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Abstract. Small Gaussian groups are a natural generalization of spherical Artin groups

in which the existence of least common multiples is kept as an hypothesis, but the relations

between the generators are not supposed to necessarily be of Coxeter type. We show here

how to extend the Elrifai-Morton solution for the conjugacy problem in braid groups to every

small Gaussian group.
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Introduction

Define a Gaussian monoid to be a cancellative monoid where least common multiples
exist and divisibility has no infinite descending chain. Then, in every Gaussian
monoid, there exists a well defined (right) residue operation \ such that a(a\b) is
the right lcm of a and b. A Gaussian group is the group of fractions of a Gaussian
monoid. Using Dehornoy’s technique of word reversing [6], one can solve the word
problem in Gaussian groups. We say that a Gaussian group is small if it is the group
of fractions of a small Gaussian monoid, the latter being defined as a Gaussian
monoid admitting a finite generating set that is closed under the residue operation.
Gaussian groups and small Gaussian groups have been introduced in [9] and [7] as
generalizations of finite Coxeter type Artin groups. In this paper, we prove that
the conjugacy problem in small Gaussian groups is solvable.

There exists in every small Gaussian group an element ∆ whose properties are
reminiscent of those of Garside’s fundamental braid ∆n in Artin’s braid group Bn.
We start from Garside’s approach [13], and we show how to extend the algorithm
defined by Elrifai & Morton [11] in the case of the braid groups, a special case
of small Gaussian groups. On the one hand, our result just says that Garside’s



and Elrifai-Morton’s methods can be extended without change. But, on the other
hand, a new proof has to be constructed, for the original argument of [13] and [11]
does not work in the general case. The new proof relies on the properties of the
residue operation \, and, hopefully, it can give a new insight even in the classical
case of braids and of Artin groups.

This paper is organized as follows. In Section 1, we recall earlier results about
small Gaussian groups. In Section 2, we establish an elementary lemma which
turns out to be the key of the problem. The conjugacy problem in small Gaussian
groups is solved in Section 3, and, in addition, we describe, as in [11], an improved
algorithm using a special conjugacy operation called cycling. In Section 4, we deal
with an example of a small Gaussian group which is not of Artin type, and which is
rather different from such groups, in the sense that there exists no morphism from
the associated monoid into the integers, and its element ∆ is not the lcm of the
minimal generators. Finally, in Section 5, we observe that, as regards cycling, we
can equally use the ∆-normal form and the fractional normal form.

1. Small Gaussian groups

Assume that M is a monoid. We say that M is atomic if, for every set X that
generates M and for every a in M , the lengths of the decompositions a as product
of elements in X have a finite upper bound. For a, b in M , we say that b is a
left divisor of a—or that a is a right multiple of b—if there exists some d in M
satisfying a = bd. An element c is a right lower common multiple—or a right lcm—
of a and b if it is a right multiple of both a and b, and every common right multiple
of a and b is a right multiple of c. Right divisor, left multiple, and left lcm are
defined symmetrically.

Definition. [9] A monoid M is Gaussian if it is atomic, cancellative, and every
pair of elements in M admits a right and a left lcm.

If c, c′ are two right lcm’s of a and b, necessarily c is a left divisor of c′, and c′ is a
left divisor of c. If we assume M to be Gaussian, this implies that c and c′ coincide.
In this case, the unique right lcm of a and b is denoted by a ∨ b. If a ∨ b exists,
and M is left cancellative, there exists a unique element c such that a ∨ b is equal
to ac. This element is called the right residue of a in b, and it is denoted by a\b.
We define the left lcm ∨̃ and the left residue / symmetrically. In particular, we have

a ∨ b = a(a\b) = b(b\a), and, a ∨̃ b = (b/a)a = (a/b)b.

In a Gaussian monoid, every element has only finitely many left divisors, then, for
every pair of elements (a, b), the common left divisors of a and b admit a right lcm,
which is therefore the left gcd of a and b. This left gcd will be denoted by a ∧ b. We
define the right gcd ∧̃ symmetrically.

Definition. A Gaussian monoid is small if it admits a finite generating subset that
is closed under \,/, ∨, ∧, ∨̃, and ∧̃.



It is proved in [8] that for a Gaussian monoid to be small actually follows from a
much weaker hypothesis, namely from the existence of a finite generating set closed
under \ solely.

Assume that M is a monoid. We say that an element a in M is an atom if a is not 1
and a = bc implies b = 1 or c = 1. A small Gaussian monoid admits a finite set of
atoms, and this set is the minimal generating set [9]. We define the norm ||.|| of a
small Gaussian monoid M such that, for every a in M , ||a|| is the upper bound of
the decompositions of a as products of atoms. The hypothesis that there exists a
finite generating subset that is closed under \ implies that the closure of the atoms
under \ is finite. In particular, the closure of the atoms under \ and ∨ is finite—its
elements are called simple elements, and their right lcm is denoted by ∆. Let us
observe that the set of the simple elements is also the closure of atoms under /
and ∨̃. In that way, ∆ is both the right and the left lcm of the simple elements: ∆
is called the Garside element.

We summarize here those results of [8] we use in the sequel.

Proposition 1.1. Assume that M is a small Gaussian monoid, and S is a finite
generating subset of M that is closed under \ and ∨. Let ∆ be the right lcm of S.

(i) Let k be a nonnegative integer. Then, Sk is both the set of all left divisors of ∆k

and the set of all right divisors of ∆k.

