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Abstract. We present several applications of quantum amplitude amplification to finding claws
and collisions in ordered or unordered functions. Our algorithms generalize those of Brassard, Høyer,
and Tapp, and imply an O(N3/4 log N) quantum upper bound for the element distinctness problem
in the comparison complexity model. This contrasts with Θ(N log N) classical complexity. We also
prove a lower bound of Ω(

√
N) comparisons for this problem and derive bounds for a number of

related problems.

1. Introduction. In the last decade, quantum computing has become a promi-
nent and promising area of theoretical computer science. Realizing this promise re-
quires two things: (1) actually building a quantum computer and (2) discovering tasks
where a quantum computer is significantly faster than a classical computer. Here we
are concerned with the second issue. Few good quantum algorithms are known to
date, the two main examples being Shor’s algorithm for factoring [22] and Grover’s
algorithm for searching [15]. Whereas the first so far has remained a seminal but
somewhat isolated result, the second has been applied as a building block in quite a
few other quantum algorithms [7, 9, 11, 12, 19, 10, 18, 8]. For a general introduction
to quantum computing we refer to [20].

One of the earliest applications of Grover’s algorithm was the algorithm of Bras-
sard, Høyer, and Tapp [9] for finding a collision in a 2-to-1 function f . A collision is
a pair of distinct elements x, y such that f(x) = f(y). Suppose the size of f ’s domain
is N . For a classical randomized algorithm, Θ(N1/2) evaluations of the function are
necessary and sufficient to find a collision. The quantum algorithm of [9] finds a col-
lision using O(N1/3) evaluations of f . A notion related to collisions is that of a claw.
A claw in functions f and g is a pair (x, y) such that f(x) = g(y). If f and g are
permutations on [N ] = {1, . . . , N}, then the function on [2N ] that maps the first half
of the domain according to f and the second half according to g, is a 2-to-1 function.
Thus the algorithm of Brassard, Høyer, and Tapp can also find a claw in such f and
g using O(N1/3) evaluations of f and g.

In this paper we consider the quantum complexity of collision-finding or claw-
finding with and without restrictions on the functions f and g. In Section 3 we
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consider the situation where f : [N ] → Z and g : [M ] → Z are arbitrary. Our aim is
to find a claw between f and g, if one exists. For now, let us assume N = M (in the
body of the paper we treat the general case). The complexity measure we use is the
number of comparisons between elements. That is, we assume a total order on Z and
our only way to access f and g is by comparing f(x) with f(y), g(x) with g(y), or
f(x) with g(y), according to this total order. The ability to make such comparisons
is weaker than the ability to evaluate and actually obtain the function values f(x)
and g(y), because if we can obtain the values f(x) and g(y), we can of course also
compare those two values. Accordingly, the existence of a quantum algorithm that
finds a claw using T comparisons implies the existence of a quantum algorithm that
finds a claw using O(T ) function-evaluations. However, also our lower bounds on the
complexity of claw-finding remain essentially the same if we were to count the number
of function-evaluations instead of comparisons. This shows that it does not matter
much for our results whether we count comparisons or function-evaluations.

A simple yet essentially optimal classical algorithm for this general claw-finding
problem is the following. Viewing f as a list of N items, we can sort it using
N log N + O(N) comparisons. Once f is sorted, we can for a given y ∈ [N ] find
an x such that f(x) = g(y) provided such an x exists, using log N comparisons (by
utilizing binary search on f). Thus exhaustive search on all y yields an O(N log N)
algorithm for finding a claw with certainty, provided one exists. This running time of
O(N log N) is optimal even for bounded-error classical algorithms, as follows from the
classical Ω(N log N) bound for the element distinctness problem, explained below. In
this paper we show that a quantum computer can do better: we exhibit a quantum al-
gorithm that finds a claw with high probability using O(N3/4 log N) comparisons. We
also prove a lower bound for this problem of Ω(N1/2) comparisons for bounded-error
quantum algorithms and Ω(N) for exact quantum algorithms.

