M (we do not have to assume
that M’ is a class in M) and there exists a model N of ZF which is a generic
extension of both M and M’ (i.e., there exist Ce M and C'e M’ such that N
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15 a C-generic extension of M, and N is a C'-generic extension of M').

Proof. The assertion within parentheses comes from 6.1, Remark 2.
Other points are easy.

PROPOSITION 3. If M is a quasi-generic extension of M’ then M = M "]
for some x € M.

Proof. It suffices to prove the proposition for countable M. In that case,
using Lemma 2, it is a corollary of 6.1, Theorem 1.

PROPOSITION 4. Let M, M’ be models of ZF. Then M is a generic exten-
sion of M' if and only if Mis a quasi-generic extension of M’ and M = M'[a]
for some a  M'.

Proof. Again it suffices to prove the proposition for countable M. One
implication is trivial; using Lemma 2 the other one follows from the Solovay
basis result (2.14, Thm. 2).

THEOREM 5. Let M, M', M" be models of ZF. If M is a quasi-generic
extension of M' and M’ is a quasi-generic extension of M" then M is a
quasi-generic extension of M".

Proof. It suffices to prove the theorem for countable M. Let % be a
complete boolean algebra in M’ such that

[V is a generic extension of M"]% = 1

(B-forcing over M’). Using Lemma 2 let N be a generic extension of both
M’ and M. Considering B — {0} as an ordered set in N let G be (B — {0})-
generic over N. We have M'[G] = Vis a generic extension of M”, i.e., M'[G]
is a generic extension of M"”. Also, N= M'[H ] where H is D-generic over
M’ for some ordered set De M’. Since G is (B — {0})-generic over N, we have
(by 2.11) N[G] = M'[H][G] = M'[G][H]. Thus N[G] is a generic extension
of M'[G]. But M'[G]is a generic extension of M"’; therefore N[G] is a generic
extension of M"”. Since N is a generic extension of M, so is N[G]. Finally
we see that N[G] is a generic extension of both Mand M”. This proves that
M is a quasi-generic extension of M".

COROLLARY 6. Let M be a quasi-generic extension of M'. If N is a
generic extension of M such that N = M'[a] for some a — M’ then N is a
generic extension of M'.

Proof. By Theorem 5, Nis a quasi-generic extension of M’; now Proposi-
tion 4 yields the conclusion.

Finally we note the following fact:
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PROPOSITION 7. Let M, M’ be inner models of 9 such that M' < M. If
N 1s a quasi-generic extension of both M and M’ then M is a quasi-generic
extension of M'.

Proof. We reduce to the countable case. Let B, B’ be complete boolean
algebras in 91 such that

[ Vis a generic extension of M]® = 1 and

[V is a generic extension of M']% = 1.
Let G x H be (B — {0}) x (%' — {0})-generic over 91. Applying 2.11, we see
that N[G][H] is a generic extension of both M’ and M, whence the desired
conclusion.

Remark 8. The notion of quasi-generic extension is strictly larger than
that of generic extension. In fact, Cohen’s original models for the negation

of AC([1]) are quasi-generic (but not generic) extensions of their constructible
parts.

7. Groups of automorphisms

7.1. Let 9l be a model of ZF. Let & be a complete boolean algebra in
IN; we denote by Aut (®) the group of automorphisms of B and by Id the
identity automorphism.

Let {b,;: 7 € I} be a subset of B whose supremum is 1 and let {g,: 7 € I} be
a subset of Aut ($); we say that the ¢,’s are summable on the b,’s if there
exists an automorphism o such thato | B,, = o, | B,, foralliel (recall that
B, = {xeB:x < b}). Such an automorphism o is unique and we call it the
sum of the ¢,’s on the b,’s and we write 0 = > {0, | b,:i¢e I}.

PROPOSITION 1. Let 0 = Y _ {0, | b;:ie I}, F be a formula and x, y € M;
and suppose that for all i € I we have [F(x, 6,(y))] = 1; then [F(x, 6(y))] = 1.

Proof. Since [0.(y) = 6,(y|b)] = 0,(b,), [6(y) = 6(y|b,)] = o(b,) and
6.y b,)=06(y|b,), wehave [6,(y) = G(y)] = 0(b;). Therefore [F(x, 5(y))] =
o(b;) for all ie I. Thus [F(x, 6(y))] = 1.

LEMMA 2. Every automorphism ¢ of B is a sum of involutive automor-
phisms which are themselves sums of {0, 51, Id}.

Proof. Let {b;: i e I} be the family of b € B such that either o(x) = x for
all x < b, or d(b) A b = 0; the supremum of {b,: e I}is 1. Set

a(x) = o A b) V a(x A o))V (¢ — (b, V (b))

for x € $B. Clearly the ¢,’s are involutive automorphisms which are sums of
{0,0,1d}and 0 = Y {0, } b:iel}.