(ii) The functions ∂ : a 7→ a\∆ and ∂̃ : a 7→ ∆/a map M into S. Their restrictions
to S are mutually inverse permutations of S.

(iii) The functions a 7→ (a\∆)\∆ and a 7→ ∆/(∆/a) from S into itself extend

into automorphisms ∂2 and ∂̃2 of M that map Sk into itself for every k, and the
equalities

a∆ = ∆∂2(a), and ∆a = ∂̃2(a)∆

hold for every a in M .

If M is a Gaussian monoid, then M satisfies Ore’s conditions [5], and it embeds in
a group of right fractions, and, symmetrically, in a group of left fractions. In this
case, by construction, every right fraction ab−1 with a, b in M can be expressed as
a left fraction c−1d, and conversely. Therefore, the two groups coincide, and there
is no ambiguity in speaking of the group of fractions of a Gaussian monoid.

Definition. A group G is a (small) Gaussian group if there exists a (small) Gaus-
sian monoid of which G is the group of fractions.



By [3], all spherical Artin monoids are small Gaussian monoids. The braid monoids
of the complex reflection groups G7, G11, G12, G13, G15, G19 and G22 given in [4], the
braid monoids of Birman-Ko-Lee [2], several of monoids of torus knots or links [16],
and several of braid monoids of Sergiescu [17] are also small Gaussian monoids.

Remark. A given group may admit several Gaussian structures of different type.
For instance, the 3-strand braids group 〈 σ1, σ2 : σ1σ2σ1 = σ2σ1σ2 〉 also admits
the presentations 〈 x, y : xyx = yy 〉 and 〈 x, y : xy2x = yxy 〉. The associated
monoids admit Garside elements, but the monoid 〈 x, y : xyx = yy 〉 is small,
while 〈 x, y : xy2x = yxy 〉 is not.

Example 1.2. Let us consider the monoid Mχ with presentation

〈 x, y, z : xzxy = yzx2 , yzx2z = zxyzx , zxyzx = xzxyz 〉.

The monoid Mχ is a typical example of a small Gaussian monoid, and, in addition,
Mχ has the distinguishing feature to not be antiautomorphic, contrary to all spher-
ical Artin monoids. The lattice of simple elements in Mχ is represented in Figure 1.
In Section 5, we shall study another example of a small Gaussian monoid, which,
as for it, admits no additive norm.

1

x y z

∆

Figure 1. The lattice of simples in Mχ.



2. The ∆-normal form

If M is a small Gaussian monoid, and G is its group of fractions, then, for a, b
in G, we write a ≤ b if there exist elements a′, a′′ in M satisfying b = a′aa′′; we say
that a is a left divisor (resp. right divisor) of b if there exists an element c in M
satisfying b = ac (resp. b = ca).

Lemma 2.1. Assume that M is a small Gaussian monoid, and G is its group of
fractions. Then, for all a, b in G and every integer k, the following are equivalent:

(i) a ≤ ∆k ≤ b holds;

(ii) a is a left divisor of ∆k, and ∆k is a left divisor of b;

(iii) a is a right divisor of ∆k, and ∆k is a right divisor of b.

Proof. Assume a ≤ ∆k ≤ b. There exist elements a′, a′′, b′, b′′ in M satisfy-
ing ∆k = a′aa′′ and b = b′∆kb′′. We obtain ∆k = aa′′∂2k(a′) = ∂̃2k(a′′)a′a
and b = ∆k∂2k(b′)b′′ = b′∂̃2k(b′′)∆k, which implies (ii) and (iii). The implica-
tions (ii)⇒(i) and (iii)⇒(i) are obvious. ut
Lemma 2.2. Assume that M is a small Gaussian monoid, and G is its group of
fractions. Then, for a, b in G, ∆r1 ≤ a ≤ ∆s1 and ∆r2 ≤ b ≤ ∆s2 imply ∆r1+r2 ≤
ab ≤ ∆s1+s2 .

Proof. By Lemma 2.1, there exist elements a′, a′′, b′, b′′ in M satisfying a = a′∆r1 ,
∆s1 = a′′a, b = ∆r2b′, and ∆s2 = bb′′. We deduce ab = a′∆r1+r2b′ and ∆s1+s2 =
a′′abb′′. Therefore, we have ∆r1+r2 ≤ ab ≤ ∆s1+s2 . ut
Definition. Assume that M is a small Gaussian monoid, and G is its group of
fractions. For a in G, the power and the copower of a are respectively

v−∆ (a) = max{r ∈ Z : ∆r ≤ a}, and v+
∆(a) = min{s ∈ Z : a ≤ ∆s}.

The gap of a is defined to be the difference v+
∆(a)−v−∆ (a). The idea is that v±∆ is

a sort of ∆-valuation. A similar notion of power is introduced in [13], and similar
notions of copower and of gap are introduced in [11], where the power of a is denoted
by inf(a), its copower by sup(a), and the gap is called canonical length.

The following lemma is crucial. It already appears in [11] and [13] in the case of
the braid monoids. The proof there is significantly different.

Lemma 2.3. Assume that M is a small Gaussian monoid. Then, for a, b in M ,
∆ ≤ ba implies ∆ ≤ b(∆ ∧ a).

