THE CENTER OF SMALL GAUSSIAN GROUPS

Matthieu PICANTIN

SDAD ESA 6081, Département de Mathématiques, Université de Caen, Campus II, BP 5186, 14032 Caen, France
E-mail: picantin@math.unicaen.fr

Abstract

Small Gaussian groups are a natural generalization of spherical Artin groups, namely groups of fractions of monoids in which the existence of least common multiples is kept as an hypothesis, but the relations between the generators are not supposed to necessarily be of Coxeter type. Here we completely describe the center of small Gaussian groups by constructing a minimal generating set for the quasi-center. We deduce that every small Gaussian group is an iterated crossed product of small Gaussian groups with a cyclic center.

Key words: center; quasi-center; crossed product; decomposition; Artin groups.
MSC 2000: 20F05, 20F36, 20F12.

Introduction

Define a small Gaussian monoid to be a cancellative monoid where 1 is the only invertible element, in which least common multiples exist, and which admits a finite generating set closed under \backslash, where \backslash is the operation defined such that $a(a \backslash b)$ is the right lcm of a and b. A small Gaussian group is defined to be the group of fractions of a small Gaussian monoid. Small Gaussian groups have been introduced in [11] and [12] as a natural generalization for spherical Artin groups, i.e., Artin groups associated with finite Coxeter groups.

In this paper, we construct a minimal generating set of the quasi-center of every small Gaussian monoid. Moreover, we define a notion of Δ-purity and a crossed product for small Gaussian monoids, and we prove
Proposition A. The center of every Δ-pure small Gaussian group is an infinite cyclic subgroup.

Proposition B. Every small Gaussian monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.

These results extend similar statements established by Brieskorn, Saito [7] and Deligne [13] in the special case of spherical Artin groups.

This paper is organized as follows. In Section 1, we gather earlier results of [11] and [12] about small Gaussian groups. In Section 2, we introduce what we call
local Delta's, and compute a minimal generating set of the quasi-center of every small Gaussian monoid. A convenient notion of crossed product for small Gaussian monoids is studied in Section 3. Finally, in Section 4, we define Δ-purity, and prove Propositions A and B.

1. Preliminaries

In this section, we list some basic properties of small Gaussian monoids and small Gaussian groups.

Assume that M is a monoid. We say that M is conical if 1 is the only invertible element in M. For a, b in M, we say that b is a left divisor of $a-$ or that a is a right multiple of b-if $a=b d$ holds for some d in M. An element c is a right lower common multiple - or a right lcm - of a and b if it is a right multiple of both a and b, and every common right multiple of a and b is a right multiple of c. Right divisor, left multiple, and left lcm are defined symmetrically. For a, b in M, we say that b divides a-or that b is a divisor of a-if $a=c b d$ holds for some c, d in M.

If c, c^{\prime} are two right lcm's of a and b, necessarily c is a left divisor of c^{\prime}, and c^{\prime} is a left divisor of c. If we assume M to be conical and cancellative, we have $c=c^{\prime}$. In this case, the unique right lcm of a and b is denoted by $a \vee b$. If $a \vee b$ exists, and M is left cancellative, there exists a unique element c satisfying $a \vee b=a c$. This element is denoted by $a \backslash b$. We define the left lcm \widetilde{v} and the left operation / symmetrically. In particular, we have

$$
a \vee b=a(a \backslash b)=b(b \backslash a), \quad \text { and } \quad a \widetilde{\vee} b=(b / a) a=(a / b) b .
$$

Let us mention that cancellativity plus conicity simply means that left and right divisibility are order relations.

Definition. [11] A monoid M is said to be Gaussian if it is conical, cancellative, and every pair of elements in M admits a left lcm and a right lcm. A Gaussian monoid M is said to be small if there exists a finite subset that generates M and is closed under \backslash.

Example 1.1. The monoid M_{0} with presentation $\langle x, y: x y y x y x y y x=y x y y x y\rangle$ is a small Gaussian monoid.

If M is a (small) Gaussian monoid, then M satisfies Ore's conditions [8], and it embeds in a group of right fractions, and, symmetrically, in a group of left fractions. In this case, by construction, every right fraction $a b^{-1}$ with a, b in M can be expressed as a left fraction $c^{-1} d$, and conversely. Therefore, the two groups coincide, and there is no ambiguity in speaking of the group of fractions of a small Gaussian monoid.

Definition. A group G is a small Gaussian group if there exists a small Gaussian monoid of which G is the group of fractions.

By [7], all spherical Artin monoids are small Gaussian monoids. The braid monoids of the complex reflection groups $G_{7}, G_{11}, G_{12}, G_{13}, G_{15}, G_{19}$ and G_{22} given in [6], some monoids for torus knot or link groups [20][19], the Birman-Ko-Lee monoids of spherical Artin groups [4][2][18][1] are also small Gaussian monoids.

Lemma 1.2. [11] Assume that M is a Gaussian monoid. Then the following identities holds in M :

$$
\begin{gather*}
(a b) \vee(a c)=a(b \vee c), \tag{1.1}\\
c \backslash(a b)=(c \backslash a)((a \backslash c) \backslash b), \quad(a b) \backslash c=b \backslash(a \backslash c), \tag{1.2}\\
(a \vee b) \backslash c=(a \backslash b) \backslash(a \backslash c)=(b \backslash a) \backslash(b \backslash c), \quad c \backslash(a \vee b)=(c \backslash a) \vee(c \backslash b) . \tag{1.3}
\end{gather*}
$$

Lemma 1.3. [12] Assume that M is a small Gaussian monoid. Then the following equivalent assertions hold:
(i) There exists a mapping μ from M into the integers satisfying $\mu(a)>0$ for every $a \neq 1$ in M, and satisfying $\mu(a b) \geq \mu(a)+\mu(b)$ for every a, b in M;
(ii) For every set X that generates M and for every a in M, the lengths of the decompositions of a as products of elements in X have a finite upper bound.

Definition. [12] A monoid is said to be atomic if it satisfies the equivalent conditions of Lemma 1.3. The norm function $\|$.$\| of an atomic monoid M$ is defined such that, for every a in $M,\|a\|$ is the upper bound of the lengths of the decompositions of a as products of atoms.

By the previous lemma, every element in a small Gaussian monoid has only finitely many left divisors, then, for every pair of elements (a, b), the common left divisors of a and b admit a right lcm, which is therefore the left gcd of a and b. This left gcd will be denoted by $a \wedge b$. We define the right $\operatorname{gcd} \widetilde{\wedge}$ symmetrically.

The following property essentially expresses the connection between the operations $\vee, \wedge, \widetilde{\vee}$ and $\widetilde{\wedge}$.

Lemma 1.4. Assume that M is a small Gaussian monoid. Then, for a, b, c, d in M satisfying $a b=c d$, we have $a b=(a \vee c)(b \widetilde{\wedge} d)=(a \wedge c)(b \widetilde{\vee} d)=c d$.

Proof. There exists g in M satisfying $a b=(a \vee c) g=c d$. We deduce $b=(a \backslash c) g$ and $(c \backslash a) g=d$. In particular, there exists h in M satisfying $b \widetilde{\wedge} d=h g$. Therefore, h is a right divisor of both $a \backslash c$ and $c \backslash a$. By definition of the operation \backslash, we find $h=1$, hence $a b=(a \vee c)(b \widetilde{\wedge} d)=c d$. The equality $a b=(a \wedge c)(b \widetilde{\vee} d)=c d$ is obtained symmetrically.

Lemma 1.5. [11] Assume that M is a small Gaussian monoid. Then it admits a finite generating subset that is closed under $\backslash, /, \vee, \wedge, \widetilde{\vee}$ and $\widetilde{\wedge}$.

An atom is defined to be a non trivial element a such that $a=b c$ implies $b=1$ or $c=1$. Every small Gaussian monoid admits a finite set of atoms, and this set is the minimal generating set [12]. The hypothesis that there exists a finite generating subset that is closed under \implies that the closure of the atoms under \backslash is finite - its elements are called right primitive elements. In particular, the closure of the atoms under \backslash and v is finite-its elements are called simple elements, and their right 1 cm is denoted by Δ. It turns out that the set of the simple elements is also the closure of atoms under / and \widetilde{v}. So, the element Δ is both the right and the left lcm of the simple elements, and it is called the Garside element of the monoid. If M is a small Gaussian monoid and S is the set of simple elements in M, then $(S, \wedge, \vee, 1, \Delta)$ is a finite lattice.

Proposition 1.6. [11] Assume that M is a small Gaussian monoid, S is the set of its simple elements, and Δ is its Garside element.
(i) Let k be a nonnegative integer. Then, S^{k} is both the set of all left divisors of Δ^{k} and the set of all right divisors of Δ^{k}.
(ii) The functions $a \mapsto(a \backslash \Delta) \backslash \Delta$ and $a \mapsto \Delta /(\Delta / a)$ from S into itself extend into automorphisms ϕ and $\widetilde{\phi}$ of M that map S^{k} into itself for every k, and the equalities

$$
a \Delta=\Delta \phi(a), \quad \text { and } \quad \Delta a=\widetilde{\phi}(a) \Delta
$$

hold for every a in M.
Definition. Assume that M is a small Gaussian monoid. The order of the automorphisms ϕ and $\widetilde{\phi}$ of M is called the exponent of M.

Our main subject here will be the study of the center. Let us first recall some basic notions.

Definition. Assume that M is a small Gaussian monoid, A is its set of atoms, and G is its group of fractions. Then the quasi-center of M (resp. the quasicentralizer of A in G) is the submonoid $\{b \in M ; A b=b A\}$ of M (resp. the subgroup $\{b \in G ; A b=b A\}$ of G).

Lemma 1.7. Assume that M is a small Gaussian monoid. Then, for every element a and every quasi-central element b in M, the following are equivalent:
(i) a divides b;
(ii) a is a left divisor of b;
(iii) a is a right divisor of b.

The study of the center of small Gaussian groups reduces to the study of the center and quasi-center of small Gaussian monoids:

Lemma 1.8. Assume that M is a small Gaussian monoid, A is the set of its atoms, and G is its group of fractions. Then
(i) the quasi-centralizer of A in G is the group of fractions of the quasi-center of M;
(ii) the center of G is the group of fractions of the center of M.

Proof. Let c be an element in G. There exist an integer p and an element c^{\prime} in M satisfying $c=\Delta^{p} c^{\prime}$, see [11][17].
(i) Assume c in the quasi-centralizer of A in G. Then, the element $\Delta^{|p|}$ of M being quasi-central by Proposition 1.6, c^{\prime} is quasi-central. Every element in the quasi-centralizer of A in G is so the quotient of two quasi-central elements of M.
(ii) There exist integers q, r satisfying $p=q e+r$ and $r \geq 0$, where e denotes the exponent of M. Assume c central. The element $\Delta^{|q| e}$ of M being central by definition, the element $\Delta^{r} c^{\prime}$ belongs to the center of M. Every central element in G is thus the quotient of two central elements of M.

2. A local Delta for each element

Assume that M is a small Gaussian monoid. Here we associate with each element a in M a distinguished quasi-central element Δ_{a} which behaves like a sort of local Garside element. The main result is that the family of all Δ_{x} 's for x an atom generates the quasi-center of M.

Notation. Assume that M is a Gaussian monoid. For $X, Y \subseteq M$, we denote by $Y \backslash X$ the set of the elements $b \backslash a$ for a in X, b in Y. We write $Y \backslash a$ for $Y \backslash\{a\}$ and $b \backslash X$ for $\{b\} \backslash X$.

Lemma 2.1. Assume that M is a small Gaussian monoid, and S is its set of simples. Then, for every a in M, we have $M \backslash a=S^{q} \backslash a$ for some q (depending on a).