Let X be a subset of Aut (B); we note X the family of sums of elements
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of X. Clearly Xc X and X = X. We say that X is closed if X = X.
The following lemma is a corollary of Lemma 2:

LEMMA 3. Let Q, be a closed subgroup of Aut (B) and let Invol (Q,) be the
set of involutive automorphisms which are in Q,; then Q, = Invol (Q,).
7.2. Forxe M wesetQ(z) = {oe Aut (B): [6(x) = 2] = 1}. Forz, ye M
we denote by (x, ¥)® the canonical term z such that [z = (z, )] = 1.
ProrosiTION 1. (i) Q(x) is a closed subgroup of Aut (B).
(i) QF(x) = 0-Q)-0 for all o ¢ Aut (P).
(i) Q(=, v)?) = Qx) N Q).
Proof. Part (i) is a corollary of 7.1, Proposition 1; (iii) is obvious. Now
let 7 € Aut (B); we have
e Q(G(»)) if and only if [(F&)(x) = d(x)] =1
if and only if [(076)(x) = 2] =1
if and only if (o70)e Q)
if and only if 7 ¢ (o-Q(x)-Bl) .
Thus (ii) is proved.
Letting Q, be a subgroup of Aut ($), we define I'(Q,) = {(&(I), 1): 0 € Q};
clearly if G is B-generic over 9N then Val, (I'(Q)) = {¢”G: 0 € Q}.
LEMMA 2. Q(T'(Q)) = Q.

Proof. First we note the following fact: if [6(I') = '] = a then o(x) =
« for all ¢ < a (if not, supposing a + 0, there would exist b < a, b + 0, such
that o(b) A b = 0; since [6eT'] = b and [be ()] = o(b), we would have
[beT =bed()] =1 — (bVoa(b), contradictingb = bAa <[beTandT =
oT]).

Now let 0 € QI'(Q)); then [6(I'(Q)) = ['(Q)] = 1 and [6T e(Q)] = 1.
Let {b;: i € I} be a subset of B whose supremum is 1 and {7,: ¢ € I} a family
of automorphisms belonging to Q, such that [6T = z,I'] = b, forallie I. By
the above fact we have o(x)=7,(x) for all x§51(bi); therefore o =3 {r, [_Ul(bi):
i1eI}and o€Q,.

Since Q(I'(Q,)) is closed and contains Q, we conclude that Q, = Q(T'(Q,)).

COROLLARY 3. A subgroup Q, of Aut (B) is closed if and only if there
exists an x such that Q, = Q(x).

7.3. Welet T(b) = {0 € Aut (B): o(x) = = for all x < (1 — b)}.

We write x € OD My in place of the formula “x is ordinal definable from
elements in M U y” and we write x € OD M{y} in place of the formula “x is
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ordinal definable from y and elements in M”.
THEOREM 1. For all x, y € M we have
[x € OD M{y}] = Sup {b: Q(x) D Qy) N T(b)} .

Proof. Let be @ be such that Q(x) DQ(y) N T'(b). Let G be B-generic
over 9N, be @G, and set § = {6”G: 0 c Aut (®)}. By 3.5, Theorem 1, G is M-
definable in M[G]. By 3.6, Theorem 1 the following is true in M [G]:

V(v = Valg(x) = 3He 9(be H and Val, (y) = Val,(y) and v = Val, (x))) .

In fact, if He @G is such that be H and Val, (y) = Val, (y) then there
exists 0 € Q(y) N T'(b) such that H = ¢”G; since Q(x) DQy) N T(b) we have
[6(x) = «] = 1, whence Val, (x) = Val, (2).

Thus we have shown that

Sup {b: Qx) DUy) N T(b)} < [xc OD M{y}] .

Now let X = {be%: for some « and te M we have b = Vo(v = z —
EWw, vy, t, @))} where E is the formula given in 1.7. Clearly we have Sup X =
[« € OD M{y}].

Let be X and let 0 € Q(y) N T(b); then a(b) = b, G(&) = &, 6(f) = £ and
[6(y) = y] = 1. Since b - Vo(v = x = E(v, ¥, ¢, @), applying ¢ we obtain
bi-Vo(v = d(z) = E(v, ¥, t, @), whence b |- & = §(x). Also, oe T(b) and
therefore (1 — b) - 6(x) = . Thus [« = d(x)] = 1 and o e Q(x); whence
Q(y) N T(b) < Q(x) and so

Sup X = [z e OD M{y}] < Sup {b: Q(x) DQy) N T ()} .
This establishes the theorem.

Let Q be a subgroup of Aut (%) and y € M; we set
[Q, y] = Sup{[z.cy] A +++ A [2.€¥y]: 2y, *+-, 2.€ TC(¥)
and Q((z,, -+, 2.)") C Q} .
THEOREM 2. For all x, y € M we have
[x € ODMy] = Sup {b A [Q, y]: Q is a closed subgroup of Aut (B), be B
and Q(x) DQ N T(®)} .

Proof. We denote by z the boolean finite sequence (z,, - - -, z,)® and by
[Z € y] the expression [z, e y] A - A [2.€¥].
Using the preceding theorem and the fact that

[CI)GODM@/ = (321, Tty zney)(erDM{(zh Tt zn)(ﬂ})]] =1,

we have
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[xe OD My] = Sup {[xc ODM{(z, ---, 2, )%] A [Zey]:2, -+, z,€ TC(y)}
= Sup{Sup{p A [Rey]:beB
such that Q(x) DQEZ) N T(b)}: Ze TC(y)}
= Sup {p A Sup{[Zey]:Ze TC(y)
such that Q(z) DQE) N T(b)}: b e B}
= Sup {b A Sup {Sup {[Zey]:Ze TC(y)
such that Q = Q(Z)}: Q such that Q(z) >Q N T(b)}: b € B}
= Sup {b A Sup {Sup {[Z € y]: Ze TC(y) such that Q DQ(Z)}: Q
is closed and such that Q(z) DQ N T(®)}: b e B}
= Sup {b A [Q, ¥]: Qis a closed subgroup of Aut (B), be B
such that Q(z) >Q N T(b)} .