Very recently, in a series of papers [1, 21], several nontrivial lower bounds have
been proven for the collision-finding problem in a 2-to-1 function by Aaronson and
Shi. The latest result of Shi actually gives a Ω(N1/3) lower bound matching the
upper bound of [9]. Shi also proved that this lower bound implies an Ω(N2/3) lower
bound for the collision-finding problem by the following reduction: run the algorithm
for collision-finding on the restriction of the oracle function on a random set of size
Θ(
√

N). If the oracle is 2-to-1, a collision will be found, with high probability, by the
Birthday Paradox.

Our algorithm for claw-finding also yields an O(N3/4 log N) bounded-error quan-
tum algorithm for finding a collision for arbitrary functions. Note that deciding if a
collision occurs in f is equivalent to deciding whether f maps all x to distinct ele-
ments. This is known as the element distinctness problem and has been well studied
classically, see e.g. [23, 17, 14, 5]. Element distinctness is particularly interesting
because its classical complexity is related to that of sorting, which is well known to
require N log N + Θ(N) comparisons. If we sort f , we can decide element distinct-
ness by going through the sorted list once, which gives a classical upper bound of
N log N + O(N) comparisons. Conversely, element distinctness requires Ω(N log N)
comparisons in case of classical bounded-error algorithms (even in a much stronger
model, see [14]), so sorting and element distinctness are equally hard for classical com-
puters. On a quantum computer, the best known upper bound for sorting is roughly
0.53 N log N comparisons [13], and it was recently shown that such a linear speed-up
is the best possible: quantum sorting requires Ω(N log N) comparisons, even if one
allows a small probability of error [16]. Accordingly, our O(N3/4 log N) quantum up-
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per bound shows that element distinctness is significantly easier than sorting for a
quantum computer, in contrast to the classical case.

In Section 4, we consider the case where f is ordered (monotone non-decreasing):
f(1) ≤ f(2) ≤ · · · ≤ f(N). In this case, the quantum complexity of claw-finding and
collision finding drops from O(N3/4 log N) to O(N1/2 log N). In Section 5 we show
how to remove the log N factor (replacing it by a near-constant function) if both f
and g are ordered. The lower bound for this restricted case remains Ω(N1/2).

In Section 6 we give some problems related to the element distinctness problem
for which quantum computers cannot help. We then, in Section 7, give bounds for
the number of edges a quantum computer needs to query in order to find a triangle in
a given graph (which, informally, can be viewed as a collision between three nodes).
Finally, we end with some concluding remarks in Section 8.

2. Preliminaries. We consider the following problems:
Claw-finding problem

Given two functions f : X → Z and g : Y → Z, find a pair (x, y) ∈ X × Y
such that f(x) = g(y).

Collision-finding problem
Given a function f : X → Z, find two distinct elements x, y ∈ X such that
f(x) = f(y).

We assume that X = [N ] = {1, . . . , N} and Y = [M ] = {1, . . . ,M} with N ≤ M .
For general details about quantum computing we refer to [20]. We formalize a

comparison between f(x) and f(y) as an application of the following unitary trans-
formation:

|x, y, b〉 7−→ |x, y, b⊕ [f(x) ≤ f(y)]〉,

where b ∈ {0, 1} and [f(x) ≤ f(y)] denotes the truth-value of the statement “f(x) ≤
f(y)”. We formalize comparisons between f(x) and g(y) similarly.

We are interested in the number of comparisons required for claw-finding or
collision-finding. We will consider the complexity of exact algorithms, which are re-
quired to solve the problem with certainty, as well as bounded-error algorithms, which
are required to solve the problem with probability at least 2/3, for every input. We
use QE(P ) and Q2(P ) for the worst-case number of comparisons required for solv-
ing problem P by exact and bounded-error quantum algorithms, respectively. (The
subscripts ‘E’ and ‘2’ refer to exact computation and 2-sided bounded-error compu-
tation, respectively.) In our algorithms we make abundant use of quantum amplitude
amplification [8], which generalizes quantum search [15]. The essence of amplitude
amplification can be summarized by the following theorem.