Proof. Let $a \in M$. As S generates M, a belongs to S^{p} for some p. Now, a direct computation gives $M \backslash S^{p}=S^{p}$. In particular, we have $M \backslash a \subseteq S^{p}$, hence

$$
S \backslash a \subseteq S^{2} \backslash a \subseteq S^{3} \backslash a \subseteq \ldots \subseteq S^{p} .
$$

As S is finite, there exists $q \leq \operatorname{card}\left(S^{p}\right)$ satisfying $S^{q} \backslash a=S^{q+1} \backslash a$. We show using induction on j that, for every $j \leq 1$, we have $S^{q} \backslash a=S^{q+j} \backslash a$. The result is vacuously true for $j=1$. Assume $j>1$. Let $b \in S^{q+j-1}$ and $c \in S$. By induction
hypothesis, there exists d in S^{q} satisfying $d \backslash a=b \backslash a$. By using Identity (1.2) of Lemma 1.2, we find $(b c) \backslash a=c \backslash(b \backslash a)=c \backslash(d \backslash a)=(d c) \backslash a$, so $(b c) \backslash a$ belongs to $S^{q+1} \backslash a$, i.e., to $S^{q} \backslash a$, which completes the induction. Finally, we obtain $S^{q} \backslash a=$ $M \backslash a$.

Definition. Assume that M is a small Gaussian monoid. For every a in M, we define

$$
\Delta_{a}=\bigvee\{b \backslash a ; b \in M\}
$$

By Lemma 2.1, the element Δ_{a} is well defined and effectively computable for every a in M. Symmetrically, we define $\widetilde{\Delta}_{a}=\widetilde{\bigvee}\{a / b ; b \in M\}$. Let us remark that, for every a in M, the equality $1 \backslash a=a$ (resp. $a / 1=a$) implies a to be a left divisor of $\Delta_{a}\left(\right.$ resp. a right divisor of $\left.\widetilde{\Delta}_{a}\right)$, and that, having $b \backslash 1=1=1 / b$ for every b in M, we obtain $\Delta_{1}=1=\widetilde{\Delta}_{1}$.

For instance, in the small Gaussian monoid M_{0} of Example 1.1, we compute $S_{0} \backslash x \varsubsetneqq$ $S_{0}^{2} \backslash x=M_{0} \backslash x$ and $S_{0} \backslash y \varsubsetneqq S_{0}^{2} \backslash y=M_{0} \backslash y$, where S_{0} denotes the set of simple elements in M_{0}. The considered sets are displayed in Figure 1. We find $\Delta_{x}=$ $\Delta_{y}=\Delta$. The current example shows that the sets $M \backslash x$ with x an atom need not be the whole set of primitive elements in M.

We are going to prove:

Proposition 2.2. Assume that M is a small Gaussian monoid. Then, for every a in M, the element Δ_{a} is quasi-central. More precisely, the application $a \mapsto \Delta_{a}$ is a surjection from M onto the quasi-center of M.

The proof of this result relies on several preliminary statements.

Lemma 2.3. Assume that M is a small Gaussian monoid. Then every quasicentral element a in M satisfies $\Delta_{a}=a=\widetilde{\Delta}_{a}$.

Proof. Let $b \in M$. As a is quasi-central, we have $b a=a b^{\prime}$ for some b^{\prime} in M. Therefore, $b a$ is a right multiple of $b \vee a$, which is $b(b \backslash a)$, and, by left cancellation, a is a right multiple of $b \backslash a$. So, a is a right multiple of Δ_{a}-which is the right lcm of all $b \backslash a$'s. Now, a being a left divisor of Δ_{a}, cancellativity and conicity imply $\Delta_{a}=a$. The equality $\widetilde{\Delta}_{a}=a$ is obtained symmetrically.

Lemma 2.4. Assume that M is a small Gaussian monoid. Then, for every a in M, the following are equivalent:
(i) $\Delta_{a}=a$ holds;
(ii) for every b in M, a is a left divisor of $b a$.

Figure 1. The lattice of simple elements in $M_{0}=\langle x, y: x y y x y x y y x=y x y y x y\rangle$. The light edges represent x, while the dark ones represent y. The white points represent the primitive elements in M_{0}, while the black points represent the non-primitive simple elements in M_{0}. The elements of $M_{0} \backslash x$ (resp. of $M_{0} \backslash y$) are those represented by all white points except those marked ' \times ' (resp. ' + ').

Proof. Assume (i). Let $b \in M$. From $\bigvee(M \backslash a)=a$, we deduce that $b \backslash a$ is a left divisor of a. Therefore, $b(b \backslash a)$ is a left divisor of $b a$. Now, by definition, $b(b \backslash a)$ is $a(a \backslash b)$, which implies (ii). Conversely, assume (ii). Then, for every b in $M, a \vee b$-which is $b(b \backslash a)$ by definition-is a left divisor of $b a$, and so, by left cancellation, $b \backslash a$ is a left divisor of a. This implies that $\bigvee(M \backslash a)$ is a left divisor of a, and, a being a left divisor of Δ_{a}, cancellativity and conicity yield (i).

Lemma 2.5. Assume that $M_{\widetilde{\sim}}$ is a small Gaussian monoid. Then, for every a in $M, \Delta_{a}=a$ is equivalent to $\widetilde{\Delta}_{a}=a$.

Proof. Let G be the group of fractions of M. We consider the injective endomorphism $h_{a}: b \mapsto a^{-1} b a$ of G. Assume $\Delta_{a}=a$. Then, by Lemma 2.4, for every b in M, a is a left divisor of $b a$: we deduce $h_{a}(M) \subseteq M$. Let S be the set of simples in M and e be the exponent of M. According to Proposition 1.6, for every c in S^{e}, there exists an element d in S^{e} satisfying $\Delta^{e}=c d$. We obtain $h_{a}\left(\Delta^{e}\right)=h_{a}(c) h_{a}(d)$, and, Δ^{e} being central, $\Delta^{e}=h_{a}(c) h_{a}(d)$, which implies $h_{a}(c) \in S^{e}$ (and $h_{a}(d) \in S^{e}$). As, by hypothesis, the set S is finite, the
injective endomorphism h_{a} restricted to S^{e} is an automorphism. In particular, $h_{a}(M)$ includes the atoms of M, and we deduce $h_{a}(M)=M$. The endomorphism h_{a} is then an automorphism of M. Therefore, for every b in $M_{2} a$ is a right divisor of $a b$, and, by the left counterpart of Lemma 2.4, we deduce $\widetilde{\Delta}_{a}=a$. The converse implication is obtained symmetrically.

Lemma 2.6. Assume that M is a small Gaussian monoid. Then every element a in M satisfying $\Delta_{a}=a$ is quasi-central.

Proof. Let x be an atom of M. By Lemma 2.4, the hypothesis $\Delta_{a}=a$ implies that there exists d in M satisfying $x a=a d$. By right cancellativity, we have $d \neq 1$, and there exist a positive integer n and atoms z_{1}, \ldots, z_{n} satisfying $d=z_{1} \cdots z_{n}$. By Lemma 2.5, $\Delta_{a}=a$ holds, and, by the left counterpart of Lemma 2.4, for every atom z_{i} with $1 \leq i \leq n$, there exists an element c_{i} in M satisfying $a z_{i}=c_{i} a$. By left cancellativity, we have $c_{i} \neq 1$ for $1 \leq i \leq n$. We obtain

$$
x a=a d=a z_{1} \cdots z_{n}=c_{1} \cdots c_{n} a
$$

hence, by right cancellation, $x=c_{1} \cdots c_{n}$. As x is an atom, we must have $n=1$, i.e., d is an atom. So, there exists a mapping f_{a} from the atoms of M into themselves such that $x a=a f_{a}(x)$ holds for every atom x. By cancellativity, f_{a} is injective, hence surjective : a is quasi-central by definition.

Proof of Proposition 2.2. Let us show that $a \mapsto \Delta_{a}$ is idempotent. Let $a \in M$. By Lemma 2.1, there exists an integer n satisfying $M \backslash a=S^{n} \backslash a$ and $M \backslash \Delta_{a}=S^{n} \backslash \Delta_{a}$. Let $S^{n}=\left\{q_{1}, \ldots, q_{r}\right\}$. By using Lemma 1.2, we find

$$
\begin{aligned}
\Delta_{\Delta_{a}} & =\left(q_{1} \backslash\left(q_{1} \backslash a \vee \ldots \vee q_{r} \backslash a\right)\right) \vee \ldots \vee\left(q_{r} \backslash\left(q_{1} \backslash a \vee \ldots \vee q_{r} \backslash a\right)\right) \\
& =\left(\left(q_{1} q_{1} \backslash a\right) \vee \ldots \vee\left(q_{r} q_{1} \backslash a\right)\right) \vee \ldots \vee\left(\left(q_{1} q_{r} \backslash a\right) \vee \ldots \vee\left(q_{r} q_{r} \backslash a\right)\right) .
\end{aligned}
$$

Now, one of the q_{i} 's is 1 , and, therefore, we obtain $\Delta_{\Delta_{a}}=\Delta_{a} \vee \bigvee\left(S^{\prime} \backslash a\right)$, where S^{\prime} is some subset of $S^{2 n}$. We deduce that $\Delta_{\Delta_{a}}=\Delta_{a}$ holds for every a in M. Therefore, by Lemma 2.6, Δ_{a} is quasi-central for every a in M.

Lemma 2.7. Assume that M is a small Gaussian monoid. Then, for every element a and every quasi-central element b in M, a dividing b implies Δ_{a} and $\widetilde{\Delta}_{a}$ dividing b.

Proof. By hypothesis, there exists an element d in M satisfying $b=a d$. As b is quasi-central, for every c in M, there exists an element c^{\prime} in M satisfying $c b=a d c^{\prime}$. In particular, for every c in $M, c \vee a$-which is $c(c \backslash a)$-is a left divisor of $c b$, and, by left cancellation, $c \backslash a$ is a left divisor of b. Therefore, by definition, Δ_{a} divides b.

Proposition 2.8. Assume that M is a small Gaussian monoid. Let A be its set of atoms. Then the quasi-center of M is generated by the set $\left\{\Delta_{x} ; x \in A\right\}$.

Proof. Let b be a quasi-central element in M. We show using induction on $\|b\|$ that there exist an integer n and atoms x_{1}, \ldots, x_{n} satisfying $b=\Delta_{x_{1}} \cdots \Delta_{x_{n}}$. For $\|b\|=0, n$ is 0 . Assume now $\|b\|>0$. Then there exist an atom x and an element b^{\prime} in M satisfying $b=x b^{\prime}$. By Lemma 2.7, we have $b=\Delta_{x} b^{\prime \prime}$ for some $b^{\prime \prime}$ in M with $\left\|b^{\prime \prime}\right\|<\|b\|$. By Proposition 2.2 , the element Δ_{x} is quasi-central, hence so is $b^{\prime \prime}$. By induction hypothesis, there exist an integer m and atoms y_{1}, \ldots, y_{m} satisfying $b^{\prime \prime}=\Delta_{y_{1}} \cdots \Delta_{y_{m}}$. We obtain $b=\Delta_{x} \Delta_{y_{1}} \cdots \Delta_{y_{m}}$.

For instance, in the case of the small Gaussian monoid M_{0} of Example 1.1, Proposition 2.8 implies that its quasi-center is generated by Δ. As its exponent is 1 , the center of M_{0} coincides with the quasi-center.

We now prove that the generating set $\left\{\Delta_{x} ; x \in A\right\}$ is minimal.
Lemma 2.9. Assume that M is a small Gaussian monoid. Then, for all atoms x, y in M, we have either $\Delta_{x}=\Delta_{y}$ or $\Delta_{x} \wedge \Delta_{y}=1$.

Proof. We first prove that, for all atoms x, y and every b in $M, \Delta_{x}=\Delta_{y} b$ implies $b=1$. As $1 \backslash x=x$ holds, we have $\Delta_{x}=x d$ for some d in M. By using Lemma 1.4, we obtain

$$
\Delta_{x}=x d=\Delta_{y} b=\left(x \wedge \Delta_{y}\right)(d \widetilde{\vee} b)
$$

Assume $x \wedge \Delta_{y}=1$. Then we find $\Delta_{x}=x d=\Delta_{y} b=d \widetilde{\vee} b=(b / d) d$, hence, by right cancellation, $x=b / d$. Therefore, x divides $\widetilde{\bigvee}(b / M)$, which, by definition, is $\widetilde{\Delta}_{b}$. Now, by hypothesis, b is quasi-central, and Lemma 2.3 implies $\widetilde{\Delta}_{b}=b$. By Lemma $2.7, \Delta_{x}$ divides b, which, by cancellativity and conicity, implies $\Delta_{y}=1$, a contradiction. Assume $x \wedge \Delta_{y} \neq 1$. Then, by atomicity, x divides Δ_{y}, and, by Lemma $2.7, \Delta_{x}$ divides Δ_{y}, which, by cancellativity and conicity, implies $b=1$.