7.4. Let G be B-generic over 9. If y, z are terms in M such that
[Q, y] = [Q, 2] for all closed subgroups Q of Aut (3), then by 7.3, Theorem
2 we have (OD(M U Val, (¥)))* = (OD (M U Val, (2)))*t.

Therefore by replacement we see that there exists an ordinal 7 such that
for all te M[G] there exists we(V,)* such that (OD (M U ¢))¥® =
(OD (M U w))™ and so

(HOD (M U ¢t))*1® = (HOD (M U w))*t .
We shall write HOD (M U X)) in place of (HOD (M U X))*t,
Now let uw € M[G]; then
HOD (M Uw)= U {HOD (M Ut):te HOD (M U u)} .
By replacement there exists an ordinal a(u) such that for all e HOD (M U w)
there exists s € (HOD (M U u)) N (Vw)*) such that OD (M Ut) = OD(M U s)
and HOD (M U t) = HOD (M U s). Thus,
HOD (M U w) = U {HOD (M U s): s & (HOD (M U %)) N (Vi)™ )}
= HOD (M U ((HOD (M U u)) N (Vow)™)) .
Set &£ = U {a(u): uw e (V;)"1%}; then for every set ¢t € M[G] we have
HOD (M U t) = HOD (M U ((HOD (M U t)) N (V,)"€)) .

We note that if X is a class for M[G] then by replacement we have
HOD (M U X) = U {HOD (M U (X N V,)): @ € On}; thus

HOD (M U X) = U {HOD (M U (HOD (M U (X N V,))) N V¢)): @ € On}
and therefore HOD (M U X) = HOD (M U (V. n (HOD (M U X)))).

LEMMA 1. There exists an ordinal & such that for all X M|[G], of X is
a class for MI[G] (in particular if Xe M[G]), then HOD(MU X) =
HOD (M u (V. n (HOD (M U X))))-
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We now replace ¢t by TC({t}), the transitive closure of {t}; HOD (M U
TC({t})) which is equal to HOD M|[t] is an inner model of M[G] (see 1.9), hence
(Ven HOD M[t]) e HOD M[¢] and HOD M[¢] = HOD M[(V.NHOD M|t])]. Thus
we get the following theorem:

THEOREM 2. Let G be B-generic over M. There exists an ordinal & such
that for every te M|G] there exists ue (V.. )" such that HOD M[t] =
HOD M|u].

As a corollary of Theorem 2 we get the following basic result:

THEOREM 3. Let G be B-generic over M. Let X be a subset of M[G]
such that (X, ¢ | X?) is a model of ZF and X = (HOD (M U X))"'%; then X
18 a class for M[G] and there exists a set x € X such that X = M[x]. Also,
the rank of x can be bounded independently of X.

Proof. We emphasize that we do not make the hypothesis that X is a
class for M[G]; thus in the proof we do not use the replacement scheme
associated with the structure (M[G], X).

We first note that X is transitive and

(XN (V)" e X for all ordinals & in M .
Now X = U {X N V,:a}; so
XcUHODM[XNV,]:a}c HOD(MU X) = X .
Let & be as in Theorem 2. Then for all «
HODM[X N V,] = HODM[( V.., N HODM[X N V,])]
and
(Ve NHODM[X N V,])e HODM[X N V,]C X,
therefore
(Veua N HOD M[X N Vi]) € (X N Virs) 5
hence
U{HODM[XNV,]:a}c HODM[XN V., ]cHODMU X = X .

Thus X = HODM[X N V,,.].
By 5.1, Theorem 1 there exists « € X such that X = M[z].

COROLLARY 4. Let G be B-generic over IN; then, for every x e M[G],
(HOD (M U x))™ is a model of ZF if and only if there exists y € M[G] such
that (HOD (M U z))*t® = (HOD M[y])™.

Remark 5. The following is an example of an « such that HOD (M U x)
is not a model of ZF. Let G = {a,, ¢ ®) be a Cohen generic sequence of
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generic subsets of @. Let x = {a,: i even}. Then P(w) N (HOD (M U )" =
P(@) N (Uneo Mo, @y, + -, as,]). Butif Y P(w) is ordinal definable from
elements of x, and « C Y, then for all odd n, a, € Y. This shows that P(») N
(HOD (M U ))*®? does not belong to (HOD (M U ))™® so that this class is not
a model of ZF.

8. Symmetric submodels

8.1. Let B be a complete boolean algebra in a model 91 of ZF.
Let ¥ be a filter on the set of subgroups of Aut ().
We set

NF) = {oe Aut (B): 0Qs e F and 0Qo e F for all Qe I}

N(¥) is a subgroup of Aut (B). We say that F is normal if N(F)eF.
Set S(F) = {x € IM: Q(x) € F}; we define in N the class HS(F) by recursion
on rank:

x e HS(¥) if and only if e S(F) and
vy, blbe B and (y, b) e v — y € HS(F)) .
DEFINITION 1. Let G be B-generic over 9. The subclasses of M[G]

which have the form Val] HS(F) for some normal filter F are called the
symmetric submodels of M[G].

The following result is well-known (see Scott-Solovay [10] or T. Jech [3]):

PROPOSITION 2. All symmetric submodels of M[G] are models of ZF
(with the e -relation induced by that of M[G)).

The remainder of this subsection is devoted to the proof of the following
theorem:

THEOREM 3. The symmetric submodels of M[G] are exactly the classes
(HOD M[2])*9, & varying over M[G].