Theorem 2.1 (Amplitude amplification). There exists a quantum algorithm
QSearch with the following property. Let A be any quantum algorithm that uses no
measurements, and let χ : Z → {0, 1} be any Boolean function. Let p denote the
initial success probability of A of finding a solution (i.e., the probability of outputting
z s.t. χ(z) = 1). Algorithm QSearch finds a solution using an expected number of
O(1/

√
p) applications of A and A−1 if p > 0, and otherwise runs forever.

Very briefly, QSearch works by iterating the unitary transformation Q =
−AS0A−1Sχ a number of times, starting with initial state A|0〉. Here Sχ|z〉 =
(−1)χ(z)|z〉, and S0|0〉 = −|0〉 and S0|z〉 = |z〉 for all z 6= 0. The analysis of [8]
shows that performing a measurement after Θ(1/

√
p) iterations of Q, yields a solu-

tion with probability close to 1. The algorithm QSearch does not need to know the
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value of p in advance, but if p is known, then a slightly modified QSearch can find a
solution with certainty using O(1/

√
p) applications of A and A−1.

Grover’s algorithm for searching a space of N items is a special case of ampli-
tude amplification, where A is the Hadamard transform on each qubit. This A has
probability p ≥ 1/N of finding a solution (if there is one), so amplitude amplification
implies an O(N1/2) quantum algorithm for searching the space. We sometimes refer
to this process as “quantum searching”.

3. Finding claws if f and g are not ordered. First we consider the most gen-
eral case, where f and g are arbitrary, possibly unordered functions. Our claw-finding
algorithms are instances of the following generic algorithm, which is parameterized
by an integer ` ≤ min{N,

√
M}:

Algorithm: Generic claw-finder
1. Select a random subset A ⊆ [N ] of size `.
2. Select a random subset B ⊆ [M ] of size `2.
3. Sort the elements in A according to their f -value.
4. For a specific b ∈ B, we can check if there is an a ∈ A such that (a, b) is a

claw using classical binary search on the sorted version of A. Combine this
with quantum search on the B-elements to search for a claw in A×B.

5. Apply amplitude amplification on steps 1–4.

As a technical note, we remark that to apply amplitude amplification in step 5, we
require that the quantum implementation of steps 1–3 is conducted without the use
of intermediate measurements. This is always achievable without loss of generality,
possibly at the cost of a small constant overhead. For our particular algorithm, a
measurement-free version can be obtained by generating uniform superpositions over
all allowable subsets in steps 1 and 2, as opposed to generating specific random subsets
via measurements. Probabilistic steps in all our algorithms have to be understood
this way.

We analyze the comparison-complexity of this algorithm. Step 3 just em-
ploys classical sorting and hence takes ` log ` + O(`) comparisons. Step 4 takes
O(

√
|B| log |A|) = O(` log `) comparisons, since testing if there is an A-element collid-

ing with a given b ∈ B takes O(log A) comparisons (via binary search on the sorted A)
and the quantum search needs O(

√
|B|) such tests to find a B-element that collides

with an element occurring in A (if there is one). In total, steps 1–4 take O(` log `)
comparisons.