Now, let x, y be atoms in M. Assume $\Delta_{x} \wedge \Delta_{y} \neq 1$. Then there exists an atom z in M dividing both Δ_{x} and Δ_{y}. By Lemma 2.7, Δ_{z} divides both Δ_{x} and Δ_{y}, which, by the result above, implies $\Delta_{x}=\Delta_{z}=\Delta_{y}$.

Proposition 2.10. Assume that M is a small Gaussian monoid. Let A be its set of atoms. Then $\left\{\Delta_{x} ; x \in A\right\}$ is a minimal generating set of the quasi-center of M.

Proof. By Proposition 2.8, the set $\left\{\Delta_{x} ; x \in A\right\}$ generates the quasi-center of M. Let x be an atom, and a, b be quasi-central elements in M. We have to show that $\Delta_{x}=a b$ implies either $a=1$ or $b=1$. Assume $a \neq 1$. Then we have $a=y a^{\prime}$
for some atom y and some a^{\prime} in M. As a is quasi-central, by Lemma 2.7, Δ_{y} is a left divisor of a, and, therefore, Δ_{y} is a left divisor of Δ_{x}. We have $\Delta_{y} \neq 1$, hence, by Lemma $2.9, \Delta_{y}=\Delta_{x}$. Cancellativity and conicity imply then $b=1$.

We give now a new characterization of the function $a \mapsto \Delta_{a}$. We have seen that every element Δ_{a} is quasi-central, and, by construction, Δ_{a} is a right multiple of a. We prove that Δ_{a} is minimal with these properties. This new point of view will allow us to show that Δ_{a} and $\widetilde{\Delta}_{a}$ always coincide.

Lemma 2.11. Assume that M is a small Gaussian monoid. Then, for all quasicentral elements a, b in M, the elements $a \wedge b$ and $a \widetilde{\wedge} b$ are quasi-central.

Proof. By Lemma 2.7, the element $\Delta_{a \wedge b}$ divides both a and b. Therefore, $\Delta_{a \wedge b}$ is a left divisor of $a \wedge b$. Now, $a \wedge b$ being a left divisor of $\Delta_{a \wedge b}$, we deduce $\Delta_{a \wedge b}=a \wedge b$ by using cancellativity and conicity. By Lemma 2.6, $a \wedge b$ is therefore quasi-central. Symmetrically, $a \widetilde{\wedge} b$ is quasi-central.

Proposition 2.12. Assume that M is a small Gaussian monoid, and $Q Z$ is its quasi-center. Then, for every a in M, we have

$$
\Delta_{a}=\bigwedge(Q Z \cap a M) \quad \text { and } \quad \widetilde{\Delta}_{a}=\widetilde{\bigwedge}(Q Z \cap M a)
$$

Proof. Let $a \in M$. By definition, Δ_{a} is a right multiple of a, and, by Proposition 2.2, Δ_{a} is quasi-central. Therefore, Δ_{a} belongs to $Q Z \cap a M$, and $\bigwedge(Q Z \cap a M)$ divides Δ_{a}. Now, as $Q Z \cap a M$ is nonempty, $\bigwedge(Q Z \cap a M)$ is a right multiple of a. Moreover, by Lemma 2.11, $\bigwedge(Q Z \cap a M)$ is quasi-central, and so, by Lemma 2.7, Δ_{a} divides $\bigwedge(Q Z \cap a M)$. Cancellativity and conicity allow to conclude. The equality $\widetilde{\Delta}_{a}=\widetilde{\bigwedge}(Q Z \cap M a)$ is obtained symmetrically.

Corollary 2.13. Assume that M is a small Gaussian monoid. Then, for every a in M, we have $\Delta_{a}=\widetilde{\Delta}_{a}$.

Proof. Let $a \in M$. By Lemma 1.7, we have

$$
Q Z \cap a M=Q Z \cap M a M=Q Z \cap M a .
$$

By using Proposition 2.12, we deduce $\Delta_{a}=\bigwedge(Q Z \cap M a M)$ and $\widetilde{\Delta}_{a}=\widetilde{\bigwedge}(Q Z \cap$ $M a M)$. Now, Δ_{a} belongs to $Q Z \cap M a M$, and, therefore, $\widetilde{\Delta}_{a}$ is a right divisor of Δ_{a}. Symmetrically, Δ_{a} is a left divisor of $\widetilde{\Delta}_{a}$. Cancellativity and conicity allow to conclude.

We conclude the current section with the observation that the quasi-center of every small Gaussian monoid is a free abelian submonoid.

Lemma 2.14. Assume that M is a small Gaussian monoid. Then, for all elements a, b in M, we have $\Delta_{a} \vee \Delta_{b}=\Delta_{a \vee b}$.

Proof. First, let us show that, for all quasi-central elements a, b in M, the element $a \vee b$ is quasi-central. Let S be the set of simples in M. As S generates M, there exists a positive integer n such that a, b belong to S^{n}, and, by Proposition 1.6, there exist elements a^{\prime}, b^{\prime} in S^{n} satisfying $\Delta^{n}=a a^{\prime}=b b^{\prime}$. As, by definition, Δ^{n} is quasi-central, both a^{\prime}, b^{\prime} are quasi-central. Now, Lemma 1.4 gives $\Delta^{n}=a a^{\prime}=b b^{\prime}=(a \vee b)\left(a^{\prime} \widetilde{\wedge} b^{\prime}\right)$. As, by Lemma 2.11, $a^{\prime} \widetilde{\wedge} b^{\prime}$ is quasi-central, we deduce that $a \vee b$ is quasi-central.

As $a \vee b$ divides $\Delta_{a \vee b}, a$ divides $\Delta_{a \vee b}$. By Proposition 2.2 and Lemma 2.7, Δ_{a} divides $\Delta_{a \vee b}$, and, symmetrically, Δ_{b} divides $\Delta_{a \vee b}$. So, $\Delta_{a \vee} \Delta_{b}$ divides $\Delta_{a \vee b}$, and the equality follows from the result above and Proposition 2.12.

Proposition 2.15. Assume that M is a small Gaussian monoid. Let $Q Z$ be its quasi-center. Then $Q Z$ is a free abelian submonoid of M, and the function $a \mapsto \Delta_{a}$ is a surjective semilattice homomorphism from (M, \vee) onto $(Q Z, \vee)$.

Proof. Let A be the set of atoms in M. By Proposition 2.10, $Q Z$ is the submonoid generated by $\left\{\Delta_{x} ; x \in A\right\}$. So, in order to prove that $Q Z$ is free abelian, it suffices to show that $\Delta_{x} \backslash \Delta_{y}=\Delta_{y}$ holds for all x, y in A with $\Delta_{x} \neq \Delta_{y}$. Assume $\Delta_{x} \neq \Delta_{y}$. Then Lemma 2.9 implies $\Delta_{x} \backslash \Delta_{y} \neq 1$. As $\Delta_{\Delta_{y}}$ is Δ_{y} (see the proof of Proposition 2.2), $\Delta_{x} \backslash \Delta_{y}$ divides Δ_{y}. Now, by Lemma 2.14, the element $\Delta_{x} \backslash \Delta_{y}$ is quasi-central, and Proposition 2.10 implies $\Delta_{x} \backslash \Delta_{y}=\Delta_{y}$. The second part of the assertion follows then from Lemma 2.14.

Remark. Assume that M is a small Gaussian monoid. Let $Q Z$ be its quasicenter. The function $a \mapsto \Delta_{a}$ need not be a semilattice homomorphism from (M, \wedge) onto $(Q Z, \wedge)$. Indeed, for a, b in $M, \Delta_{a \wedge b}$ divides $\Delta_{a} \wedge \Delta_{b}\left(\right.$ as $a \wedge b$ divides both Δ_{a} and $\Delta_{b}, a \wedge b$ divides $\Delta_{a} \wedge \Delta_{b}$, which is quasi-central by Lemma 2.11, and so, by Lemma 2.7, $\Delta_{a \wedge b}$ divides $\Delta_{a} \wedge \Delta_{b}$), but there is no equality in general. We shall see in Section 4 a necessary and sufficient condition for this.

3. Crossed products

In this section, we define the notion of a crossed product for small Gaussian groups. As the latter are groups of fractions, we first define the notion for small Gaussian monoids.

Definition. Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids-or, more generally, cancellative conical monoids with finitely many atoms. Let A_{i} be the set of atoms in M_{i} for $1 \leq i \leq n$. Assume that $\vec{\Theta}=\left(\Theta_{i j}\right)_{1 \leq i \neq j \leq n}$ is a family of functions $\Theta_{i j}: M_{i} \times M_{j} \rightarrow M_{j}$. We say that $\vec{\Theta}$ satisfies Condition (\#) if, for every a in M_{i}, the restriction $\Theta_{i j}(a,$.$) of \Theta_{i j}$ to $\{a\} \times M_{j}$ is a bijection of M_{j}, and, in addition, we have

$$
\begin{gather*}
\Theta_{i j}(a b, c)=\Theta_{i j}\left(b, \Theta_{i j}(a, c)\right), \\
\Theta_{i j}(a, c d)=\Theta_{i j}(a, c) \Theta_{i j}\left(\Theta_{j i}(c, a), d\right), \\
\Theta_{j k}\left(\Theta_{i j}(a, c), \Theta_{i k}(a, e)\right)=\Theta_{i k}\left(\Theta_{j i}(c, a), \Theta_{j k}(c, e)\right),
\end{gather*}
$$

for a, b in M_{i}, c, d in M_{j}, e in M_{k} with $1 \leq i \neq j \neq k \neq i \leq n$. The crossed product $\bigotimes_{i}^{\vec{\Theta}} M_{i}$ is then defined to be the quotient of the free product of the M_{i} 's by the congruence generated by all pairs $\left(x \Theta_{i j}(x, y), y \Theta_{j i}(y, x)\right)$ with $x \in A_{i}$, $y \in A_{j}$ and $1 \leq i<j \leq n$. For $n=2$, we write $M_{1} \bowtie_{\Theta} M_{2}$.

The current notion of crossed product is reminiscent of the crossed product of groups as defined in [15] and [21] of which it is a monoidal version.

Example 3.1. Let us say that a family $\vec{\Theta}$ is trivial if, for $1 \leq i \neq j \leq n, \Theta_{i j}(a,$. is the identity for every a in $M_{i}: \vec{\Theta}$ is then a family satisfying Condition (\#), and the crossed product $\bigotimes_{i}^{\vec{\Theta}} M_{i}$ is the direct product $M_{1} \times \ldots \times M_{n}$.

Lemma 3.2. Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids-or, more generally, cancellative conical monoids with finitely many atoms. Let A_{i} be the set of atoms in M_{i} for $1 \leq i \leq n$. Then, for every family $\vec{\Theta}$ of functions satisfying Condition (\#), for $1 \leq i \neq j \leq n$, for every a in M_{i}, the restriction $\Theta_{i j}(a,$.$) of \Theta_{i j}$ to $\{a\} \times A_{j}$ is a permutation of A_{j}.

Proof. First, by taking $b=1$ in (\#1) and using surjectivity, we find

$$
\begin{equation*}
\Theta_{i j}(1, d)=d, \tag{3.1}
\end{equation*}
$$

for every d in M_{j}. Next, by taking $c=d=1$ in (\#2) and using both (3.1) and cancellativity, we obtain

$$
\begin{equation*}
\Theta_{i j}(a, 1)=1, \tag{3.2}
\end{equation*}
$$

for every a in M_{i}. Now, the restriction of $\Theta_{i j}$ to $\{a\} \times M_{j}$ is a surjection onto M_{j} : in particular, for every atom z of A_{j}, there exists c in M_{j} satisfying $\Theta_{i j}(a, c)=z$. We claim $c \in A_{j}$. Indeed, (3.2) implies $c \neq 1$, so we have $c=y c^{\prime}$ for some $y \in A_{j}$ and $c^{\prime} \in M_{j}$. By applying (\#2), we find $\Theta_{i j}(a, y) \Theta_{i j}\left(\Theta_{j i}(y, a), c^{\prime}\right)=z$. Both injectivity of $\Theta_{i j}(a,$.$) and (3.2) imply \Theta_{i j}(a, y) \neq 1$. As z is an atom, we obtain $\Theta_{i j}(a, y)=z$, and, by using injectivity of $\Theta_{i j}(a,$.$) , we find c=y \in A_{j}$.

Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids. Let A_{i} be the set of atoms in M_{i} for $1 \leq i \leq n$. Then every family $\vec{\Theta}$ satisfying Condition (\#) for M_{1}, \ldots, M_{n} is completely determined by the induced permutations $\Theta(x,$.$) of A_{j}$ for x in A_{i} and $1 \leq i \neq j \leq n$ (see Lemma 3.2). Now, conversely, not every such family of atom permutations extends into a family satisfying Condition (\#) for M_{1}, \ldots, M_{n}. For instance, let us consider the small Gaussian monoids $\left\langle x, y: x y x=y^{2}\right\rangle$ and $\langle z:\rangle$. The family of the atoms permutations $\Theta(x,)=.\Theta(y,)=.\left(\begin{array}{cc}x & y \\ x & z \\ x & z\end{array}\right)$ and $\Theta(z,)=.\left(\begin{array}{ccc}x & y & z \\ y & x & z\end{array}\right)$ does not extend into a family satisfying Condition (\#). Indeed, by using (\#1) for instance, we would find $\Theta\left(z, y^{2}\right)=x^{2}$ and $\Theta(z, x y x)=$ $y x y$, but $x^{2} \neq y x y$ holds. See also Examples 3.3, 3.7, 3.9 and 3.12.

Definition. Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids-or, more generally, cancellative conical monoids with finitely many atoms. Let A_{i} be the set of atoms in M_{i} for $1 \leq i \leq n$, and A be the disjoint union $A_{1} \sqcup \ldots \sqcup A_{n}$. Assume that $\vec{\theta}=\left(\theta_{x}\right)_{x \in A}$ is a family of permutations of A. We say that $\vec{\theta}$ satisfies Condition (\#) if, for every x, θ_{x} is a permutation of A which globally preserves every A_{j} for $1 \leq j \leq n$, and, in addition, the θ_{x} 's can be extended into a (necessary unique) family of functions satisfying Condition (\#). The corresponding crossed product is then denoted by $\bigotimes_{i}^{\vec{\theta}} M_{i}$. The latter does not depend on the value of $\theta_{x}(y)$ for x, y in A_{j} and $1 \leq j \leq n$, and we can assume that θ_{x} is the identity on A_{j} for every x in A_{j} and $1 \leq j \leq n$.

Example 3.3. Let us consider the small Gaussian monoids $M_{1}=\left\langle x_{1}, x_{2}, x_{3}\right.$: $\left.x_{1} x_{2}=x_{2} x_{3}=x_{3} x_{1}\right\rangle$ and $M_{2}=\left\langle y, z: y^{3}=z^{3}\right\rangle$. Let $\vec{\theta}$ be defined by $\theta_{x_{1}}=$ $\theta_{x_{2}}=\theta_{x_{3}}=\left(\begin{array}{cccc}x_{1} & x_{2} & x_{3} & y \\ x_{1} & x_{2} & x_{3} & z\end{array}\right)$, and $\theta_{y}=\theta_{z}=\left(\begin{array}{lllll}x_{1} & x_{2} & x_{3} & y & z \\ x_{3} & x_{1} & x_{2} & y & z\end{array}\right)$. Then $\vec{\theta}$ is a family satisfying Condition (\#) for M_{1}, M_{2}, and the monoid $M_{1} \bowtie_{\vec{\theta}} M_{2}$ admits the presentation $\left\langle x_{1}, x_{2}, x_{3}, y, z: x_{1} x_{2}=x_{2} x_{3}=x_{3} x_{1}, y^{3}=z^{3}, x_{1} z=y x_{3}, x_{1} y=\right.$ $\left.z x_{3}, x_{2} z=y x_{1}, x_{2} y=z x_{1}, x_{3} y=z x_{2}, x_{3} z=y x_{2}\right\rangle$.

Lemma 3.4. Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids-or, more generally, cancellative atomic monoids with finitely many atoms. Then, for every family $\vec{\Theta}$ of functions satisfying Condition (\#), for $1 \leq i \neq j \leq n$, for every a in M_{i} and every b in M_{j}, we have $\left\|\Theta_{i j}(a, b)\right\|=\|b\|$.

Proof. We show by induction on $\|b\|$ that, for $1 \leq i \neq j \leq n$, for every a in M_{i} and every b in M_{j}, we have $\left\|\Theta_{i j}(a, b)\right\| \geq\|b\|$. For $\|b\|=0$, the result follows from (3.2).

Assume $\|b\|>0$. Then there exist an atom x and an element d in M_{j} satisfying both $b=x d$ and $\|b\|=1+\|d\|$. Lemma 3.2 implies $\left\|\Theta_{i j}(a, x)\right\|=1$. By applying the induction hypothesis, we obtain

$$
\begin{aligned}
\left\|\Theta_{i j}(a, b)\right\|=\left\|\Theta_{i j}(a, x d)\right\| & \stackrel{(3.2)}{=}\left\|\Theta_{i j}(a, x) \Theta_{i j}\left(\Theta_{j i}(x, a), d\right)\right\| \\
& \geq\left\|\Theta_{i j}(a, x)\right\|+\left\|\Theta_{i j}\left(\Theta_{j i}(x, a), d\right)\right\| \\
& =1+\left\|\Theta_{i j}\left(\Theta_{j i}(x, a), d\right)\right\| \\
& \stackrel{(\text { IH) })}{\geq} 1+\|d\|=\|b\|,
\end{aligned}
$$

which completes the induction.
Now, for every a in M_{i} with $1 \leq i \leq n$, we denote by $\widetilde{\Theta}_{i j}(a,$.$) the inverse of the$ bijection $\Theta_{i j}(a,$.$) . By definition, we have$

$$
\begin{equation*}
\Theta_{i j}\left(a, \widetilde{\Theta}_{i j}(a, b)\right)=b=\widetilde{\Theta}_{i j}\left(a, \Theta_{i j}(a, b)\right), \tag{3.3}
\end{equation*}
$$

for a in M_{i}, b in M_{j} and $1 \leq i \neq j \leq n$. From (3.3), (\#1) and (\#2), we deduce the following identities

$$
\begin{align*}
& \widetilde{\Theta}_{i j}(a b, c)=\widetilde{\Theta}_{i j}\left(a, \widetilde{\Theta}_{i j}(b, c)\right), \tag{3.4}\\
& \widetilde{\Theta}_{i j}(a, c d)=\widetilde{\Theta}_{i j}(a, c) \widetilde{\Theta}_{i j}\left(\Theta_{j i}\left(\widetilde{\Theta}_{i j}(a, c), a\right), d\right), \tag{3.5}
\end{align*}
$$

for a, b in M_{i}, c, d in M_{j} and $1 \leq i \neq j \leq n$. An induction similar to the previous one gives $\left\|\widetilde{\Theta}_{i j}(a, c)\right\| \geq\|c\|$ for every a in M_{i}, every c in M_{j} with $1 \leq i \neq j \leq n$. We obtain

$$
\left\|\Theta_{i j}(a, b)\right\| \geq\|b\|=\left\|\widetilde{\Theta}_{i j}\left(a, \Theta_{i j}(a, b)\right)\right\| \geq\left\|\Theta_{i j}(a, b)\right\|,
$$

which implies $\left\|\Theta_{i j}(a, b)\right\|=\|b\|$.
Lemma 3.5. Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids-or, more generally, cancellative atomic monoids with finitely many atoms. Then, for every family $\vec{\Theta}$ of functions satisfying Condition (\#), for $1 \leq i \neq j \leq n$, for every a in M_{i} and every b in M_{j},

$$
\begin{equation*}
a \Theta_{i j}(a, b)=b \Theta_{j i}(b, a) \tag{3.6}
\end{equation*}
$$

holds in $\varliminf_{i}^{\vec{\Theta}} M_{i}$.
Proof. We use an induction on $\|a\|\|b\|$. For $\|a\|\|b\|=0$, the result follows from (3.1) and (3.2). Assume $\|a\|\|b\|>0$. We have $a=x c$ and $b=y d$ for some atom x
and some element c in M_{i}, some atom y and some element d in M_{j}. By using Lemma 3.4, we obtain

$$
\begin{aligned}
a \Theta_{i j}(a, b) & =x c \Theta_{i j}(x c, y d) \\
& \stackrel{(3.1)}{=} x c \Theta_{i j}\left(c, \Theta_{i j}(x, y d)\right) \\
& \stackrel{(3.2)}{=} x c \Theta_{i j}\left(c, \Theta_{i j}(x, y) \Theta_{i j}\left(\Theta_{j i}(y, x), d\right)\right) \\
& \stackrel{(3.2)}{=} x c \Theta_{i j}\left(c, \Theta_{i j}(x, y)\right) \Theta_{i j}\left(\Theta_{j i}\left(\Theta_{i j}(x, y), c\right), \Theta_{i j}\left(\Theta_{j i}(y, x), d\right)\right) \\
& \stackrel{(\text { IH) }}{=} x \Theta_{i j}(x, y) \Theta_{j i}\left(\Theta_{i j}(x, y), c\right) \Theta_{i j}\left(\Theta_{j i}\left(\Theta_{i j}(x, y), c\right), \Theta_{i j}\left(\Theta_{j i}(y, x), d\right)\right) \\
& \stackrel{(\text { IH })}{=} x \Theta_{i j}(x, y) \Theta_{i j}\left(\Theta_{j i}(y, x), d\right) \Theta_{j i}\left(\Theta_{i j}\left(\Theta_{j i}(y, x), d\right), \Theta_{j i}\left(\Theta_{i j}(x, y), c\right)\right) \\
& \stackrel{\text { def }}{=} y \Theta_{j i}(y, x) \Theta_{i j}\left(\Theta_{j i}(y, x), d\right) \Theta_{j i}\left(\Theta_{i j}\left(\Theta_{j i}(y, x), d\right), \Theta_{j i}\left(\Theta_{i j}(x, y), c\right)\right) \\
& \stackrel{(\text { IH) }}{=} y d \Theta_{j i}\left(d, \Theta_{j i}(y, x)\right) \Theta_{j i}\left(\Theta_{i j}\left(\Theta_{j i}(y, x), d\right), \Theta_{j i}\left(\Theta_{i j}(x, y), c\right)\right) \\
& \stackrel{(3.2)}{=} y d \Theta_{j i}\left(d, \Theta_{j i}(y, x) \Theta_{j i}\left(\Theta_{i j}(x, y), c\right)\right) \\
& \stackrel{(3.2)}{=} y d \Theta_{j i}\left(d, \Theta_{j i}(y, x c)\right) \\
& \stackrel{(3.1)}{=} y d \Theta_{j i}(y d, x c)=b \Theta_{j i}(b, a),
\end{aligned}
$$

which completes the induction.

Proposition 3.6. Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids-or, more generally, cancellative atomic monoids with finitely many atoms. Then, for every family $\vec{\Theta}$ of functions satisfying Condition $(\#), \bigotimes_{i}^{\vec{\Theta}} M_{i}$ is set-theoretically equal to $M_{1} \times \ldots \times M_{n}$.