DEFINITION 4. Let F be a filter on the set of subgroups of Aut(R); we
define in QN the boolean values of the atomic formulas x € S(F) and x € HS(F):

[x € S(F)] = Sup {b; [x = «'] = b for some «' € S(F)}
[x € HS(F)] = Sup {b; [z = '] = b for some 2’ ¢ HS(F)} .

It is easy to see that the axioms of ZF still hold (i.e., have boolean value
1) for the formulas involving these new atomic formulas.

We note the following lemma which is a corollary of 7.2, Proposition
1, (ii):

LEMMA 5. Let x € S(F), y € HS(F) and let 0 € N(F); then & (x) € S(F) and
6'(y) € HS(F).
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PROPOSITION 6. If F is a normal filter then
[xe HS(F)] = [(Vy e TC({}))(y € S(F))] forall xeM.

Proof. The proof is by induction on the rank of x. Let (y, b)ex, be B,
then by the induction hypothesis we have [(Vz e TC({»}))(z € S(F))] = Sup {c:
[y = y'] = ¢ for some y’ ¢ HS(F)}.

By replacement we can restrict ¢’ to lie in some V, for all y.

We setax, = {(¥, b A ¢): ' € HS(F) N V,and [y = y'] = ¢ for some y such
that (y, b) e x}. It is not difficult to see that

[ =] = [(Vze TC(x))(z € S(F))] .

We claim that [z, e HS(F)] = [z, € S(F)]. Let [x,e S(F)] = Sup {d: [z, =
u] = d for some u € S(¥)}. By replacement we can restrict  to lie in some V.

We define in 91 a function f with domain S(F) N V,: for ue S(F) N V;,
letting d = [z, = u] we set

f@) = {(6(2), o(@) A 0(d)): (2, @) e , and g€ Qu) N N(F)} .

Clearly Q(f(w)) © Q(u) N N(F). Since F is normal and u € S(¥), we obtain
f@) e S(EF). Also, if (2, a) e x, and 0 € N(F) then ze HS(¥) and by Lemma 5
we have 6(z) € HS(F). Thus f(u) € HS(F).

Letting (2, a) € , and o € Q(u) N N(F), we have

[6(z) e x] = [, = G(x)] A [6(2) € G(x0)]
z [wo=u] A [u=dw] A [6w) = d@)] A [6(z)ed(x)]
=d A o(d) Ao([zea]) = d A (a(d) A o(a)) .
This shows that [f(uw) C «,] = d, whence [f(u) = x,] = d.
Thus,
[%, € HS(F)] = Sup {[f (w) = =.]: we S(F) N Vi}
= Sup {[x, = u]: ueS(F)N V}
= [, € S(F)] .
This proves our claim that [x,e S(F)] = [x, € HS(F)].
Now [z = «,] = [(Vze TC(x))(z € S(¥))], hence we have
[xe HS(F)] A [(Yze TC())(z e S(F))]
= [xeS(F)] A [(Vze TC(x))(z e S(F))]
and therefore
[xe HS(F)] = [(Vy e TC({x}))(y € S(F))] -
The reverse inequality being trivial, this finishes the proof of Proposition 6.

We can now prove that if G is B-generic over 9 and if F is a normal
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filter then the symmetric submodel Valy HS(¥) is of the type (HOD M[x])*t%
for some z e M[G].

Let 2 € (OD(M U Valy S(F)))"'9; we claim that there exists Z e S(F) such
that Val, (Z) = «.

In fact let %, ---, ¥, S(F), t € M, be such that for some formula E we
have M[G] & Vo(v = & = E(v, t, ¥, - -+, ¥,)) Where y, = Valy (¥,) for i < n.

Let a be such that z e (V,)*%1 and set

&= {(u, 3(E@, t, %, -+, 7.) and uev)]: ue(Vy)3)}.
Clearly Val; () = z and Q@) DQ#) N --- N QA7) e F.
Thus
Valy S(F) = (OD(M U Valy S(F)))"e .
Using Proposition 6 we obtain
Valy HS(F) = {x e M[G]: TC({z}) c Valy S(F)} .
Therefore we have
(HOD (M U Valy HS(F)))t¥ = Valy HS(F) .
Applying 7.4, Theorem 3 we get x such that
Valy HS(F) = (HOD M [x])™ .

We now show that if G is B-generic over 91 then for every x € M[G] the
class (HOD M[x])"® is a symmetric submodel of M[G].

We shall suppose that x is a non-empty transitive set; let ¢t ¢ M be such
that Valg (£) = « and [[@ et and ¢ is transitive] = 1.

Let « be a cardinal in 91U greater than the ranks of ¢t and @ and sett, =
{(s|b,1):se(V, )" and b = [set]}and ¢’ = ¢, U{(t, 1)}; then [t, = t] = 1 and
[t' = TC({¢})] = 1. Thus we have

[HODM[t] = HOD(M ut)] = 1.

Let F, be the filter generated by {Q(u): (4, 1) €t,} and let F be the filter
generated by ¥, U {Q(¢)}.

Let 6e€Q(). If u=s|b where se(V,)* and b = [sct] then &F(u) =
7(s) | a(b) and o(b) = [d(s) et]; hence (G (u), 1) et, and Q(&(u)) € F,; therefore
o e N(F)).

Thus Q(t) € N(F,), whence Q(t) c N(F) and & is a normal filter.