Proof. Assume ∆ ≤ ba. Then, by Lemma 2.1, ∆ is a left divisor of ba. As b is a left
divisor of ba, the element ∆ ∨ b is a left divisor of ba. So, having ∆ ∨ b = b(b\∆) by
definition, by left cancellation, b\∆ is a left divisor of a. By Proposition 1.1(ii), the
element b\∆ is simple, hence divides ∆, and, therefore, b\∆ is a left divisor of ∆∧a.
Finally, ∆ ∨ b is a left divisor of b(∆ ∧ a), and ∆ is a left divisor of b(∆ ∧ a). ut
Remark. A similar argument shows that ∆ ≤ ba implies ∆ ≤ (b ∧̃∆)(∆ ∧ a).



Equipped with Lemma 2.3, we can now establish easily the following result, which
already appears in [11] in the case of braids.

Lemma 2.4. Assume that M is a small Gaussian monoid. For a inM , let (ai)i≥1 be
the sequence of simple elements defined by a1 = ∆∧a and ai+1 = ∆∧ ((a1 . . . ai)\a)
for i ≥ 1. Then aj 6= 1 holds if and only if j ≤ v+

∆(a) holds.

Proof. By atomicity of M , there exists an integer k satisfying ak 6= 1 and aj = 1
for j > k. Then, a is a1 . . . ak and, by Lemma 2.2, a satisfies v+

∆(a) ≤ k. We
show k ≤ v+

∆(a) by using induction on k. For k = 0, we have a = 1 and v+
∆(a) = 0.

Assume k ≥ 1, i.e., a 6= 1 and v+
∆(a) ≥ 1. Let q = v+

∆(a). There exists an element b
in M satisfying ∆q = ba. By Lemma 2.3, we have ∆ ≤ ba1, and there exists
an element b′ in M satisfying ba1 = ∆b′. We deduce ∆q = ba = ba1a2 . . . ak =
∆b′a2 . . . ak, hence ∆q−1 = b′a2 . . . ak and a2 . . . ak ≤ ∆q−1. Now, by induction
hypothesis, we have v+

∆(a2 . . . ak) = k − 1, hence k − 1 ≤ v+
∆(a)− 1. ut

Definition. Assume that M is a small Gaussian monoid, and G is its group of
fractions. For a in G, the (left) ∆-normal form of a is the unique decomposi-
tion ∆pa1 . . . a` with p = v−∆ (a), a1 = ∆ ∧ (∆p\a), ai+1 = ∆ ∧ ((∆pa1 . . . ai)\a)
for i ≥ 1, and ` = v+

∆(a)−v−∆ (a).

Definition. [11] Assume that M is a small Gaussian monoid, and G is its group
of fractions. The interval [r, s] is the subset of G consisting of the elements a
satisfying ∆r ≤ a ≤ ∆s. So we have

[r, s] = {a ∈ G : r ≤ v−∆ (a) and v+
∆(a) ≤ s}.

If S denotes the set of the simple elements, it comes [r, s] ⊆ {a ∈ G : a =
∆rtr+1 . . . ts, ti ∈ S}. In particular, we have the bound card[r, s] ≤ (card S)s−r.

Lemma 2.5. Assume that M is a small Gaussian monoid, and G is its group of
fractions. Then we have [r1, s1][r2, s2] = [r1 + r2, s1 + s2] in G.

Proof. By Lemma 2.2, we have [r1, s1][r2, s2] ⊆ [r1 + r2, s1 + s2]. Let us show [r1 +
r2, s1 + s2] ⊆ [r1, s1][r2, s2]. As [r, s] = ∆r[0, s− r] holds, it suffices to show [0, s1 +
s2] ⊆ [0, s1][0, s2]. Assume a ∈ [0, s1 + s2]. By Lemma 2.4, we have v+

∆(a) ≤ s1 + s2.
Let (ai)i≥1 be the infinite sequence of simple elements defined by a1 = ∆ ∧ a
and ai+1 = ∆ ∧ ((a1 . . . ai)\a) for i ≥ 1. Then, by construction, a′ = a1 . . . as1 lies
in [0, s1], and a′′ = as1+1 . . . as1+s2 lies in [0, s2]. ut



3. The conjugacy problem

Definition. Assume that M is a small Gaussian monoid, and G is its group of
fractions. For a, b in G, we say that a, b are positively conjugate if there exists an
element c in M satisfying a = c−1bc, and that they are simply conjugate if there
exists a simple element s satisfying a = s−1bs.

Lemma 3.1. Assume that M is a small Gaussian monoid, and G is its group of
fractions. Let a, b be conjugate elements in G. Then a, b are positively conjugate.

Proof. There exists an element c in G satisfying a = c−1bc. Let c′ be the element
of M satisfying c = ∆v−∆(c)c′. By Proposition 1.1, there exists a positive integer p
satisfying ∂̃2p(b) = b, i.e., b∆p = ∆pb; indeed, it suffices to take for p the common
index of permutations ∂ and ∂̃. Now, there exist integers q and r satisfying v−∆ (c) =
pq + r and 0 ≤ r < p. We deduce

a = c′−1∆−pq−rb∆pq+rc′ = c′−1∆−pq−r∆pqb∆rc′ = (∆rc′)−1b∆rc′.

As r is nonnegative, ∆rc′ lies in M . ut

Lemma 3.2. Assume that M is a small Gaussian monoid, and G is its group of
fractions. Let a, b be conjugate elements in G. Assume a = c−1bc with c in M .
Let c1 = ∆ ∧ c. Then we have v−∆ (c−1

1 bc1) ≥ min(v−∆ (a), v−∆ (b)).