Proof. Let $M=\bigwedge_{i}^{\vec{\Theta}} M_{i}$. By definition, every element in M admits a decomposition as a product of elements in M_{1}, \ldots, M_{n}. We have to show that such a decomposition is unique. Here, a decomposition of a non-trivial element a in M is a finite sequence $\left(b_{1}, \ldots, b_{m}\right)$ satisfying $a=b_{1} \cdots b_{m}$ with $b_{i} \in M_{\mu_{i}} \backslash\{1\}$ for some sequence $\left(\mu_{1}, \ldots, \mu_{m}\right)$ with values in $\{1, \ldots, n\}$. The associated finite sequence $\left(\mu_{1}, \ldots, \mu_{m}\right)$ is called the support of the decomposition. We order supports using the ShortLex ordering on sequences of integers: $\left(\mu_{1}, \ldots, \mu_{m}\right)<^{\text {ShortLex }}$ $\left(\nu_{1}, \ldots, \nu_{r}\right)$ holds if $m<r$ does, or we have $m=r$ and $\left(\mu_{1}, \ldots, \mu_{m}\right)$ precedes $\left(\nu_{1}, \ldots, \nu_{m}\right)$ in the lexicographical extension of the standard order of the integers.
For $1 \leq i \neq j \leq n$, for every a in M_{i}, we denote by $\widetilde{\Theta}_{i j}(a,$.$) the inverse bijection$ of $\Theta_{i j}(a,$.$) . Formula (3.6) is then equivalent to$

$$
\begin{equation*}
a b=\widetilde{\Theta}_{i j}(a, b) \Theta_{j i}\left(\widetilde{\Theta}_{i j}(a, b), a\right) \tag{3.7}
\end{equation*}
$$

for every $a \in M_{i}, b \in M_{j}$ and $1 \leq i \neq j \leq n$. Applying (3.7) inside some decomposition yields another decomposition (of the same element) : for $\mu_{i} \neq \mu_{i+1}$, we define

$$
\begin{aligned}
& T_{i}\left(b_{1}, \ldots, b_{i}, b_{i+1}, \ldots, b_{m}\right) \\
& \quad=\left(b_{1}, \ldots, b_{i-1}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right), \Theta_{\mu_{i+1} \mu_{i}}\left(\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right), b_{i}\right), b_{i+2}, \ldots, b_{m}\right) .
\end{aligned}
$$

Now, any two decompositions of an element a in M can be connected one to the other by a finite sequence of elementary transformations T, C and C^{-}, where C is defined by

$$
C_{i}\left(b_{1}, \ldots, b_{i}, b_{i+1}, \ldots, b_{m}\right)=\left(b_{1}, \ldots, b_{i-1}, b_{i} b_{i+1}, b_{i+2}, \ldots, b_{m}\right),
$$

for $\mu_{i}=\mu_{i+1}$, and C^{-}is the inverse (non-functionnal) transformation of C. The problem is that, starting with any decomposition of a, several transformations may be applied. We shall prove that, no matter the transformations are chosen, they lead to a unique final decomposition with $<^{\text {ShortLex-minimal support. }}$ Let us say that an elementary transformation is decreasing if the support of the transformed decomposition is $<^{\text {ShortLex-smaller than the initial support. So, applied }}$ to some transformation with support $\left(\mu_{1}, \ldots, \mu_{m}\right), T_{i}$ (resp. C_{i}) is decreasing whenever $\mu_{i}>\mu_{i+1}$ (resp. $\mu_{i}=\mu_{i+1}$) holds, while C_{i}^{-}is never decreasing. Now, $<^{\text {ShootLex }}$ is a wellordering on the supports of a given element, hence there exist no infinite sequence of decreasing transformations from a given decomposition. So, in order to prove that any sequence of decreasing transformations leads to a unique final decomposition with $<^{\text {ShortLex-minimal support, it suffices to prove that, for ev- }}$ ery pair $\left(D_{1}, D_{2}\right)$ of decreasing transformations applied to \vec{b}, there exist finite sequences D_{1}^{\prime} and D_{2}^{\prime} of decreasing transformations satisfying $D_{1}^{\prime} \circ D_{1}(\vec{b})=D_{2}^{\prime} \circ D_{2}(\vec{b})$ ("confluence property", see [16]).

Claim 1. Assume the confluence property proved. Then any two decompositions with $<^{\text {ShortLer-minimal supports of a given element are equal. }}$
Proof. For a given decomposition \vec{d}, let $N(\vec{d})$ denote the unique decomposition obtained from \vec{d} as above, i.e., with $<^{\text {ShortLex-minimal support. Let } \vec{a}=\left(a_{1}, \ldots, a_{n}\right), ~(d)}$ be a decomposition with a $<^{\text {ShortLer-minimal support. We show that every decompo- }}$ sition \vec{b} of $a_{1} \cdots a_{n}$ satisfies $N(\vec{b})=\vec{a}$ by using an induction on the number of T, C, C^{-}needed to transform \vec{a} into \vec{b}. Thus, the point is to show that, if \vec{d} is obtained in one step from \vec{b}, then we have $N(\vec{d})=N(\vec{b})$. If the support of \vec{d} is $<^{\text {ShortLer-smaller }}$ than that of $\vec{b}, N(\vec{d})=N(\vec{b})$ follows from confluence directly. Assume that the support of \vec{d} is < ShortLex-greater than that of \vec{b}, then \vec{d} is obtained from \vec{b} using either T or C^{-}; now, on the one hand, T_{i} is an involution by definition, and, on the other hand, in whatever way C_{i}^{-}is applied to \vec{b}, we have $C_{i}(\vec{d})=\vec{b}$, so we find again $N(\vec{d})=N(\vec{b})$. Thus, if \vec{b} is a decomposition with a $<^{\text {Shorttex-minimal support }}$ obtained from \vec{a}, we have $N(\vec{b})=\vec{a}$. Now, by construction, we have $N(\vec{b})=\vec{b}$, so \vec{a} is the unique decomposition of $a_{1} \cdots a_{n}$ with a < $<^{\text {ShortLex }}$-minimal support.

It remains to prove the confluence property of the decreasing transformations. Three types of pairs (D_{1}, D_{2}) are to be considered. Let us fix an element a in M and a decomposition $\left(b_{1}, \ldots, b_{m}\right)$ of a with support $\left(\mu_{1}, \ldots, \mu_{m}\right)$.

Claim 2. Confluence holds for a pair of type $\left(C_{i}, C_{j}\right)$.
Proof. Assume that both C_{i} and C_{j} are decreasing and applied to $\left(b_{1}, \ldots, b_{m}\right)$, i.e., assume $\mu_{i}=\mu_{i+1}$ and $\mu_{j}=\mu_{j+1}$. Then we have $C_{j}\left(C_{i}\left(b_{1}, \ldots, b_{m}\right)\right)=$ $C_{i}\left(C_{j}\left(b_{1}, \ldots, b_{m}\right)\right)$, and confluence is verified.

Claim 3. Confluence holds for a pair of type $\left(T_{i}, C_{j}\right)$.
Proof. Assume that both T_{i} and C_{j} are decreasing and applied to $\left(b_{1}, \ldots, b_{m}\right)$, i.e., assume $\mu_{i}>\mu_{i+1}$ and $\mu_{j}=\mu_{j+1}$. Then have $i \neq j$. For $|i-j|>1$, we have $C_{j}\left(T_{i}\left(b_{1}, \ldots, b_{m}\right)\right)=T_{i}\left(C_{j}\left(b_{1}, \ldots, b_{m}\right)\right)$, and confluence is verified. Assume $i-j=1$ (the case $j-i=1$ is similar). We show

$$
C_{i}\left(T_{i-1}\left(T_{i}\left(b_{1}, \ldots, b_{m}\right)\right)\right)=T_{i-1}\left(C_{i-1}\left(b_{1}, \ldots, b_{m}\right)\right) .
$$

By hypothesis, we have $\mu_{i-1}=\mu_{i}>\mu_{i+1}$, and we find

$$
\begin{aligned}
& C_{i}\left(T_{i-1}\left(T_{i}\left(b_{1}, \ldots, b_{m}\right)\right)\right) \\
& =C_{i}\left(T_{i-1}\left(b_{1}, . ., b_{i-1}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right), \Theta_{\mu_{i+1} \mu_{i}}\left(\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right), b_{i}\right), b_{i+2}, \ldots, b_{m}\right)\right) \\
& =C_{i}\left(b_{1}, \ldots, b_{i-2}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i-1}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right)\right),\right. \\
& \quad \Theta_{\mu_{i+1} \mu_{i}}\left(\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i-1}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right)\right), b_{i-1}\right), \\
& \left.\quad \Theta_{\mu_{i+1} \mu_{i}}\left(\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right), b_{i}\right), b_{i+2}, \ldots, b_{m}\right) \\
& =\left(b_{1}, \ldots, b_{i-2}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i-1}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right)\right),\right. \\
& \quad \Theta_{\mu_{i+1} \mu_{i}}\left(\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i-1}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right)\right), b_{i-1}\right) \Theta_{\mu_{i+1} \mu_{i}}\left(\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right), b_{i}\right), \\
& \left.b_{i+2}, \ldots, b_{m}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& T_{i-1}\left(C_{i-1}\left(b_{1}, \ldots, b_{m}\right)\right) \\
& =T_{i-1}\left(b_{1}, \ldots, b_{i-2}, b_{i-1} b_{i}, b_{i+1}, \ldots, b_{m}\right) \\
& =\left(b_{1}, \ldots, b_{i-2}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i-1} b_{i}, b_{i+1}\right)\right. \text {, } \\
& \left.\Theta_{\mu_{i+1} \mu_{i}}\left(\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i-1} b_{i}, b_{i+1}\right), b_{i-1} b_{i}\right), b_{i+2}, \ldots, b_{m}\right) .
\end{aligned}
$$

Now, the equality

$$
\begin{equation*}
\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i-1}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right)\right)=\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i-1} b_{i}, b_{i+1}\right) \tag{3.8}
\end{equation*}
$$

follows from (\#1), while the equality

$$
\begin{gathered}
\Theta_{\mu_{i+1} \mu_{i}}\left(\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i-1}, \widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right)\right), b_{i-1}\right) \Theta_{\mu_{i+1} \mu_{i}}\left(\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i}, b_{i+1}\right), b_{i}\right) \\
=\Theta_{\mu_{i+1} \mu_{i}}\left(\widetilde{\Theta}_{\mu_{i} \mu_{i+1}}\left(b_{i-1} b_{i}, b_{i+1}\right), b_{i-1} b_{i}\right)
\end{gathered}
$$

follows from (3.8) and (\#2).

Claim 4. Confluence holds for a pair of type $\left(T_{i}, T_{j}\right)$.
Proof. Assume that both T_{i} and T_{j} are decreasing and applied to $\left(b_{1}, \ldots, b_{m}\right)$, i.e., assume $\mu_{i}>\mu_{i+1}$ and $\mu_{j}>\mu_{j+1}$. The case $i=j$ is trivial. For $|i-j|>1$, we have $T_{j}\left(T_{i}\left(b_{1}, \ldots, b_{m}\right)\right)=T_{i}\left(T_{j}\left(b_{1}, \ldots, b_{m}\right)\right)$, and confluence is verified. Assume $i-j=1$ (the case $j-i=1$ is symmetric). We show

$$
T_{i-1}\left(T_{i}\left(T_{i-1}\left(b_{1}, \ldots, b_{m}\right)\right)\right)=T_{i}\left(T_{i-1}\left(T_{i}\left(b_{1}, \ldots, b_{m}\right)\right)\right)
$$