Now, Val, (t') c Valy S(F). Since Valg (¢') is transitive and & is normal,
we have, by Proposition 6:

Val; (t') ¢ Valy HS(F) .
Thus,
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(HOD M[«])*® < (HOD (Val? HS(F)))*© = Val! HS(F)

(by our proof of the other half of Theorem 3).
Also, by 7.3, Theorem 1,

Val S(F) < (OD(M U {Val, ()} U {Vals (u): (u, 1) € t,}))*t

and so Valy S(F) < (OD M[z])*'®, whence Valy HS(F) < (HOD M[2])*t?. This
finishes the proof of Theorem 3.

9. Inner models over which the universe is generic
9.1. The following theorem is due to Vopénka and Hajek ([15]).

THEOREM 1. Let 9 be a model of ZF, M an inner model of 9 and
suppose that N = Mla] for some a C M; then N is a generic extension of
(HOD M)™ and there exists b < M such that (HOD M)" = M|b].

Proof. Let we M be such that a C w, and set A = (P(P(u)))¥ N (OD M)".
We put the inclusion ordering on A. Let X < A be in (OD M)¥; then J X is
in (OD M) too; hence X has a supremum in A. Thus 4 is an (OD M)"-com-
plete boolean algebra.

We now construct a complete boolean algebra in (HOD M)¥ which is
isomorphic to A. Let Form be the set of formulas with two free variables;
we define in N an application T from the product Form x On x M onto A
as follows:

T(F,a,z)={ze N:zcu and (V)" & F(z, )} .

By the replacement scheme there exist e On and te M such that
T"(Form x A X t) = A. Welets = Form X \ X t and we define a preorder-
ing =, on s: for all z, yes, v <,y if and only if T(x) = T(y). From the
preordered set (s, <,) we get canonically an ordered set which we will denote
B. The map T from s onto A now defines canonically an isomorphism, which
we again denote by T, between B and A. Moreover this isomorphism 7'is in
(OD M)”; thus B is (OD M)"-complete, whence B is a complete boolean algebra
in (HOD M)?.

We define a function f from w into 3:

—1

f@)=T({ye N:ycu and zecy}) for xeu .

It is clear that f is in (HOD M)".

Let H= {Xe A: a ¢ X}; then H is an (OD M)"-complete ultrafilter on A.
We set G = i’l”H; then G is B-generic over (HOD M)”. Now, for zecu we
have zea if and only if f(2)eG; therefore ae M[G, f]. Thus Mla] =
(HOD M)*[G] = M[%, f1IG] and M[a] is a generic extension of (HOD M)¥; by
2.12, Lemma 1 we conclude that M[®B, f] = (HODM)". Let now 7 be the
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canonical map from s onto B. Let
F={(x,y):zes yecu, and 7(x) = f(¥)} .
Then M[SB, f] = M[<,, F] and there exists b € M which encodes <, and F.

Note: Using 5.1, Theorem 1 we see that there exists a homogeneous
complete boolean algebra @ in M[b] such that M[a] is an (-generic extension
of M[b]. The following argument, due to McAloon, shows that this result
can be recovered from the above proof. Let X = {r c u: M[r] = M[a]}, X is
an element of 4; set p = fi‘l(X ), peBNG. We show that B, is homogeneous
in M[b]. Let p, p, = p, let x,€ T(p,), set H, = {Ye A:x,e¢ Y} and G, =
?”Hi (1= 0,1). It is clear that G,, G, are B-generic over M[b], M[G,] =
M[G], peG, N Gy, v, G, p,€G,. Applying 8.5, Theorem 1 we get an auto-
morphism ¢ of B such that o(p) = p, ¢”’G, = G,. Thus ¢ | B, is an automor-
phism of B, such that (¢ | B,)(»,) and p, are compatible.

9.2, We shall use the following lemma in the next section:

LEMMA 1. Let 91 be a model of ZF, M an inner model of 9, C an ordered
set in N and let G be C-generic over 9. Suppose that C s homogeneous and
belongs to (ODM)" then (OD{x})*®* N N (OD(M U {«}))" for all xe N and
therefore (HOD M)™¢ < (HOD M)~.

Proof. Lety e (0D {x})"® N N; then for some E and a we have N[G] = y
is the unique v such that E(v, 2, «). Thus, there exists p € G such that p I- 7
is the unique v such that E(v, , @). Since Cis homogeneous, either all p e C
force that formula or none does. Thus, ¥ is the unique set such that
(VpeC)p - E(§, , &). Since C is definable in N from elements in M U On
so is the forcing relation, whence ¥ is definable in N from elements in M U
{x}. This shows that (OD{z})"® N Nc (OD(M U {«}))" for all ze N. From
this result we get

(HOD M) N Nc (HOD M)~ .
But (HOD N)"¢1= N; therefore (HODM)"'¢Ic N. Thus, we have (HODM)" 1
(HOD M)~.
9.3. THEOREM 1. Let 91 be a model of ZF, M an inner model of 9 and

suppose that N = Mla] for some a € N. Then N is a quasi-generic extension
of (HOD M)" and there exists b e N such that b < M and (HOD M)¥ = M][b].

Proof. It suffices to prove the theorem for countable N. Let « be the
rank of o and let G be C((V,)")-generic over 9. Then N[G] = M[a][G] =
M(r] for some r C w. Let M’ = (HOD M)*%); applying 9.1, Theorem 1 we
see that N[G] is a generic extension of M’ and that there exists ¢ < M such
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that M’ = M|c].

Now C((V,)") is homogeneous and ordinal definable in 91; applying 9.2,
Lemma 1 we get (HOD M)*¢1 — (HOD M)"; i.e., M' — (HOD M)~. Using 1.10,
we see that (HOD M)* = U {L[z]; * € M and = € (HOD M)"}. We apply 2.14,
Theorem 3: N[G] is a generic extension of (HOD M)* and there exists d — M’
such that (HOD M)¥ = M'[d].