Proof. Let m = min(v−∆ (a), v−∆ (b)). There exists elements a′, b′ in M satisfying a =
∆ma′ and b = ∆mb′. We find

c−1
1 bc1 = c−1

1 ∆∆m−1b′c1 = ∂(c1)∆m−1b′c1 = ∆m−1∂2m−1(c1)b′c1. (3.1)

There exists an element c′ in M satisfying c = c1c
′, and we have

c−1bc = c′−1∆m−1∂2m−1(c1)b′c1c′ = ∆m−1∂2m−2(c′)−1∂2m−1(c1)b′c1c′.

We obtain
∂2m−2(c′)−1∂2m−1(c1)b′c1c′ = ∆a′,

hence
∂2m−1(c1)b′c1c′ = ∆∂2m(c′)a′.

Therefore, ∆ divides ∂2m−1(c1)b′c1c′. Now, by Lemma 2.3, ∆ divides ∂2m−1(c1)b′c1,
and we deduce from (3.1) that ∆m divides c−1

1 bc1. ut

Proposition 3.3. Assume that M is a small Gaussian monoid, and G is its group
of fractions. Let a, b be conjugate elements belonging to [r, s]. Then there exists
a sequence b = b0, b1, . . . , bk = a of elements in [r, s] such that the elements bi−1

and bi are simply conjugate for 1 ≤ i ≤ k.



Proof. By Lemma 3.1, there exists an element c in M satisfying a = c−1bc. Assume
that c is c1 . . . ck with c1 = ∆ ∧ c and ci+1 = ∆ ∧ ((c1 . . . ci)\c). Let b0 = b
and bi = c−1

i bi−1ci. We have to show that b1 lies in [r, s]. On the one hand,
Lemma 3.2 gives ∆r ≤ b1, i.e., r ≤ v−∆ (b1). On the other hand, we have ∆−s ≤ a−1,
∆−s ≤ b−1, and a−1 = c−1b−1c. Therefore, always by Lemma 3.2, we obtain ∆−s ≤
c−1
1 b−1c1 = b−1

1 , hence b1 ≤ ∆s, i.e., v+
∆(b1) ≤ s. An induction on k completes the

proof. ut

Corollary 3.4. The conjugacy problem in a small Gaussian group is solvable.

Proof. Assume that M is a small Gaussian monoid, G is its group of fractions,
and a, b belong to G. We have to decide whether a and b are conjugate. First, we
find an interval [r, s] both a and b lie in—it suffices to take r = min(v−∆ (a), v−∆ (b))
and s = max(v+

∆(a), v+
∆(b)). Let Γ0(a) be the singleton {a}. Then, for i ≥ 1, the i-th

step consists in computing the set Γi(a) of those elements which both are simply
conjugate to an element of Γi−1(a) and belong to [r, s]. The process stops at the i0-th
step, where i0 is the least index satisfying Γi0−1(a) = Γi0(a). As the interval [r, s] is
finite, such an index i0 exists, and is less than card[r, s]. Now, by Proposition 3.3,
a and b are conjugate if and only if b belongs to Γi0(a). ut

We describe now an improvement of the previous solution. In [11], starting from the
∆-normal form, Elrifai and Morton have introduced two operations, called cycling
and reverse cycling, which map every element to a distinguished conjugate. Here,
we consider similar operations, which enable us to show that every conjugacy class
admits a nonempty subclass containing elements with both the maximal possible
power and the minimal possible copower. We will see that at least one element
in this distinguished subclass can be found using finitely many (reverse) cycling
operations, and that the whole of the subclass is obtained from there by using
finitely repeated simple conjugacy operations.

Cycling consists in moving the first simple element distinct from ∆ involved in the
∆-normal form to the end, and reverse cycling in moving the last simple element
to the beginning.

Definition. Assume that M is a small Gaussian monoid, and G is its group of
fractions. The cycling and the reverse cycling are the applications φ+ and φ− from G
into itself defined by

φ+(a) = ∆pa2 . . . a`∂̃
2p(a1), and φ−(a) = ∆p∂2p(a`)a1 . . . a`−1,

where ∆pa1 . . . a` is the ∆-normal form of a. In particular, we have φ+(∆p) = ∆p =
φ−(∆p).

Lemma 3.5. Assume that M is a small Gaussian monoid, and G is its group
of fractions. Then, for every a in G, we have v−∆ (a) ≤ v−∆ (φ±(a)) ≤ v−∆ (a) + 1
and v+

∆(a)− 1 ≤ v+
∆(φ±(a)) ≤ v+

∆(a).



Proof. Let a = ∆pa1 . . . a` be the ∆-normal form of a. By definition, we
have φ+(a) = ∆pa2 . . . a`∂̃

2p(a1) and φ−(a) = ∆p∂2p(a`)a1 . . . a`−1. We immediatly
obtain v−∆ (a) ≤ v−∆ (φ±(a)), and we deduce v+

∆(φ±(a)) ≤ v+
∆(a) from the equalities

φ+(a)∂̃2p−1(a1)∂3(a`) . . . ∂2`−1(a2)

= φ−(a)∂(a`−1) . . . ∂2`−3(a1)∂2p+2l−1(a`) = ∆p+`.