Let $p=\mu_{i-1}, q=\mu_{i}, r=\mu_{i+1}$ and $a_{p}=b_{i-1}, a_{q}=b_{i}, a_{r}=b_{i+1}$. By hypothesis, we have $p>q>r$. We obtain

$$
\begin{aligned}
T_{i-1}(& \left.T_{i}\left(T_{i-1}\left(b_{1}, \ldots, a_{p}, a_{q}, a_{r}, \ldots, b_{m}\right)\right)\right) \\
= & T_{i-1}\left(T_{i}\left(b_{1}, \ldots, \widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), \Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right), a_{r}, \ldots, b_{m}\right)\right) \\
= & T_{i-1}\left(b_{1}, \ldots, \widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right), a_{r}\right),\right. \\
& \left.\quad \Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right), a_{r}\right), \Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right)\right), \ldots, b_{m}\right) \\
= & \left(b_{1}, \ldots, \widetilde{\Theta}_{q r}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right), a_{r}\right)\right),\right. \\
& \quad \Theta_{r q}\left(\widetilde{\Theta}_{q r}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right), a_{r}\right)\right), \widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right)\right), \\
& \left.\Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right), a_{r}\right), \Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right)\right), \ldots, b_{m}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& T_{i}\left(T_{i-1}\left(T_{i}\left(b_{1}, \ldots, a_{p}, a_{q}, a_{r}, \ldots, b_{m}\right)\right)\right) \\
& \quad=T_{i}\left(T_{i-1}\left(b_{1}, \ldots, a_{p}, \widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right), \Theta_{r q}\left(\widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right), a_{q}\right), \ldots, b_{m}\right)\right) \\
& =T_{i}\left(b_{1}, \ldots, \widetilde{\Theta}_{p r}\left(a_{p}, \widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right)\right), \Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(a_{p}, \widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right)\right), a_{p}\right),\right. \\
& =\left(b_{1}, \ldots, \widetilde{\Theta}_{p r}\left(\widetilde{\Theta}_{q r}\left(a_{p}, \widetilde{\Theta}_{q r}\left(a_{r}\right), a_{q}\right), \ldots, b_{m}\right)\right. \\
& \quad \widetilde{\Theta}_{p q}\left(\Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(a_{p}, \widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right)\right), a_{p}\right), \Theta_{r q}\left(\widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right), a_{q}\right)\right), \\
& \quad \Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(\Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(a_{p}, \widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right)\right), a_{p}\right), \Theta_{r q}\left(\widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right), a_{q}\right)\right),\right. \\
& \left.\left.\quad \Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(a_{p}, \widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right)\right), a_{p}\right)\right), \ldots, b_{m}\right)
\end{aligned}
$$

We are left with the task of proving the following equalities, which will prove confluence in this case:

$$
\begin{gathered}
\widetilde{\Theta}_{q r}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right), a_{r}\right)\right)=\widetilde{\Theta}_{p r}\left(a_{p}, \widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right)\right), \quad\left(E_{r}\right) \\
\Theta_{r q}\left(\widetilde{\Theta}_{q r}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right), a_{r}\right)\right), \widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right)\right) \\
=\widetilde{\Theta}_{p q}\left(\Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(a_{p}, \widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right)\right), a_{p}\right), \Theta_{r q}\left(\widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right), a_{q}\right)\right), \\
\Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right), a_{r}\right), \Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right), a_{p}\right)\right) \\
=\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(\Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(a_{p}, \widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right)\right), a_{p}\right), \Theta_{r q}\left(\widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right), a_{q}\right)\right), \quad\left(E_{p}\right)\right. \\
\left.\quad \Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(a_{p}, \widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right)\right), a_{p}\right)\right) .
\end{gathered}
$$

Let $c_{q}=\widetilde{\Theta}_{p q}\left(a_{p}, a_{q}\right)$ and $d_{r}=\widetilde{\Theta}_{q r}\left(a_{q}, a_{r}\right)$, hence $a_{q}=\Theta_{p q}\left(a_{p}, c_{q}\right)$ and $a_{r}=\Theta_{q r}\left(a_{q}, d_{r}\right)$. Equalities $\left(E_{r}\right),\left(E_{q}\right),\left(E_{p}\right)$ are then equivalent respectively to

$$
\begin{aligned}
& \widetilde{\Theta}_{q r}\left(c_{q}, \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right), \Theta_{q r}\left(\Theta_{p q}\left(a_{p}, c_{q}\right), d_{r}\right)\right)\right)=\widetilde{\Theta}_{p r}\left(a_{p}, d_{r}\right), \quad\left(E_{r}^{\prime}\right) \\
& \Theta_{r q}\left(\widetilde{\Theta}_{q r}\left(c_{q}, \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right), \Theta_{q r}\left(\Theta_{p q}\left(a_{p}, c_{q}\right), d_{r}\right)\right)\right), c_{q}\right) \\
& =\widetilde{\Theta}_{p q}\left(\Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(a_{p}, d_{r}\right), a_{p}\right), \Theta_{r q}\left(d_{r}, \Theta_{p q}\left(a_{p}, c_{q}\right)\right)\right), \\
& \Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right), \Theta_{q r}\left(\Theta_{p q}\left(a_{p}, c_{q}\right), d_{r}\right)\right), \Theta_{q p}\left(c_{q}, a_{p}\right)\right) \\
& \left(E_{p}^{\prime}\right) \\
& =\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(\Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(a_{p}, d_{r}\right), a_{p}\right), \Theta_{r q}\left(d_{r}, \Theta_{p q}\left(a_{p}, c_{q}\right)\right)\right), \Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(a_{p}, d_{r}\right), a_{p}\right)\right) .
\end{aligned}
$$

Let $e_{r}=\widetilde{\Theta}_{p r}\left(a_{p}, d_{r}\right)$, hence $d_{r}=\Theta_{p r}\left(a_{p}, e_{r}\right)$. Equalities $\left(E_{r}^{\prime}\right),\left(E_{q}^{\prime}\right),\left(E_{p}^{\prime}\right)$ are then equivalent respectively to

$$
\begin{gathered}
\widetilde{\Theta}_{q r}\left(c_{q}, \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right), \Theta_{q r}\left(\Theta_{p q}\left(a_{p}, c_{q}\right), \Theta_{p r}\left(a_{p}, e_{r}\right)\right)\right)\right)=e_{r}, \\
\Theta_{r q}\left(\widetilde{\Theta}_{q r}\left(c_{q}, \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right), \Theta_{q r}\left(\Theta_{p q}\left(a_{p}, c_{q}\right), \Theta_{p r}\left(a_{p}, e_{r}\right)\right)\right), c_{q}\right)\right. \\
=\widetilde{\Theta}_{p q}\left(\Theta_{r p}\left(e_{r}, a_{p}\right), \Theta_{r q}\left(\Theta_{p r}\left(a_{p}, e_{r}\right), \Theta_{p q}\left(a_{p}, c_{q}\right)\right)\right),\left(E_{q}^{\prime \prime}\right) \\
\Theta_{r p}\left(\widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right), \Theta_{q r}\left(\Theta_{p q}\left(a_{p}, c_{q}\right), \Theta_{p r}\left(a_{p}, e_{r}\right)\right)\right), \Theta_{q p}\left(c_{q}, a_{p}\right)\right) \\
=\Theta_{q p}\left(\widetilde{\Theta}_{p q}\left(\Theta_{r p}\left(e_{r}, a_{p}\right), \Theta_{r q}\left(\Theta_{p r}\left(a_{p}, e_{r}\right), \Theta_{p q}\left(a_{p}, c_{q}\right)\right)\right), \Theta_{r p}\left(e_{r}, a_{p}\right)\right) .\left(E_{p}^{\prime \prime}\right)
\end{gathered}
$$

By applying $\Theta_{q r}\left(c_{q},.\right)$ and then $\Theta_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right)\right.$,.) to ($\left.E_{r}^{\prime \prime}\right)$, we obtain

$$
\Theta_{q r}\left(\Theta_{p q}\left(a_{p}, c_{q}\right), \Theta_{p r}\left(a_{p}, e_{r}\right)\right)=\Theta_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right), \Theta_{q r}\left(c_{q}, e_{r}\right)\right), \quad\left(E_{r}^{\prime \prime \prime}\right)
$$

which is true by Condition (\#3). Next, by applying $\Theta_{p q}\left(\Theta_{r p}\left(e_{r}, a_{p}\right)\right.$,.) to $\left(E_{q}^{\prime \prime}\right)$, we find

$$
\begin{array}{r}
\Theta_{p q}\left(\Theta_{r p}\left(e_{r}, a_{p}\right), \Theta_{r q}\left(\widetilde{\Theta}_{q r}\left(c_{q}, \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right), \Theta_{q r}\left(\Theta_{p q}\left(a_{p}, c_{q}\right), \Theta_{p r}\left(a_{p}, e_{r}\right)\right)\right)\right), c_{q}\right)\right) \\
=\Theta_{r q}\left(\Theta_{p r}\left(a_{p}, e_{r}\right), \Theta_{p q}\left(a_{p}, c_{q}\right)\right) .
\end{array}
$$

Now, by applying $\widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right),.\right)$ to ($\left.E_{r}^{\prime \prime \prime}\right)$, we obtain

$$
\widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right), \Theta_{q r}\left(\Theta_{p q}\left(a_{p}, c_{q}\right), \Theta_{p r}\left(a_{p}, e_{r}\right)\right)\right)=\Theta_{q r}\left(c_{q}, e_{r}\right), \quad\left(E_{r}^{\prime \prime \prime \prime}\right)
$$

hence, by applying $\widetilde{\Theta}_{q r}\left(c_{q},.\right)$,

$$
\widetilde{\Theta}_{q r}\left(c_{q}, \widetilde{\Theta}_{p r}\left(\Theta_{q p}\left(c_{q}, a_{p}\right), \Theta_{q r}\left(\Theta_{p q}\left(a_{p}, c_{q}\right), \Theta_{p r}\left(a_{p}, e_{r}\right)\right)\right)\right)=e_{r} .
$$

According to the latter equality, $\left(E_{q}^{\prime \prime \prime}\right)$ is equivalent to

$$
\Theta_{p q}\left(\Theta_{r p}\left(e_{r}, a_{p}\right), \Theta_{r q}\left(e_{r}, c_{q}\right)\right)=\Theta_{r q}\left(\Theta_{p r}\left(a_{p}, e_{r}\right), \Theta_{p q}\left(a_{p}, c_{q}\right)\right),
$$

which is true by Condition (\#3). Finally, by using ($E_{r}^{\prime \prime \prime \prime}$) in $\left(E_{p}^{\prime \prime}\right)$, we obtain

$$
\Theta_{r p}\left(\Theta_{q r}\left(c_{q}, e_{r}\right), \Theta_{q p}\left(c_{q}, a_{p}\right)\right)=\Theta_{q p}\left(\Theta_{r q}\left(e_{r}, c_{q}\right), \Theta_{r p}\left(e_{r}, a_{p}\right)\right),
$$

which is true by Condition (\#3).
This completes the proof of Proposition 3.6.

Corollary 3.7. Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids-or, more generally, cancellative atomic monoids with finitely many atoms. Then, for every family $\vec{\Theta}$ of functions satisfying Condition (\#), $\bigvee_{i}^{\Theta} M_{i}$ is atomic and cancellative.

Proof. First, by Proposition 3.6, every element a in $\bigotimes_{i}^{\vec{\theta}} M_{i}$ admits a unique decomposition as $a_{1} \cdots a_{n}$ with $a_{i} \in M_{i}$ for $1 \leq i \leq n$, and, by Lemma $3.4,\|a\|$ is the sum of the $\left\|a_{i}\right\|$'s. So, $\bigotimes_{i}^{\vec{\theta}} M_{i}$ is an atomic monoid (see Lemma 1.3). Next, we have to show that, for a, b, c in $\bigotimes_{i}^{\vec{\theta}} M_{i}, a c=b c$ implies $a=b$. As $\bigotimes_{i}^{\vec{\theta}} M_{i}$ is atomic, we can use an induction on $\|c\|$. For $\|c\|=0$, the result is trivial. Assume $a c=b c$ and $\|c\|>0$. Then we have $c=x c^{\prime}$ with $x \in A_{r}$ for some $1 \leq r \leq n$ and c^{\prime} in $\bigotimes_{i}^{\vec{\theta}} M_{i}$. By induction hypothesis, we have $a x=b x$. By Proposition 3.6, we can write $a=a_{1} \cdots a_{r-1} a_{r+1} \cdots a_{n} a_{r}$ and $b=b_{1} \cdots b_{r-1} b_{r+1} \cdots b_{n} b_{r}$ for some a_{i}, b_{i} in M_{i}, and, therefore, $a_{1} \cdots a_{r-1} a_{r+1} \cdots a_{n}\left(a_{r} x\right)=b=b_{1} \cdots b_{r-1} b_{r+1} \cdots b_{n}\left(b_{r} x\right)$. The uniqueness of decomposition implies $a_{i}=b_{i}$ for $i \neq r$ and $a_{r} x=b_{r} x$, hence $a=b$ by cancellativity of M_{r}. This completes the induction. The argument for left cancellativity is symmetric.