The model N[G] is a generic extension of both N and (HOD M)”, hence
N is a quasi-generic extension of (HOD M)".

Applying 1.6, Lemma 1 we see that there exists b M such that
(HOD M)Y = M]|b].

COROLLARY 2. Let M be an inner model of 9 such that N = Mla] for
some a € N. Then, for every x € N there exists ye N with y C M such that
(HOD M[x])" = M[y] and N is a quasi-generic extension of (HOD M[x])".

Proof. It suffices to replace M by M[x] in Theorem 1.

COROLLARY 3. Let M be an inner model of DU such that N = M[a] for
some a C M. If N is a generic extension of Mx] then N is also a generic
extension of (HOD M)"1 (and (HOD M)™*) has the form M[y] with y M).

Proof. Applying Theorem 1 we get y © M such that (HOD M)¥=! = M[y]
and M[x] is a quasi-generic extension of (HOD M) *), Now, N is a generic
extension of M[x] and N = M[a] with a < M; therefore we can use 6.2,
Corollary 6 which yields the conclusion.

THEOREM 4. Let M be an inner model of 9Usuch that N = M[a] for some
a € N. Let X be a model of ZF intermediate between M and Nj;i.e., Mc XC N
and X is transitive in N, such that X = (HOD X)"; then there exists xe X
such that X = M[x] (thus X is a class for 90 and N is a quasi-generic
extension of X (if a € M then N is a generic extension of X). Also, the rank
of « can be bounded independently of X.

Proof. We first consider the case a < M. Set M’ = (HOD M)~; by 9.1,
Theorem 1, N is a generic extension of M’ and M’ = M[b] for some b M.
The theorem is then an easy application of 7.4, Theorem 3.

We now reduce the general case to the previous one. Let a be greater
than the rank of a and let G be C((V,)¥ )-generic over 91. By 9.2, Lemma 1
we have

(OD{x})NfG] NNc (OD{x})” forall e N,
whence

OD X)) N Nc(ODX)" and (HODX)"™ N Nc((HODX)" = X.
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But (HOD X)"¢1 < (HOD N)"¢1 = Nj; hence (HOD X)"¢ = X. Now N[G] =
M[a][G] = M]r] for some r C @ and so we can apply the previous case.

Remark 5. The following weakening of Theorem 4 can be proved with-
out using 7.4, Theorem 3. Also, it is strong enough to prove 10.1, Theorem
1 (the iteration of the HOD operation).

THEOREM 4 bis. Suppose that N = Ma] for some a € N and let X be an
inner model of I (thus we assume that X is a class for N) which contains
M and such that X = (HOD X)*. Then there exists x € X such that X = M|[x]
and N is a quasi-generic extension of X.

Proof. We consider only the case a — M. Since X is a class for 91 we
may construct X[a] which is clearly the same as N. By 9.1, Theorem 1, X[a]
is a generic extension of (HOD X)**1 = X. Let M’ = (HOD M)"; then M’ =
M][b] and N is a generic extension of M’. Applying 6.1, Theorem 1 we see
that X = M'[y] for some y € X, whence X = M|[x] for some z ¢ X.

9.4, PROPOSITION 1. Let 91 be a countable model of ZF and let M be an
wnner model of 9. For every ordinal & there exists a generic extension N[H]
of N such that, for all y e (V,)¥, if N is a generic extension of M|y] then

(HOD M [y])"#1 = M[y] .

Proof. Set A= {ye(V,)": Nis a generic extension of M[y]}. Foryec A
let B(y) be the minimal rank of an ordered set D in M[y] such that N is a
D-generic extension of M[y].

Set 8 = Sup {B(¥): ¥ € A} and let & be a limit ordinal greater than 3-w.
Let H be C((V.)")-generic over 91. By 4.9, Theorem 1, for every y € A, there
exists K which is C((V,)*™)-generic over M[y] and such that N[H] =
M[y][K]. Since C((V,)*™) is a homogeneous ordered set in M[y], we obtain
(HOD M[y])"™ = M[y].

THEOREM 2. Let 91 be a model of ZF and M an itnner model such that
N = Mla] for some a C M. For every ordinal  there exists x € N such that
xC M, N is a generic extension of M[x] and, for all ye(V,)", if N is a
generic extension of M[y] then M[x]  M[y].

Proof. It suffices to prove the theorem for countable 9.
We then apply the above proposition and let 2 be such that x — M and
M[x] = (HOD M)~ (such an « exists by 9.1, Theorem 1).

THEOREM 3. Let 9 be a model of ZF and M an inner model such that
N = Mla] for some a C M. Let a be an ordinal and let A < (V,)" be such
that N is a generic extension of M[x] for all xe A. Set X = N {M|[x]: x e A};
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then the following conditions are equivalent:

(i) For all xe A, X is definable in M[x] (with parameters),

(ii) (X, e X? is a model of ZF,

(iii) There exists y € N such that X = M[y] and N is a generic extension
of X.

Proof. (i) = (ii): Itis clear that X is transitive and closed under the
Godel operations. From (i) we see that X is a class and that X is almost
universal. Thus, by 1.10, Lemma 1, X is an inner model.

(i) = (iii): It suffices to prove that implication for countable 91. We
then apply Proposition 1 to get a generic extension N[H] of N such that

(HOD M[2])"™) = M]|x] forall zc A .
Thus,
(HOD X)"#1 < N {(HOD M[x])"": e A}c N {M[x]: x € A} =X

and so X = (HOD X)"t#],
Now with (ii) we can apply 9.3, Theorem 4: There exists y such that
X = MJy] and N[H] is a generic extension of X; whence (iii).