If no claws between f and g exist, then this algorithm does not terminate. Now
suppose there is a claw (x, y) ∈ X × Y . Then (x, y) ∈ A × B with probability
(`/N) · (`2/M), and if indeed (x, y) ∈ A×B, then step 4 will find this (or some other)
collision with probability at least 1/2 in at most O(` log `) comparisons. Hence the
overall success probability of steps 1–4 is at least p = `3/2NM , and the amplitude
amplification of step 5 requires an expected number of O(

√
NM/`3) iterations of

steps 1–4. Accordingly, the total expected number of comparisons to find a claw is

O(
√

NM
` log `), provided there is one. In order to minimize the number of compar-

isons, we maximize `, subject to the constraint ` ≤ min{N,
√

M}. This gives upper
bounds of O(N1/2M1/4 log N) comparisons if N ≤ M ≤ N2, and O(M1/2 log N) if
M > N2.

What about lower bounds for the claw-finding problem? We can reduce the OR-
problem to claw-finding as follows. Given a function g : [M ] → {0, 1}, by definition
OR(g) is 1 if there is an i such that g(i) = 1. To determine this value, we set N = 1
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and define f(1) = 1. Then there is a claw between f and g if and only if OR(g) = 1.
Thus if we can find a claw using c comparisons, we can decide OR using 2c queries to
g (two g-queries suffice to implement a comparison). Using known lower bounds for
the OR-function [6, 4], this yields an Ω(M) bound for exact quantum and an Ω(

√
M)

bound for bounded-error quantum algorithms. The next theorem follows.
Theorem 3.1. The comparison-complexity of the claw-finding problem is

• Ω(M1/2) ≤ Q2(Claw) ≤
{

O(N1/2M1/4 log N) if N ≤ M ≤ N2.
O(M1/2 log N) if M > N2.

• Ω(M) ≤ QE(Claw) ≤ O(M log N).
The bounds for the case M > N2 and the case of exact computation are tight

up to the log N term, but the case M ≤ N2 is nowhere near tight. In particular, for
N = M the complexity lies somewhere between N1/2 and N3/4 log N .

Now consider the problem of finding a collision for an arbitrary function f :
[N ] → Z, i.e., finding distinct elements x, y ∈ [N ] such that f(x) = f(y). A simple
modification of the above algorithm for claw-finding works fine to find such (x, y)-pairs
if they exist (put g = f and avoid claws of the form (x, x)), and gives a bounded-error
algorithm that finds a collision using O(N3/4 log N) comparisons. This algorithm may
also be viewed as a modification of the Generic claw finder with |A| = ` = Θ(

√
N)

and B = [N ]\A. Note that now the choice of A determines B, so our algorithm
has only to store A and sort it, which means that the space requirement of steps
1–3 is O(

√
N log N) qubits. The amplitude amplification of step 4 requires not more

space than the algorithm that is being amplified, so the total space complexity of our
algorithm is O(

√
N log N) as well.

As mentioned in the introduction, the problem of deciding if there is a collision is
equivalent to the negation of the element distinctness (ED) problem. The best known
lower bounds follow again via reductions from the OR-problem: given X ∈ {0, 1}N ,
we define f : [N + 1] → {0, . . . , N} as f(i) = i(1 − xi) and f(N + 1) = 0. Now
OR(f) = 1 if and only if f contains a collision. Thus we obtain:

Theorem 3.2. The comparison-complexity of the element distinctness problem is
• Ω(N1/2) ≤ Q2(ED) ≤ O(N3/4 log N).
• Ω(N) ≤ QE(ED) ≤ O(N log N).

In contrast, for classical (exact or bounded-error) algorithms, element distinctness
is as hard as sorting and requires Θ(N log N) comparisons.

Collision-finding requires fewer comparisons if we know that some value z ∈ Z
occurs at least k times. If we pick a random subset S of 10N/k of the domain,
then with high probability at least two pre-images of z will be contained in S. Thus
running our algorithm on S will find a collision with high probability, resulting in
complexity O((N/k)3/4 log(N/k)). Also, if f is a 2-to-1 function, we can rederive the
O(N1/3 log N) bound of Brassard, Høyer, and Tapp [9] by taking ` = N1/3. This
yields constant success probability after steps 1–4 in the generic algorithm, and hence
no further rounds of amplitude amplification are required. As in the case of [9], this
algorithm can be made exact by using the exact form of amplitude amplification
(the success probability can be exactly computed in this case, so exact amplitude
amplification is applicable).