Example 3.8. Let us consider the (isomorphic) small Gaussian monoids $\left\langle x_{i}, y_{i}\right.$: $\left.x_{i} y_{i}=y_{i} x_{i}\right\rangle^{+}$for $i=1,2,3$, and the family $\vec{\theta}$ formed by $\theta_{x_{1}}=\left(\begin{array}{lllll}x_{1} & y_{1} & x_{2} & y_{2} & x_{3} \\ x_{1} & y_{1} & y_{2} & x_{2} & x_{3} \\ x_{3} & y_{3}\end{array}\right)$, $\theta_{x_{2}}=\left(\begin{array}{llllll}x_{1} & y_{1} & x_{2} & y_{2} & x_{3} & y_{3} \\ x_{1} & y_{1} & x_{2} & y_{2} & y_{3} & x_{3}\end{array}\right)$ and $\theta_{y_{1}}=\theta_{y_{2}}=\theta_{x_{3}}=\theta_{y_{3}}=\left(\begin{array}{llllll}x_{1} & y_{1} & x_{2} & y_{2} & x_{3} & y_{3} \\ x_{1} & y_{1} & x_{2} & y_{2} & x_{3} & y_{3}\end{array}\right)$. Then $\vec{\theta}$ extends into a family of functions $\vec{\Theta}$ using (\#1) and (\#2), but $\vec{\Theta}$ does not satisfy Condition (\#3). Let us observe that each of the three underlying bicrossed products is well-defined.

The results so far are valid for cancellative conical and/or atomic monoids with finitely many atoms. From now on, we shall concentrate on the specific case of small Gaussian monoids.

Lemma 3.9. Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids. Let A_{i} be the set of atoms in M_{i} for $1 \leq i \leq n$. Then, for every family $\vec{\theta}$ satisfying Condition (\#), for $1 \leq i \neq j \leq n$, the function $(x, y) \mapsto\left(\theta_{y}(x), \theta_{x}(y)\right)$ is a permutation of $A_{i} \times A_{j}$.

Proof. Let us fix (i, j) with $1 \leq i \neq j \leq n$. Assume $\left(x_{1}, x_{2}\right)$ in $A_{i} \times A_{j}$ such that there exist $\left(y_{1}, y_{2}\right)$ and $\left(z_{1}, z_{2}\right)$ in $A_{i} \times A_{j}$ satisfying

$$
\left(\theta_{y_{2}}\left(y_{1}\right), \theta_{y_{1}}\left(y_{2}\right)\right)=\left(x_{1}, x_{2}\right)=\left(\theta_{z_{2}}\left(z_{1}\right), \theta_{z_{1}}\left(z_{2}\right)\right)
$$

We obtain

$$
\left\{\begin{array}{l}
y_{2} x_{1}=y_{1} x_{2} \\
z_{2} x_{1}=z_{1} x_{2}
\end{array}\right.
$$

and, the monoid M_{i} being Gaussian,

$$
\left\{\begin{array}{l}
\left(z_{1} / y_{1}\right) y_{2} x_{1}=\left(z_{1} / y_{1}\right) y_{1} x_{2} \\
\left(y_{1} / z_{1}\right) z_{2} x_{1}=\left(y_{1} / z_{1}\right) z_{1} x_{2}
\end{array}\right.
$$

hence

$$
\left(z_{1} / y_{1}\right) y_{2} x_{1}=\left(y_{1} / z_{1}\right) z_{2} x_{1}
$$

Proposition 3.6 implies $z_{1} / y_{1}=y_{1} / z_{1}$ and $y_{2}=z_{2}$, but $z_{1} / y_{1}=y_{1} / z_{1}$ leads to $z_{1} / y_{1}=y_{1} / z_{1}=1$, hence $y_{1}=z_{1}$, which proves injectivity of the function $(x, y) \mapsto\left(\theta_{y}(x), \theta_{x}(y)\right)$. As the set $A_{i} \times A_{j}$ is finite, the function $(x, y) \mapsto$ $\left(\theta_{y}(x), \theta_{x}(y)\right)$ is a permutation of $A_{i} \times A_{j}$.

Example 3.10. Let us consider the (isomorphic) small Gaussian monoids $\left\langle x_{1}, y_{1}\right.$: $\left.x_{1} y_{1}=y_{1} x_{1}\right\rangle^{+}$and $\left\langle x_{2}, y_{2}: x_{2} y_{2}=y_{2} x_{2}\right\rangle^{+}$, and the family $\vec{\theta}$ consisting of the permutations $\theta_{x_{1}}=\left(\begin{array}{llll}x_{1} & y_{1} & x_{2} & y_{2} \\ x_{1} & y_{1} & x_{2} & y_{2}\end{array}\right)=\theta_{x_{2}}, \theta_{y_{1}}=\left(\begin{array}{ccc}x_{1} & y_{1} & x_{2} \\ x_{1} & y_{2} & y_{1} \\ x_{2} & y_{2}\end{array}\right)$ and $\theta_{y_{2}}=$ $\left(\begin{array}{lll}x_{1} & y_{1} & x_{2} \\ y_{1} & x_{1} & y_{2} \\ x_{2} & y_{2}\end{array}\right)$. Then the function $(x, y) \mapsto\left(\theta_{y}(x), \theta_{x}(y)\right)$ is not a permutation of $\left\{x_{1}, y_{1}\right\} \times\left\{x_{2}, y_{2}\right\}$. By Lemma 3.9, $\vec{\theta}$ is not a family satisfying Condition (\#). Indeed, denoting by $\vec{\Theta}$ the family of functions associated with $\vec{\theta}$, we would find $\Theta_{21}\left(y_{2}, y_{1} x_{1}\right)=x_{1}^{2}$ and $\Theta_{21}\left(y_{2}, x_{1} y_{1}\right)=y_{1} x_{1}$.

Lemma 3.11. Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids. Then, for every family $\vec{\Theta}$ of functions satisfying Condition (\#), for a in M_{i}, for b in M_{j} with $1 \leq i \neq j \leq n, a \Theta_{i j}(a, b)=b \Theta_{j i}(b, a)$ is the right lcm of a and b in $\bigotimes_{i}^{\Theta} M_{i}$.

Proof. By Lemma 3.5, $a \Theta_{i j}(a, b)=b \Theta_{j i}(b, a)$ is a right multiple of a and b in $\bigotimes_{i}^{\vec{\Theta}} M_{i}$. Assume that $a a^{\prime}=b b^{\prime}$ is a right multiple of a and b in $\bigotimes_{i}^{\Theta} M_{i}$. By Proposition 3.6, we have $a^{\prime}=a_{i}^{\prime} a_{j}^{\prime} \Pi_{1 \leq k \leq n, k \neq i, k \neq j} a_{k}^{\prime}$ and $b^{\prime}=b_{i}^{\prime} b_{j}^{\prime} \Pi_{1 \leq k \leq n, k \neq i, k \neq j} b_{k}^{\prime}$ for some $a_{k}^{\prime}, b_{k}^{\prime}$ in M_{k} with $1 \leq k \leq n$. By Proposition 3.6 again, $a a^{\prime}=b b^{\prime}$ implies both $a a_{i}^{\prime} a_{j}^{\prime}=b b_{i}^{\prime} b_{j}^{\prime}$ and $a_{k}^{\prime}=b_{k}^{\prime}$ for $1 \leq k \leq n, k \neq i, k \neq j$. By Proposition 3.6 always, $a a_{i}^{\prime} a_{j}^{\prime}=b b_{i}^{\prime} b_{j}^{\prime}$ implies $a a_{i}^{\prime}=\widetilde{\Theta}_{j i}\left(b, b_{i}^{\prime}\right)$, hence

$$
b_{i}^{\prime}=\Theta_{j i}\left(b, a a_{i}^{\prime}\right) \stackrel{(3.2)}{=} \Theta_{j i}(b, a) \Theta_{j i}\left(\Theta_{i j}(a, b), a_{i}^{\prime}\right) .
$$

Therefore, $b b^{\prime}$ is a right multiple of $b \Theta_{j i}(b, a)$.
Proposition 3.12. Assume that M_{1}, \ldots, M_{n} are small Gaussian monoids. Then, for every family $\vec{\theta}$ of permutations satisfying Condition (\#), the monoid $\bigotimes_{i}^{\vec{\theta}} M_{i}$ is a small Gaussian monoid, and the lattice of simple elements in $\bigotimes_{i}^{\vec{\theta}} M_{i}$ is the product of the lattices of simple elements in M_{1}, \ldots, M_{n}.

Proof. Let $\vec{\Theta}$ denote the family of functions associated with $\vec{\theta}$. Let A_{i} be the set of atoms in M_{i} for $1 \leq i \leq n$, and let A be the disjoint union $A_{1} \sqcup \ldots \sqcup A_{n}$. First, by Corollary 3.7, $\varliminf_{i}^{\vec{\theta}} M_{i}$ is atomic and cancellative. Now, let us show by induction on $\|a\|\|b\|$ that any two elements a, b in $\bigwedge_{i}^{\vec{\theta}} M_{i}$ admit a right lcm. For $\|a\|\|b\|=0$, it is obviously true. Assume $\|a\|\|b\|>0$. Then we have $a=a^{\prime} x$
and $b=b^{\prime} y$ for some $x \in A_{r}, y \in A_{s}$ with $1 \leq r, s \leq n$ and a^{\prime}, b^{\prime} in $\bigotimes_{i}^{\vec{\theta}} M_{i}$. By induction hypothesis, a^{\prime} and b^{\prime} admit a right lcm $a^{\prime} \vee b^{\prime}$. Let $a^{\prime} \backslash b^{\prime}$ and $b^{\prime} \backslash a^{\prime}$ denote those elements in $\bigotimes_{i}^{\vec{\theta}} M_{i}$ satisfying $a^{\prime} \vee b^{\prime}=a^{\prime}\left(a^{\prime} \backslash b^{\prime}\right)=b^{\prime}\left(b^{\prime} \backslash a^{\prime}\right)$ (these two elements are unique by cancellativity and conicity). By Proposition 3.6, there exist c_{i}, d_{i} in M_{i} for $1 \leq i \leq n$ satisfying $a^{\prime} \backslash b^{\prime}=c_{1} \cdots c_{r-1} c_{r+1} \cdots c_{n} c_{r}$ and $b^{\prime} \backslash a^{\prime}=$ $d_{1} \cdots d_{s-1} d_{s+1} \cdots d_{n} d_{s}$. Let

$$
x^{\prime}=\Theta_{n r}\left(c_{n}, . ., \Theta_{(r+1) r}\left(c_{r+1}, \Theta_{(r-1) r}\left(c_{r-1}, \ldots \Theta_{2 r}\left(c_{2}, \Theta_{1 r}\left(c_{1}, x\right)\right) \ldots\right)\right) . .\right)
$$

and

$$
y^{\prime}=\Theta_{n s}\left(d_{n}, . ., \Theta_{(s+1) s}\left(d_{s+1}, \Theta_{(s-1) s}\left(d_{s-1}, \ldots \Theta_{2 s}\left(d_{2}, \Theta_{1 s}\left(d_{1}, y\right)\right) \ldots\right)\right) . .\right) .
$$