Remark 4. Using 9.3, Theorem 4 bis one can prove Theorem 3 in case
A e N. This case will be enough to prove 10.1, Theorem 1.

Remark 5. Theorem 3 and Theorem 2 are still valid when we replace
the condition a — M by a € N and the word “generic” by “quasi-generic”.

9.5. THEOREM 1. Let 91 be a model of ZF, M an inner model of 9 and
B a complete boolean algebra in M such that N = M[G] where G is B-generic
over M. Let (B,qc: be a family in M of decreasing complete subalgebras of
B. There exists xe N such that M[x] = N{M[G N B]: e} and N is a
generic extension of M[x].

Proof. Let X = N{M[GN B,]: xer}. By 2.13, Theorem 1 and 9.4,
Theorem 3, it suffices to prove that X is definable in M[G N B,] for all @ € A.
Now, (GNBpdserax belongs to M[G N B,); since X = N {M[GNB,]: B € [, \[}
we see that X is definable in M[G N B,]. Hence the theorem.

Remark 2. The hypothesis ((B.)«cz:) € M can be weakened to
({BpYseranr) € MIG N B,] forall aex.

We note the following improvement of Theorem 1 when N = w and M
satisfies AC.

THEOREM 3. Let 9N be a model of ZFC, B a complete boolean algebra in
M and (B,)neo a decreasing family in M of complete subalgebras of B. Let
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G be B-generic over M and set X = M {M[G N B,]: new}. Set A= {feX:
S is a function from  into B such that f(n)e B, for all n and there exists
m such that f(m + n) e G for all n}; then X = M[A].

Proof. By M“* we mean the class defined by the following recursion
in M:

e M if and only if V(y,b)ex (beB—be B, A yc MSn) .

Clearly if t e M“* then Val, (t) = Valgg,(t). We also note thatif ¢, se M 3»
then [tes]® = [tes]®™ and [t = s]® = [t = s]%=.

Claim: For every x € X there exists in M[A] a family Z,, n € w, of ele-
ments of M such that Z, e M™ and Valgq, (%,) = 2.

Let 3 be greater than the ranks of # and B and let @ = B-w; by 2.6,
Lemma 2, all terms which are to denote an element in (V,)"*¢1 can be supposed
to be in (V,)". We fix in M some well-ordering of (V).

We define by induction a function f from ® into ® and a sequence Z,,
nE :

%, is the least z € (V) N M@ such that Valgqg, (2) = =,

f(n) is the least p € B, N G such that for some z € (V,)¥ N M‘®+2 we have
P=x, =2,

@, 18 the least z € (V)" N M@+ such that f(n) - 7, = 2.

It is clear that fe X; therefore fe A and hence (Z,),..c M [A]. This
proves the claim.

Let x € X be such that # < A; we show that e M[A]. Applying the
claim we see there exists in M[A] a family (Z,),.., such that z, ¢ M3 and
Val; (Z,) = « for all n. Letting fe A, we let ¥(f) be the following condition:

“There exists a family (%,),.. € M[A] and & € A such that for all » we
have §,e M, h(n) - ((Fn = Yns) A (7. is a function from & into B such
that 7,(7) = f(3) for all i < 4)) and {(n, [7, € 7,]%): ne w}e 4.

We prove that fe« if and only if v (f).

Suppose f'e «; by the claim there exists a family (¥n)new in M[A] such
that ¥, € M'* and Val,.q, (7,) = f. It is now easy to define in X a function
h such that k() € G N B, and h(n) - (F, = ¥»rs) A (7, is a function from @
into & such that 7,(?) = (i) for all i < #); by the definition of A we then
have h € A, whence (f).

Suppose ¥ (f). Then for some m we have h(m + n) e G for all n. Thus
Valg (¥nr:) = f for all n. Since {(n, [¥, € Z,]): n € w} € A we see that for some
m we have [¥,., € T,+,] € G, whence fe .
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From the equivalence fe « if and only if v(f) we get x € M[A].

Let Seq (4) be the set of finite sequences of elements of A. There exists
a canonical surjective map from Seq (A) X M onto M[A].

An easy modification of the above proof shows that if xe X is included
in Seq (A) x M then x € M[A]. From this we deduce that if € X is included
in M[A] then we M[A], whence X = M[A]. This finishes the proof of
Theorem 3.

10. Iterated HOD submodels

10.1. THEOREM 1. Let 91 be a model of ZF and let M be an inner model
such that N = M[a] for some a € N. Then there exists a family X,, @ € N,
of immer models of I such that X, = N, X,,, = (HODM)*« for all @ and
X, = N{X;: 8 < a} for limit ordinals . Moreover for every « there exists
x such that X, = M[x] and if & is a successor ordinal then we can suppose
xC M. Also, X, is a generic extension of X, for all « = 1, and if a C Mthen
N is a generic extension of X, for all «.

Proof. By 9.3, Theorem 1, we can reduce to the case a < M.

By induction we shall construct a sequence A, of non-empty sets such
that:
(*) If x € A, then M[x] = M[a] = N.

If x, y € A, then M[2] = M[y] and A, = {#: #z is of minimal rank such
that M[z] = M|[x]}.

If re A,and ye A4,,, then M[y] = (HOD M),

If « is a limit and « € A, then M[x] = N {M[y]: y € A; for some B < a}
and
(**) If x e A, then N is a generic extension of M[x].