In another direction, we may extend our results by considering the problem of
finding a claw between three unordered functions f, g, h with domains of size N .
That is, we want to find x, y, z such that f(x) = g(y) = h(z). Classically, the best
algorithm requires Θ(N log N) comparisons. The following quantum algorithm solves
the problem in O(N7/8 log N) comparisons and bounded error:
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Algorithm: Claw-finder for 3 functions
1. Select a random subset A of N3/4 elements from the domain of f and sort

these according to their f -value.
2. Select a random subset B of size N1/2 from the domain of g and sort these

according to their g-value.
3. Search the domain of h for an element that forms a claw with a pair in A×B.
4. Apply amplitude amplification on steps 2–3.
5. Apply amplitude amplification on steps 1–4.

Step 1 takes O(N3/4 log N) comparisons, steps 2 and 3 each take O(N1/2 log N) com-
parisons. If there is a claw (x, y, z) with x ∈ A, then y ∈ B with probability 1/

√
N , so

step 4 requires O(N1/4) rounds of amplitude amplification, hence steps 1–4 together
take O(N3/4 log N) comparisons. Steps 1–4 have probability ≈ 1/N1/4 of finding a
claw, so step 5 in turn requires O(N1/8) rounds of amplitude amplification. In total,
the algorithm thus takes O(N7/8 log N) comparisons. More generally, finding a claw
among k functions can be done in O(N1− 1

2k log N) comparisons (for fixed k).

4. Finding claws if f is ordered. Now suppose that function f is ordered:
f(1) ≤ f(2) ≤ · · · ≤ f(N), and that function g : [M ] → Z is not necessarily ordered.
In this case, given some y ∈ [M ], we can find an x ∈ [N ] such that (x, y) is a claw
using binary search on f . Thus, combining this with a quantum search on all y ∈ [M ],
we obtain the upper bound of O(

√
M log N) for finding a claw in f and g. The lower

bounds of the last section via the OR-reduction still apply, and hence we obtain the
following theorem.

Theorem 4.1. The comparison-complexity of the claw-finding problem with or-
dered f is

• Ω(M1/2) ≤ Q2(Claw) ≤ O(M1/2 log N)
• Ω(M) ≤ QE(Claw) ≤ O(M log N).

Note that collision-finding for an ordered f : [N ] → Z is equivalent to searching
a space of N − 1 items (namely all consecutive pairs in the domain of f) and hence
requires Θ(

√
N) comparisons.

5. Finding claws if both f and g are ordered. Now consider the case where
both f and g are ordered. Assume for simplicity that N = M . Again we get an
Ω(
√

N) lower bound via a reduction from the OR-problem: given an OR-instance
X ∈ {0, 1}N , we define f, g : [N ] → Z by f(i) = 2i + 1 and g(i) = 2i + xi for all
i ∈ [N ]. Then f and g are ordered, and OR(X) = 1 if and only if there is a claw
between f and g. The lower bound follows.

We give a quantum algorithm that solves the problem using O
(√

Nclog?(N)
)

com-
parisons for some constant c > 0. The function log?(N) is defined as the mini-
mum number of iterated applications of the logarithm function necessary to obtain
a number less than or equal to 1: log?(N) = min{i ≥ 0 | log(i)(N) ≤ 1}, where
log(i) = log ◦ log(i−1) denotes the ith iterated application of log, and log(0) is the
identity function. Even though clog?(N) is exponential in log?(N), it is still very small
in N , in particular clog?(N) ∈ o(log(i)(N)) for any constant i ≥ 1. Thus we replace the
log N in the upper bound of the previous section by a near-constant function. Our
algorithm defines a set of subproblems such that the original problem (f, g) contains
a claw if and only if at least one of the subproblems contains a claw. We then solve
the original problem by running the subproblems in quantum parallel and applying
amplitude amplification.