Finally, v−∆ (φ±(a)) ≤ v−∆ (a)+1 and v+
∆(a)−1 ≤ v+

∆(φ±(a)) follow from Lemma 2.5. ut

Lemma 3.6. Assume that M is a small Gaussian monoid. Then, for every a in M ,
we have ||a||=||∂̃2(a)||=||∂2(a)||.

Proof. By Proposition 1.1, the automorphisms ∂̃2 and ∂2 induce permutations of
the atoms. On the other hand, the application ||.|| associates to an element a the
maximal number of atoms in a decomposition of a. ut

The previous lemma is required for our subsequent inductive argument needed for
establishing the next result, which appears in [11] in the case of braids.

Proposition 3.7. Assume that M is a small Gaussian monoid, G is its group of
fractions, a belongs to G, and some conjugate b to a satisfies v−∆ (b) > v−∆ (a). Then
there exists an integer m satisfying v−∆ (φm+ (a)) > v−∆ (a).

Proof. By Lemma 3.1, there exists an element d in M satisfying a = d−1bd, hence

da = bd. (3.2)

We prove the result of the proposition using induction on ||d||. For ||d||= 0, there
is nothing to prove. Assume ||d|| > 0. Let p = v−∆ (a). There exist elements a′, b′

in M satisfying a = ∆pa′ and b = ∆pb′ with, by hypothesis, v−∆ (b′) > 0. From (3.2),
we deduce d∆pa′ = ∆pb′d, hence ∂2p(d)a′ = b′d. Now, as ∆ ≤ b′ ≤ b′d holds,
we have ∆ ≤ ∂2p(d)a′, and Lemma 2.3 implies ∆ ≤ ∂2p(d)a1, where a1 is ∆ ∧ a′.
Applying the automorphism ∂̃2p, we obtain ∆ ≤ d∂̃2p(a1). There exists an element g
in M satisfying

d∂̃2p(a1) = ∆g. (3.3)

Writing ∆ = ∂̃2p+1(a1)∂̃2p(a1), we deduce

d = ∂̃2(g)∂̃2p+1(a1).

In particular, this implies ||∂̃2(g)||<||d||, as a1 6= ∆ implies ∂̃2p+1(a1) 6= 1. Now, by
definition of cycling, we have

∂̃2p(a1)φ+(a) = a∂̃2p(a1). (3.4)

Gathering (3.2), (3.3), and (3.4), we obtain

b∆g = bd∂̃2p(a1) = da∂̃2p(a1) = d∂̃2p(a1)φ+(a) = ∆gφ+(a).



We deduce
∂2(b)g = gφ+(a).

The element φ+(a) is conjugate to ∂2(b) by the element g of M , and, by Lemma 3.6,
g satisfies ||g ||<||d ||. Therefore, we have either v−∆ (φ+(a)) > p, and we are done,
or v−∆ (φ+(a)) = p, and in this case we have v−∆ (∂2(b)) > v−∆ (φ+(a)), and, applying
the induction hypothesis to the elements ∂2(b) and φ+(a), there exists an integer n
satisfying v−∆ (φn+ (φ+(a))) > v−∆ (φ+(a)). ut

Lemma 3.8. Assume that M is a small Gaussian monoid, and G is its group of
fractions. Then, for every a in G with ∆-normal form a = ∆pa1 . . . a`, the ∆-normal
form of a−1 is

a−1 = ∆−p−`b1 . . . b` with bi = ∂̃2p+2`−2i+1(a`−i+1).

Proof. First, we have

a−1 = a−1
` . . . a−1

1 ∆−p = ∆−1∂̃(a`) . . .∆−1∂̃(a2)∆−1∂̃(a1)∆−p

= ∆−1∂̃(a`) . . .∆−1∂̃(a2)∆−1−p∂̃2p+1(a1)

= · · · = ∆−p−`∂̃2p+2`−1(a`) . . . ∂̃2p+3(a2)∂̃2p+1(a1).

Now, we show the equality

∆ ∧ (∂̃2p+2i−1(ai)∂̃2p+2i−3(ai−1) . . . ∂̃2p+1(a1)) = ∂̃2p+2i−1(ai),

for 1 ≤ i ≤ ` by using induction on i. The result is trivial for i = 1. Assume i > 1.
We have

∆ ∧ (∂̃2p+2i−1(ai)∂̃2p+2i−3(ai−1) . . . ∂̃2p+1(a1))

= ∂̃2p+2i−1(ai)(∂̃2p+2i−2(ai) ∧ (∂̃2p+2i−3(ai−1) . . . ∂̃2p+1(a1))).

Applying the induction hypothesis, we obtain

∂̃2p+2i−2(ai) ∧ (∂̃2p+2i−3(ai−1) . . . ∂̃2p+1(a1))

= (∂̃2p+2i−2(ai) ∧ (∂̃2p+2i−3(ai−1) . . . ∂̃2p+1(a1))) ∧∆

= ∂̃2p+2i−2(ai) ∧ ((∂̃2p+2i−3(ai−1) . . . ∂̃2p+1(a1)) ∧∆)

=
(IH)

∂̃2p+2i−2(ai) ∧ ∂̃2p+2i−3(ai−1)

= ∂̃2p+2i−2(ai ∧ ∂(ai−1)) = ∂̃2p+2i−2(ai ∧ (ai−1\∆)) = ∂̃2p+2i−2(1) = 1,

which concludes the proof. ut

Lemma 3.9. Assume that M is a small Gaussian monoid, and G is its group of
fractions. Then every element a in G satisfies (φ−(a))−1 = ∂̃2(φ+(a−1)).