It is clear that A,, if it does exist, is uniquely determined by (*). If « is
a successor ordinal then the construction of A4, and the induction step follow
from 9.3, Corollary 3.

We now suppose « is a limit ordinal.

Set X = N {M[y]: y € 4; for some B8 < a}. We note that if 8 <7 < «,
ye A; and z€ A, then M[y] D M[z]. Therefore, if 3 < a and y € A; then

X=N{M[z]:ze¢ 4, and <7 < a}.
But condition (*) makes the sequence {A4,)s,<, definable in M[y]; hence

X is definable in M[y]. Thus condition (i) of 9.4, Theorem 3 is satisfied; (iii)
gives the induction step.

Remark 2. Theorem 1 can be generalized as follows:
Let Y be an inner model of 91 which contains M. There exists a
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decreasing sequence Y,, a € On, of inner models of 91 such that Y, = N,
Y., = (HOD Y)*« for all @, and Y; = N {Y,; @« < A} for limit ordinals ». N
1s a quasi-generic extension of each Y, and there exists a, such that Y, =
Mla,] (even if ¥ = M[x] for all x € N).

10.2. The following theorem is a corollary of 10.1, Theorem 1 and the
last remark of 2.5.

THEOREM 1. There exists a formula E(x, v, w) of the language of set
theory such that the following are provable in the theory ZF:

() Ya3dy, E(a, 2, v), EQ, x, y) = L[z] = L[y].

(ii) E(a, z, y) A\ E(a + 1, z, 2) = L[z] = (HOD)**,

@i 0= x=UNA E\, 2, y)= Llyl = N{L[?]: E(a, =, 2) for some
a < \}

(iv) (@=UaV(@=0AzcCOn)=(8=aA E(, x,y) A E@B, x, 2)—
L[y] is a generic extension of L[z]).

We let (HOD):*1 be L[y] where y is such that E(«, z, y). Fix z; the
sequence (HOD):™), ae On, is decreasing. Moreover, either it is strictly
decreasing or it is eventually constant. In case L[x]is a generic extension of
L, it is clear that this sequence is eventually constant.

Question: Can the sequence (HOD):™!, a € On, be strictly decreasing?
The following is an application of 9.5, Theorem 2:

PROPOSITION 2. Let M be a limit ordinal which has cofinality @ in

(HOD)i*). Then there exists y which is a set of sets of ordinals such that
(HOD);*! = L[y].

Proof. Let fe (HOD)i! be a function from w into A which is cofinal to
» and set M=((HOD)#%))[f]. Clearly L[x]=M[x] and (HOD):*!= (HOD M)¥t=}
for all @ < .

Let B be a complete boolean algebra in M and let G be B-generic over M
such that L[x] = M[G]. Using 3.10, Theorem 1, we have

(HOD M)™ = N{M[G N B*]: @ e N} = N{M[G N BS™ ] new}.
Since M satisfies AC we can apply 9.5, Theorem 2: there exists z which is a
set of subsets of M such that (HOD M)¥*1 = M[z]. Now, M = L[t] where ¢
is a set of ordinals, hence there exists y which is a set of sets of ordinals such
that (HOD){"1 = L[y].

Remark 3. It has been shown by W. Reinhart that if one works in

Kelley-Morse set theory (i.e., the version of set theory with classes and the
impredicative class-existence scheme) then one can define a well-ordered class
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(4, <,) and a sequence of classes (X,:a € A) so that
(1) For each ac A, X, is a transitive model of ZF;
(2) If aisleastin (4, <,), X.=V;
(8) If ais successor to b in (4, <,), X, = (HOD)*® (and X, # X,);
(4) If ais a limit point of (4, <,), then X, = Mi< 0 Xs5
(5) (A4, <,) has a largest element, say z, and X, = (HOD)*=.

This result can be established using the following proposition which
serves to show that, as long as the sequence of iterated HOD’s is definable,
it will be composed of ZF models:

PROPOSITION 4. Let 9 be a model of ZF and let <, be a class of 9T which
is a well-ordering on the class A. Suppose that there exists a subset X of N
which is a class in (D, <,) so that, letting X, = {x; (a, x) € X}, the sequence
of classes (X,: a € A) satisfies conditions (1) to (4) above. Let

Y = MNees X, = {2: (Va e A)(a, ) e X)};
then Y is a model of ZF (whence, Y is an inner model of IU).

Proof. For each « there exists a unique map f, from AN (Vo — Vo)
onto an ordinal £, which is an isomorphism with respect to <, and €. Gluing
the f,’s, we can define a bijection between A and ) ., £.. Thus, we can
suppose that the domain A of <, is either an ordinal or the class On.

For each ac A we let Z, = {(b, x); (b, ¥) € X and b =, a}. Since the X;’s
are decreasing, and A c On, we see that Z, c X,, whence, by 1.4, Lemma 2,
X, satisfies ZF (Z., <.). Now, Y = {x: (Vb =, a)((b, ) € Z,)} and therefore
Y is a class in X,. This shows that (Y N V,)e X, for all ae On, ac A. But
Y is the intersection of the X,’s and so (Y N V,)e Y for all e On. Also, ¥
is a transitive class of 91 which is closed by the eight Godel operations. Using
1.4, Lemma 1, we conclude that Y is a model of ZF.

M. L. Harrington has informed us that combining the techniques of [2]
and [6] one can construct models of ZF in which the sequence (HOD),,n € w,
is not definable and (HOD),, is not a model of ZF'.
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