Let r > 0 be an integer. We define 2
⌈

N
r

⌉
subproblems as follows.
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Definition 5.1. Let r > 0 be an integer and f, g : [N ] → Z. For each 0 ≤ i ≤
dN/re − 1, define the subproblem (fi, g

′
i) by letting fi denote the restriction of f to

subdomain [ir + 1, (i + 1)r] and g′i the restriction of g to [j, j + r − 1] where j is the
minimum j′ ∈ [N ] such that g(j′) ≥ f(ir + 1).

Similarly, for each 0 ≤ j ≤ dN/re− 1, define the subproblem (f ′j , gj) by letting gj

denote the restriction of g to [jr+1, (j+1)r], and f ′j the restriction of f to [i, i+r−1]
where i is the minimum i′ ∈ [N ] such that f(i′) ≥ g(jr + 1).

It is not hard to check that these subproblems all together provide a solution to
the original problem.

Lemma 5.2. Let r > 0 be an integer and f, g : [N ] → Z. Then (f, g) contains a
claw if and only if for some i or j in [0, dN/re − 1] the subproblem (fi, g

′
i) or (f ′j , gj)

contains a claw.
Each of these 2

⌈
N
r

⌉
subproblems is itself an instance of the claw-finding prob-

lem of size r. By running them all together in quantum parallel and then applying
amplitude amplification, we obtain our main result.

Theorem 5.3. There exists a quantum algorithm that outputs a claw between f
and g with probability at least 2

3 provided one exists, using O
(√

Nclog?(N)
)

compar-
isons, for some constant c.

Proof. Let T (N) denote the worst-case number of comparisons required if f and g
have domain of size N . We show that

T (N) ≤ c′
√

N

r

(
dlog(N + 1)e+ T (r)

)
, (5.1)

for some (small) constant c′. Let 0 ≤ i ≤ dN/re − 1 and consider the subproblem
(fi, g

′
i). Using at most dlog(N + 1)e+ T (r) comparisons, we can find a claw in (fi, g

′
i)

with probability at least 2
3 , provided there is one. We do that by using binary search to

find the minimum j for which g(j) ≥ f(ir+1), at the cost of dlog(N+1)e comparisons,
and then recursively determining if the subproblem (fi, g

′
i) contains a claw at the cost

of at most T (r) additional comparisons. There are 2
⌈

N
r

⌉
subproblems, so by applying

amplitude amplification we can find a claw among any one of them with probability at
least 2

3 , provided there is one, in the number of comparisons given in equation (5.1).
We pick r = dlog2(N)e. Since T (r) ≥ Ω(

√
r) = Ω(log N), equation (5.1) implies

T (N) ≤ c′′
√

N

r
T (r), (5.2)

for some constant c′′. Furthermore, our choice of r implies that the depth of the re-
cursion defined by equation (5.2) is on the order of log?(N), so unfolding the recursion
gives the theorem.

6. Hard problems related to distinctness. In this section, we consider some
related problems for which quantum computers cannot improve upon classical (prob-
abilistic) complexity.
Parity-collision problem

Given function f : X → Z, find the parity of the cardinality of the set
Cf = {(x, y) ∈ X ×X : x < y and f(x) = f(y)}.

No-collision problem
Given function f : X → Z, find an element x ∈ X that is not involved in a
collision (i.e., f−1(f(x)) = {x}).

7



No-range problem
Given function f : X → Z, find z ∈ Z such that z 6∈ f(X).

We assume that X = Z = [N ], and show that these problems are hard even for
the function-evaluation model.

Theorem 6.1. The evaluation-complexities of the parity-collision problem, the
no-collision problem and the no-range problem are lower bounded by Ω(N).