Proof. Let a = ∆pa1 . . . a` be the ∆-normal form of a, and let q = v+
∆(a), i.e.,

q = p + `. Then, by Lemma 3.8, the ∆-normal form of a−1 is a−1 = ∆−qb1 . . . b`
with bi = ∂̃2q−2i+1(a`−i+1). Therefore, we have φ+(a−1) = ∆−qb2 . . . b`∂2q(b1).
From φ−(a) = ∆p∂2p(a`)a1 . . . a`−1, we deduce

φ−(a)∂̃2(φ+(a−1)) = ∆p∂2p(a`)a1 . . . a`−1∆−q∂̃2(b2) . . . ∂̃2(b`)∂2q−2(b1).

Now, for 1 ≤ i ≤ `− 1, we have

a`−i∆i−1−q∂̃2(b1+i) = a`−i∂̃2+2i−2−2q(∂̃2q−2i−1(a`−i))∆i−1−q

= a`−i∂(a`−i)∆i−1−q = ∆i−q.

We obtain

φ−(a)∂̃2(φ+(a−1)) = ∆p∂2p(a`)∆−p−1∂2q−2(b1)

= ∆−1∂̃2(a`)∂2q−2(∂̃2q−1(a`))

= ∆−1∂̃2(a`)∂̃2(∂(a`))

= ∆−1∂̃2(a`∂(a`)) = ∆−1∂̃2(∆) = ∆−1∆ = 1,

which is the required result. ut

We obtain the dual result of Proposition 3.7.

Proposition 3.10. Assume that M is a small Gaussian monoid, G is its group of
fractions, a belongs to G, and some conjugate b to a satisfies v+

∆(b) < v+
∆(a). Then

there exists an integer m satisfying v+
∆(φm− (a)) < v+

∆(a).

Proof. It suffices to apply Proposition 3.7 to a−1 and b−1, and to use Lemma 3.9. ut

Definition. Assume that M is a small Gaussian monoid, and G is its group of
fractions. For a in G, we denote the conjugacy class of a by C(a), and we define the
summit power, the summit copower, and the summit gap of a to be, respectively,
the maximal power, the minimal copower, and the minimal gap in the class C(a).

Proposition 3.11. Assume that M is a small Gaussian monoid, and G is its group
of fractions. Then, for every a in G, those elements of C(a) whose gap is the summit
gap form a nonempty finite subclass of C(a).

Proof. By definition, the gap of an element in C(a) is the summit gap if and
only if its power is the summit power and its copower the summit copower. By
Proposition 3.7, repeated cycling on a leads to some of those conjugates to a whose
power is the summit power. Let φ∗+(a) denote the set of the conjugates to a so
obtained. By Proposition 3.10, repeated reverse cycling on the elements in φ∗+(a)
leads to some of those conjugates to a whose copower is the summit copower.
Let φ∗−(φ∗+(a)) denote the set of the conjugates to a so obtained. Now, by Lemma 3.5,



reverse cycling cannot decrease the power, so the power of elements in φ∗−(φ∗+(a))
is equal to the power of elements in φ∗+(a), i.e., is equal to the summit power.
Therefore, the gap of elements in φ∗−(φ∗+(a)) is the summit gap. Then, we obtain
all the elements of C(a) whose gap is the summit gap by conjugating the elements
in φ∗−(φ∗+(a)) by simple elements, and by keeping only those elements whose gap is
the summit gap (see the proof of Corollary 3.4). ut

Definition. For a in G, the summit class Csum(a) of a is defined to be the subclass
of C(a) containing those elements whose gap is the summit gap.

Proposition 3.12. Assume that M is a small Gaussian monoid, and G is its group
of fractions. Let a, b be elements in G. Finitely repeated cycling and reverse cycling
on a (resp. on b) yields an element ă in Csum(a) (resp. an element b̆ in Csum(b)), and
finitely repeated simple conjugation on ă yields the whole of Csum(a). Then a, b are

conjugate in G if and only if b̆ belongs to Csum(a).

We obtain also simple criteria for proving non-conjugacy. Each of the following
conditions:

(i) the shortest interval containing a and the one containing b are disjoint,

(ii) the summit powers of a and b are different,

(iii) the summit copowers of a and b are different,

(iv) the summit gaps of a and b are different,
implies that a and b are not conjugate.

4. An example

Here we describe an example of a group which is eligible for the previous approach,
but which is significantly different from an Artin group.

Let M• be the monoid defined by the presentation

〈 x, y : xyxyx = yy 〉.

Proving that M• is a small Gaussian monoid amounts to proving that it is atomic,
and that the closure of {x, y} under \ exists and is finite [7]. The latter condition
is easily verified: the closure is

{1, x, y, xy, yx, xyx, yxy, xyxy, yxyx, yxyxy}.

The verification of the former condition is not trivial. There is no general method
to prove the atomicity of a monoid given by a presentation. In good cases, one can
exhibit a barycentric norm, i.e., one such that µ(xi) is a positive integer for every
atom xi, and µ(ab) = µ(a) + µ(b) holds for a, b in the monoid. For instance, in the



monoid 〈 x, y : xyx = yy 〉, a barycentric norm can be defined by µ(x) = 1, µ(y) = 2
and µ(ab) = µ(a) + µ(b). In contradistinction, there exists no norm of the previous
type for M•, nor does it either exist any norm satisfying µ(ab) = µ(a)+µ(b). Indeed,
the equality µ(xyxyx) = µ(yy) would imply 3µ(x)+2µ(y) = 2µ(y), hence µ(x) = 0,
contradicting the definition of a norm. However, the Knuth-Bendix algorithm [14]
allows us to prove the atomicity of M•.

Lemma 4.1. The monoid with presentation 〈 x, y : xyxyx = yy 〉 is atomic.

Proof. Let us consider the reduction xyxyx−−⇀yy. By closing the critical pairs [14],
we obtain the system

xyxyx⇒ yy, (R1)
xyyy ⇒ yyyx. (R2)

The reduction ⇒ is confluent. First, we show that it is Noetherian. Every
word w on {x, y} can be written as xm1ym2xm3 . . . ym2kxm2k+1 with m1,m2k+1 ≥ 0
and mi > 0 for 1 < i < 2k + 1. Now, let G(w) =

∑k
i=1(m2i

∑i
j=1m2j−1).

Then w1 ⇒ w2 implies G(w1) > G(w2), which proves that ⇒ is Noetherian. In
order to prove that ⇒ is Artinian, we consider the system

yy → xyxyx, (S1)
yyyx→ xyyy, (S2)

and we show that the new reduction → is Noetherian. We define N(w) =∑k
i=1E(m2i/3) where E(n) is the integer part of n, and P (w) =

∑k
i=1 d(m2i)

where d(n) is 1 if n ≡ 2 [ 3 ] holds, and 0 otherwise. Let fM(w) = 2N(w) + P (w).
Then w →S1 w′ implies fM(w) > fM(w′), and w →S2 w′ implies fM(w) = fM(w′).
Therefore, a sequence σ of reductions → starting from a word w contains a finite
number n1 of reductions→S1 , and n1 ≤ fM(w) holds. Then the maximal length λ of
the words involved in σ satisfies λ ≤ |w|+3n1. Finally, w → w′ implies w >lex(λ) w

′,
where >lex(λ) denotes the lexicographic order on words with length at most λ. So the
number of reductions → in σ is finite—with 2λ as an upper bound—which proves
that → is Noetherian. ut

It is then easy to verify that M• is a small Gaussian monoid. The closure of {x, y}
under \ and ∨ is the finite set

S• = {1, x, y, xy, yx, xyx, yxy, xyxy, xyxyx ≡ yy,
yxyx, yxyxy, yxyxyx ≡ yyy ≡ xyxyxy}.

By definition, S• is the set of simple elements of M•, and ∆ is (yx)3 ≡ y3 ≡ (xy)3,
see Figure 2.



1

x y

xy yx

xyx yxy

xyxy yxyx

yy yxyxy

∆

Figure 2. The lattice (S•, ∨, ∧) of simples in M•.

We now study an example of conjugacy problem in G•, the group of fractions of M•.
Let a, b be the elements in G• with respective ∆-normal forms

a = ∆−3 · xyxy · yxyx · xyxy · yxy, and b = ∆−4 · x · x · x · xyxy · yxy · yxyxy.

The question is to decide whether a and b are conjugate. First, a lies in [−3, 1],
while b lies in [−4, 2]. As the intervals intersect, we cannot conclude directly. Let
us compute the summit class of a. First, repeated cycling on a gives

φ+(a) = ∆−2 · yxyx · xyxy · y,
φ2

+(a) = ∆−1 · xyx · xyx = φ3
+(a).

Let ă = ∆−1 · xyx · xyx, we have φm+ (a) = ă for m ≥ 2. Next, we have φ−(ă) = ă,
so ă belongs to Csum(a). As v−∆ (ă) = −1 and v+

∆(ă) = 1, Csum(a) is C(a) ∩ [−1, 1].
Now, by Proposition 3.11, it remains to repeatedly conjugate ă by simple elements,
and to keep only the gap 2 elements. In the current case, the only element which
both is simply conjugate to ă and lies in [−1, 1] is ă itself. We conclude that Csum(a)
is the singleton {∆−1 · xyx · xyx}.
At this point, we cannot know whether the subclasses Csum(a) and Csum(b) are dis-
joint. Repeated cycling on b gives

φ+(b) = ∆−3 · x · x · xyxy · yxy,
φ2

+(b) = ∆−3 · x · xyxy · yxyx,
φ3

+(b) = ∆−3 · xyxy · yxyx · x,
φ4

+(b) = ∆−3 · yxyx · x · xyxy,
φ5

+(b) = ∆−3 · x · xyxy · yxyx = φ2
+(b).



Next, we have

φ−(∆−3 · x · xyxy · yxyx) = ∆−3 · yxyx · x · xyxy,
φ−(∆−3 · yxyx · x · xyxy) = ∆−3 · xyxy · yxyx · x,
φ−(∆−3 · xyxy · yxyx · x) = ∆−3 · x · xyxy · yxyx.

In particular, the element ∆−3 · yxyx · x · xyxy belongs to Csum(b), and we deduce
that Csum(b) is C(b)∩ [−3, 0]. Therefore, we can conclude that the elements a and b
are not conjugate, since they have distinct summit gaps.

Remark. In the case of M•, the automorphisms ∂2 and ∂̃2 are the identity, which
implies that the cycling operations are quite trivial. Non trivial cyclings may appear
whenever the index of the automorphisms ∂2 and ∂̃2 is large.