Note that the hardness of the parity-collision problem implies the hardness of
exactly counting the number of collisions. Our proofs use the powerful lower bound
method developed by Ambainis [3]. Let us state here exactly the result that we
require.

Theorem 6.2 ([3]). Let F = {f : [N ] → [N ]} be the set of all possible input-
functions, and Φ : F → Z be a function (which we want to compute). Let A,B be two
subsets of F such that Φ(f) 6= Φ(g) if f ∈ A and g ∈ B, and R ⊆ A×B be a relation
such that

1. For every f ∈ A, there exist at least m different g ∈ B such that (f, g) ∈ R.
2. For every g ∈ B, there exist at least m′ different f ∈ A such that (f, g) ∈ R.
3. For every f ∈ A and x ∈ [N ], there exist at most ` different g ∈ B such that

(f, g) ∈ R and f(x) 6= g(x).
4. For every g ∈ B and x ∈ [N ], there exist at most `′ different f ∈ A such that

(f, g) ∈ R and f(x) 6= g(x).
Then any quantum algorithm computing Φ with probability at least 2/3 requires

Ω(
√

mm′

``′ ) evaluation-queries.
We now give our proof of Theorem 6.1.

Proof. To apply Theorem 6.2, we will describe a relation R for each of our
problems. For functions f : [N ] → [N ] and g : [N ] → [N ], we denote by d(f, g) the
cardinality of the set {x ∈ [N ] | f(x) 6= g(x)}. For each problem R will be defined by

R = {(f, g) ∈ A×B | d(f, g) = 1},

for some appropriate sets A and B.
Parity-collision problem Here we suppose that 4 divides N . Let A be the set of

functions f : [N ] → [N ] such that |Cf | = N/4 and
∣∣f−1(z)

∣∣ ≤ 2 for all
z ∈ [N ]. Let B be the set of functions g : [N ] → [N ] such that |Cg| = N/4+1
and

∣∣g−1(z)
∣∣ ≤ 2 for all z ∈ [N ]. Then a simple computation gives that the

relation R satisfies m = Θ(N2), m′ = Θ(N2), ` = Θ(N), and `′ = Θ(N).
No-collision problem Now we suppose that N is odd. Let A (respectively B) be

the set of functions f : [N ] → [N ] such that |Cf | = (N − 1)/2,
∣∣f−1(z)

∣∣ ≤ 2,
for all z ∈ [N ], and the parity of the only element that is not involved in a
collision is even (respectively odd). Then R satisfies that m = m′ = Θ(N)
and ` = `′ = Θ(1).

No-range problem Let A (respectively B) be the set of functions f : [N ] → [N ]
such that Cf = {(1, 2)}, and the parity of the no-range element is even
(respectively odd). Then a similar computation gives m = m′ = Θ(N) and
` = `′ = Θ(1).

Note that the no-collision problem and the no-range problem are not functions in
general (several outputs may be valid for one input), but that they are functions on
the sets A and B chosen above (there is a unique correct output for each input).
Thus, Theorem 6.2 implies a lower bound of Ω(N) for the evaluation-complexity of
each of our three problems.
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7. Finding a triangle in a graph. Finally we consider a related search prob-
lem, which is to find a triangle in a graph, provided one exists. Consider an undirected
graph G = (V,E) on |V | = n nodes with m = |E| edges. There are N =

(
n
2

)
edge

slots in E, which we can query in a black box fashion (see also [12, Section 7]). The
triangle-finding problem is:
Triangle-finding problem

Given undirected graph G = (V,E), find distinct vertices a, b, c ∈ V such that
(a, b), (a, c), (b, c) ∈ E.

Since there are
(
n
3

)
< n3 triples a, b, c, and we can decide whether a given triple is

a triangle using 3 queries, we can use Grover’s algorithm to find a triangle in O(n3/2)
queries. Below we give an algorithm that works more efficiently for sparse graphs.

Algorithm: Triangle-finder
1. Use quantum search to find an edge (a, b) ∈ E among all

(
n
2

)
potential edges.

2. Use quantum search to find a node c ∈ V such that a, b, c is a triangle.
3. Apply amplitude amplification on steps 1–2.

Step 1 takes O(
√

n2/m) queries and step 2 takes O(
√

n) queries. If there is a
triangle in the graph, then the probability that step 1 finds an edge belonging to this
specific triangle is Θ(1/m). If step 1 indeed finds an edge of a triangle, then with
probability at least 1/2, step 2 finds a c that completes the triangle. Thus the success
probability of steps 1–2 is Θ(1/m) and the amplitude amplification of step 3 requires
O(
√

m) iterations. The total complexity is hence O((
√

n2/m +
√

n)
√

m) which is
O(n +

√
nm). If G is sparse in the sense that m = |E| ∈ o(n2), then o(n3/2) queries

suffice. Of course for dense graphs our algorithm will still require Θ(n3/2) queries.
We again obtain lower bounds by a reduction from the OR-problem. Consider

an OR-input X ∈ {0, 1}(
n
2) as a graph on n edges. Let G be the graph obtained from

this by adding an (n + 1)-th node and connecting this to all other n nodes. Now G
has |X| + n edges, and OR(X) = 1 if and only if G contains a triangle. This gives
Ω(n2) bounds for exact quantum and bounded-error classical, and an Ω(n) bound for
bounded-error quantum. We have shown:

Theorem 7.1. If Ω(n) ≤ |E| ≤
(
n
2

)
, then the edge-query-complexity of triangle-

finding is
• Ω(n) ≤ Q2(Triangle) ≤ O(n +

√
nm)

• QE(Triangle) = Θ(n2)
where n = |V | and m = |E| for G = (V,E).

Note that for graphs with Θ(n) edges, the bounded-error quantum bound becomes
Θ(n) queries, whereas the classical bound remains Θ(n2). Thus we have a quadratic
gap for such very sparse graphs.

8. Concluding remarks. The main problem left open by this research is to
close the gap between upper and lower bounds for element distinctness. We find it
hard to conjecture what the true bound is. As we have already observed Shi [21]
proved an Ω(N2/3) lower bound leaving a gap with respect the O(N3/4 log N) upper
bound. Moreover in the case when the range and the domain are of the same size,
the best known lower bound in the function-evaluation model is Ω(

√
N).

An interesting direction could be to take into account simultaneously time com-
plexity and space complexity, as has been done for classical algorithms by Yao [23],
Ajtai [2], Beame, Saks, Sun, and Vee [5], and others. In particular, Yao shows that
the time-space product of any classical deterministic comparison-based branching pro-
gram solving element distinctness satisfies T ·S ≥ Ω(N2−ε(N)),where ε(N) = 5/

√
lnN .
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A possible extension of this result to quantum computation could be that the time T
and space S of any quantum bounded-error algorithm for element distinctness satisfies

T 2 · S ≥ Ω(N2−ε(N)), (8.1)

for some appropriate function ε(N) = o(N). For the algorithms of this paper, the
comparison complexity and the time complexity are equal up to logarithmic factors.
Ignoring such logarithmic factors, the algorithm for element distinctness we presented
in Section 3 has T = N3/4 and S = N1/2 and hence would satisfy Equation (8.1)
up to logarithmic factors. An alternative quantum algorithm is to search the space
of all

(
N
2

)
(x, y)-pairs to try and find a collision. This algorithm has roughly T = N

and S = log N and hence also satisfies Equation (8.1) up to logarithmic factors. In
fact, for all other (T, S)-pairs in between these two cases (i.e., with log N ≤ S ≤

√
N

and T 2 · S ≥ N2) there exists an analogous quantum algorithm with roughly those
amounts of time and space as well.

Acknowledgments. We thank Warren Smith for pointing out an inconsistency
in the conference version of this paper.
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