5. One way or another

As in [11], the normal form we have chosen corresponds to the one defined by Gar-
side [13] in the case of braids, and it seems to be the most convenient as far as power
and copower are involved. However, we can use fractional normal form explicitly
defined in [1]—see also [10,11,12]—as well.

Definition. Assume that M is a small Gaussian monoid, and G is its group of
fractions. For c in G, the (left) fractional normal form of c is defined to be the
unique decomposition

a−1
p . . . a−1

1 b1 . . . bq,

where ap,.., bq are simple elements all distinct from 1, and, writing x⊥y for x∧y = 1,
we have a1 ⊥ b1, ai ⊥ (ai−1\∆) for 2 ≤ i ≤ p, and bi ⊥ (bi−1\∆) for 2 ≤ i ≤ q.

With the notations above, we find

v−∆ (c) = max{i : bi = ∆} − p, and v+
∆(c) = q −max{i : ai = ∆}.

We have the following connection between the two normal forms.

Lemma 5.1. Assume that M is a small Gaussian monoid, and G its group of
fractions. Let c be an element in G with fractional normal form a−1

p . . . a−1
1 b1 . . . bq.

Then the ∆-normal form of c is ∆−pc1 . . . cp+q with

ci =
{
∂̃2p−2i+1(ap−i+1) for 1 ≤ i ≤ p,
bi−p for p+ 1 ≤ i ≤ p+ q.



Proof. By definition, we have

∆pc = ∆pa−1
p . . . a−1

1 b1 . . . bq

= ∆p∆−1∂̃(ap) . . .∆−1∂̃(a1)b1 . . . bq

= ∂̃2p−1(ap) . . . ∂̃(a1)b1 . . . bq.

Now, we show ∆∧(∂̃2i−1(ai) . . . ∂̃(a1)b1 . . . bq) = ∂̃2i−1(ai) for 1 ≤ i ≤ p by induction
on i. For i = 1, we have

∆ ∧ (∂̃(a1)b1 . . . bq) = ∂̃(a1)(a1 ∧ (b1 . . . bq))

= ∂̃(a1)((a1 ∧ (b1 . . . bq)) ∧∆)

= ∂̃(a1)(a1 ∧ ((b1 . . . bq) ∧∆))

= ∂̃(a1)(a1 ∧ b1) = ∂̃(a1).

Assume i > 1. We have

∆ ∧ (∂̃2i−1(ai) . . . ∂̃(a1)b1 . . . bq)

= ∂̃2i−1(ai)(∂̃2i−2(ai) ∧ (∂̃2i−3(ai−1) . . . ∂̃(a1)b1 . . . bq)).

Now, applying the induction hypothesis, we obtain

∂̃2i−2(ai) ∧ (∂̃2i−3(ai−1) . . . ∂̃(a1)b1 . . . bq)

= (∂̃2i−2(ai) ∧ (∂̃2i−3(ai−1) . . . ∂̃(a1)b1 . . . bq)) ∧∆

= ∂̃2i−2(ai) ∧ ((∂̃2i−3(ai−1) . . . ∂̃(a1)b1 . . . bq) ∧∆)

=
(IH)

∂̃2i−2(ai) ∧ ∂̃2i−3(ai−1) = ∂̃2i−2(ai ∧ ∂(ai−1))

= ∂̃2i−2(ai ∧ (ai−1\∆)) = ∂̃2i−2(1) = 1.

Therefore, we have ci = ∂̃2p−2i+1(ap−i+1) for 1 ≤ i ≤ p, and ci = bi−p for p + 1 ≤
i ≤ p+ q. ut

We can define new cycling and reverse cycling with respect to the fractional normal
form.

Definition. Assume that M is a small Gaussian monoid, and G is its group of
fractions. The θ-cycling and the reverse θ-cycling are the applications θ+ and θ−
from G into itself defined by

θ+(c) = a−1
p−1 . . . a

−1
1 b1 . . . bqa

−1
p , and, θ−(c) = bqa

−1
p . . . a−1

1 b1 . . . bq−1,

with c = a−1
p . . . a−1

1 b1 . . . bq the fractional normal form of c.



The following result proves that cycling and θ-cycling are equivalent.

Proposition 5.2. Assume that M is a small Gaussian monoid, and G its group of
fractions. Then, for every c in G, we have θ+(c) = ∂̃2(φ+(c)) and θ−(c) = φ−(c).

Proof. First, using Lemma 5.1, we obtain

θ+(c) = a−1
p−1 . . . a

−1
1 b1 . . . bqa

−1
p

= a−1
p−1 . . . a

−1
1 b1 . . . bq∆−1∂̃(ap)

= ∆−p∂̃2p−1(ap−1) . . . ∂̃3(a1)∂̃2(b1 . . . bq)∂̃(ap)

= ∂̃2(∆−p∂̃2p−3(ap−1) . . . ∂̃(a1)b1 . . . bq∂(ap))

= ∂̃2(∆−pc2 . . . cp+q∂2p(c1)) = ∂̃2(φ+(c)).

Next, by definition, we have

θ+(c−1) = θ+(b−1
q . . . b−1

1 a1 . . . ap)

= b−1
q−1 . . . b

−1
1 a1 . . . apb

−1
q

= (bqa−1
p . . . a−1

1 b1 . . . bq−1)−1 = θ−(c)−1.

From Lemma 3.9, we deduce θ+(c−1) = ∂̃2(φ+(c−1)) = φ−(c)−1, hence θ−(c) =
φ−(c). ut
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