Lemma 3.2 implies $x^{\prime} \in A_{r}$ and $y^{\prime} \in A_{s}$. By Lemma 3.11, the element $c_{r} \backslash x^{\prime}$ in M_{r} and the element $d_{s} \backslash y^{\prime}$ in M_{s} admit a unique right $\operatorname{lcm} g$ in $\bigotimes_{i}^{\vec{\theta}} M_{i}$. We deduce that $\left(a^{\prime} \vee b^{\prime}\right) g$ is the right lcm of a and b. Therefore, $\varliminf_{i}^{\vec{\theta}} M_{i}$ is a Gaussian monoid.
In order to prove that $\bigotimes_{i}^{\vec{\theta}} M_{i}$ is small, we show that the closure of A under \backslash is $P=P_{1} \sqcup \ldots \sqcup P_{n}$, where P_{i} denotes the closure of A_{i} under \backslash for $1 \leq i \leq n$. Let $P^{(0)}=A$ and $P^{(k)}=\left\{a \backslash b ; a, b \in P^{(k-1)}\right\}$ for $k>0$. We show by induction on k that $P^{(k)}$ is included in $P_{1} \sqcup \ldots \sqcup P_{n}$. For $k=0$, we deduce $A_{1} \sqcup \ldots \sqcup A_{n} \subseteq$ $P_{1} \sqcup \ldots \sqcup P_{n}$ from $A_{i} \subseteq P_{i}$ for $1 \leq i \leq n$. Assume $k>0$. Let a, b belong to $P^{(k-1)}$. By induction hypothesis, we have $a \in P_{r}$ and $b \in P_{s}$ for some $1 \leq r, s \leq n$. For $r=s, a \backslash b \in P_{s} \subseteq P_{1} \sqcup \ldots \sqcup P_{n}$ and we are done. Assume $r \neq s$. Let us show inductively on $\|a\|$ that, for every a in $P_{r}, a \backslash P_{s}$ is included in P_{s}. For $\|a\|=0$, we have $1 \backslash b=b \in P_{s}$ for every b in P_{s}. Assume $\|a\|>0$. We have $a=x(x \backslash a)$ for some $x \in A_{r}$. Using Lemma 1.2, we obtain

$$
a \backslash b=(x(x \backslash a)) \backslash b \stackrel{(1.2)}{=}(x \backslash a) \backslash(x \backslash b),
$$

for every b in P_{s}. We have to show that $x \backslash b$ belongs to P_{s} for every x in P_{r} and every b in P_{s}. Let $P_{s}^{(0)}=A_{s}$ and $P_{s}^{(j)}=\left\{a \backslash b ; a, b \in P_{s}^{(j-1)}\right\}$ for $j>0$. We show by induction on j that, for every b in $P_{s}^{(j)}, x \backslash b$ belongs to $P_{s}^{(j)}$ for every x in A_{r}. For $j=0$, we have $b \in A_{s}$, hence $x \backslash b=\theta_{x}(b) \in A_{s}$. Assume $j>0$. Then we have $b=b_{1} \backslash b_{2}$ for some b_{1}, b_{2} in $P_{s}^{(j-1)}$. Following Lemma 3.2, we denote by x^{\prime} the image of x under the inverse of the permutation $\Theta_{s r}\left(b_{1},.\right)$ of A_{r}. Using Lemmas 3.5 and 1.2, we obtain

$$
x \backslash b=\left(b_{1} \backslash x^{\prime}\right) \backslash\left(b_{1} \backslash b_{2}\right) \stackrel{(1.3)}{=}\left(x^{\prime} \backslash b_{1}\right) \backslash\left(x^{\prime} \backslash b_{2}\right) .
$$

By induction hypothesis, both $x^{\prime} \backslash b_{1}$ and $x^{\prime} \backslash b_{2}$ belong to $P_{s}^{(j-1)}$, and, therefore, $x \backslash b$ belongs to $P_{s}^{(j)}$. We deduce that $x \backslash b$ belongs to P_{s} for every $x \in P_{r}$ and $b \in P_{s}$. Now, having $\|x \backslash a\|<\|a\|$, the initial induction hypothesis implies that $(x \backslash a) \backslash(x \backslash b)$ belongs to P_{s}, which completes the induction. Finally, as $P_{1} \sqcup \ldots \sqcup P_{n}$ is finite, the closure of A under \backslash is finite, and $P=P_{1} \sqcup \ldots \sqcup P_{n}$ follows. Therefore, $\bowtie_{i}^{\vec{\theta}} M_{i}$ is a small Gaussian monoid.

Recall that, if $\left(X_{i}, \wedge_{i}, \vee_{i}\right)$ with $1 \leq i \leq r$ are lattices, their (Cartesian) product is the lattice $\left(X_{1} \times \ldots \times X_{r}, \wedge, \vee\right)$, where \wedge and \vee are defined by $\left(a_{1}, \ldots, a_{r}\right) \wedge\left(b_{1}, \ldots, b_{r}\right)=\left(a_{1} \wedge_{1} b_{1}, \ldots, a_{r} \wedge_{r} b_{r}\right)$ and $\left(a_{1}, \ldots, a_{r}\right) \vee\left(b_{1}, \ldots, b_{r}\right)=$ $\left(a_{1} \vee_{1} b_{1}, \ldots, a_{r} \vee_{r} b_{r}\right)$ for a_{i}, b_{i} in X_{i} and $1 \leq i \leq r$, see [3]. Here, for $1 \leq i \leq n$, S_{i} denotes the closure of P_{i} under \vee-by definition, the set of simples in M_{i} and S denotes the closure of P under \vee. We consider the lattice homomorphism φ from $S_{1} \times \ldots \times S_{n}$ into S defined by $\varphi\left(1, \ldots, 1, a_{j}, 1, \ldots, 1\right)=a_{j}$ for $a_{j} \in S_{j}$ and $1 \leq j \leq n$. Observe that every element in S that can be expressed as the right lcm of elements in S_{1}, \ldots, S_{n} can also be expressed as the product of elements in S_{1}, \ldots, S_{n}. Indeed, an easy induction on n gives

$$
a_{1} \vee \ldots \vee a_{n}=a_{1}^{\prime} \cdots a_{n}^{\prime}
$$

with $a_{1}^{\prime}=a_{1}$ and $a_{i}^{\prime}=\left(a_{1}^{\prime} \cdots a_{i-1}^{\prime}\right) \backslash a_{i}$ for $i>1$. Now, $\varphi\left(a_{1}, \ldots, a_{n}\right)=$ $\varphi\left(b_{1}, \ldots, b_{n}\right)$ implies $a_{1}^{\prime} \cdots a_{n}^{\prime}=b_{1}^{\prime} \cdots b_{n}^{\prime}$, hence, by Proposition 3.6, $a_{i}^{\prime}=b_{i}^{\prime}$ for $1 \leq i \leq n$. We show inductively on i that $a_{i}=b_{i}$ holds for $1 \leq i \leq n$. The result is obviously true for $i=1$. Assume $i>1$. By induction hypothesis, $a_{i}^{\prime}=b_{i}^{\prime}$ implies

$$
\left(a_{1}^{\prime} \cdots a_{i-1}^{\prime}\right) \backslash a_{i}=\left(a_{1}^{\prime} \cdots a_{i-1}^{\prime}\right) \backslash b_{i}
$$

hence, by using Lemmas 1.2 and 3.5,

$$
\begin{aligned}
\Theta_{(i-1) i}\left(a_{i-1}^{\prime},\right. & \Theta_{(i-2) i}\left(a_{i-2}^{\prime}, \ldots\left(\Theta_{2 i}\left(a_{2}^{\prime}, \Theta_{1 i}\left(a_{1}^{\prime}, a_{i}\right)\right) \ldots\right)\right) \\
& =\Theta_{(i-1) i}\left(a_{i-1}^{\prime}, \Theta_{(i-2) i}\left(a_{i-2}^{\prime}, \ldots,\left(\Theta_{2 i}\left(a_{2}^{\prime}, \Theta_{1 i}\left(a_{1}^{\prime}, b_{i}\right)\right) \ldots\right)\right)\right.
\end{aligned}
$$

Now, by successively using injectivity of $\Theta_{(i-1) i}\left(a_{i-1}^{\prime},.\right)$, ..., $\Theta_{(1 i)}\left(a_{1}^{\prime},.\right)$, we find $a_{i}=b_{i}$, which completes the induction and shows the injectivity of φ. By definition, for every a in S, there exist an integer m and elements b_{1}, \ldots, b_{m} in $P=P_{1} \sqcup \ldots \sqcup P_{n}$ satisfying $a=b_{1} \vee \ldots \vee b_{m}$, hence we have $a=\varphi\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i}=\bigvee\left(P_{i} \cap\left\{b_{1}, \ldots, b_{m}\right\}\right)$ for $1 \leq i \leq n$, which means that φ is surjective.

Example 3.13. Let us consider again the small Gaussian monoids M_{1} and M_{2} of Example 3.3. Let $\vec{\theta}^{\prime}$ be defined by $\theta_{x_{1}}^{\prime}=\theta_{x_{2}}^{\prime}=\theta_{x_{3}}^{\prime}=\left(\begin{array}{lllll}x_{1} & x_{2} & x_{3} & y & z \\ x_{1} & x_{2} & x_{3} & y & z\end{array}\right), \theta_{y}^{\prime}=\theta_{y}$ and $\theta_{z}^{\prime}=\left(\begin{array}{ccccc}x_{1} & x_{2} & x_{3} & y & z \\ x_{2} & x_{3} & x_{1} & y & z\end{array}\right)$, and let $\vec{\theta}^{\prime \prime}$ be defined by $\theta_{x_{1}}^{\prime \prime}=\theta_{x_{2}}^{\prime \prime}=\theta_{x_{3}}^{\prime \prime}=\theta_{x_{1}}, \theta_{y}^{\prime \prime}=\theta_{z}$ and $\theta_{z}^{\prime \prime}=\theta_{z}^{\prime}$. The monoids $M_{1} \bowtie_{\vec{\theta}} M_{2}$ and $M_{1} \bowtie_{\vec{\theta}^{\prime}} M_{2}$ are small Gaussian, while the monoid $M_{1} \bowtie_{\vec{\theta}^{\prime \prime}} M_{2}$ is not, as, for instance, $\left(x_{2} \backslash y\right) \backslash\left(x_{2} \backslash x_{1}\right) \neq\left(y \backslash x_{2}\right) \backslash\left(y \backslash x_{1}\right)$ contradicts Lemma 1.2.

4. Decomposition of a small Gaussian monoid

In this section, we introduce the notion of a Δ-pure small Gaussian monoid, that extends the one of irreducible spherical Artin monoids. On the one hand, we prove that the result of Brieskorn, Saito [7] and Deligne [13] stated in the special case of spherical Artin groups extends to the case of arbitrary small Gaussian groups : the quasi-center and the center of every Δ-pure small Gaussian group are infinite cyclic subgroups. On the other hand, we prove that every small Gaussian monoid is an iterated crossed product of some Δ-pure small Gaussian monoids.

Definition. Assume that M is a small Gaussian monoid. For a, b in M, we write $a \stackrel{\sim}{\sim}$ whenever $\Delta_{a}=\Delta_{b}$ holds. We say that M is Δ-pure if its atoms are $\stackrel{\Delta}{\sim}$-equivalent.

Proposition 4.1. Assume that M is a Δ-pure small Gaussian monoid, Δ is its Garside element, e is its exponent, and G is its group of fractions.
(i) The quasi-center of M is the infinite cyclic submonoid generated by Δ.
(ii) The center of M (resp. of G) is the infinite cyclic submonoid (resp. subgroup) generated by Δ^{e}.

Proof. Let A be the set of the atoms in M. According to Lemma 1.8 and Proposition 2.8 , it suffices to show $\left\{\Delta_{x} ; x \in A\right\}=\{\Delta\}$. Let δ be the unique element of $\left\{\Delta_{x} ; x \in A\right\}$. By Proposition 1.6, Δ is quasi-central, and, by Proposition 2.10, δ divides Δ. Let

$$
D=\bigcup_{x \in A} M \backslash x .
$$

By hypothesis, δ is the right lcm of D. Let $a, b \in D$. By definition, we have $a=c \backslash z$ for some c in M and some atom z. By using (1.2), we find $b \backslash a=b \backslash(c \backslash z)=$ $(c b) \backslash z$, which proves that D is closed under \backslash. As D includes A, D includes the closure P of A under \backslash, and, therefore, Δ, which is the right lcm of P, divides δ. Cancellativity and conicity allow to conclude.

Our aim is now to show that every small Gaussian monoid is an iterated crossed product of Δ-pure small Gaussian submonoids.

Definition. Assume that M is a small Gaussian monoid. Let A be its set of atoms. A subset A_{1} of A is said to be full if, for every atom x in A_{1} and every atom y in $A, x \not \approx y$ implies $y \in A_{1}$.

Proposition 4.2. Assume that M is a small Gaussian monoid. Then, for every full subset A_{1} of atoms in M, the submonoid of M generated by A_{1} is a small Gaussian monoid.

Proof. Let M_{1} denote the submonoid generated by A_{1}. First, the submonoid M_{1} inherits cancellativity and conicity from M. Next, we prove $M \backslash M_{1}=M_{1}$ and $\bigvee M_{1}=M_{1}=\widetilde{\bigvee} M_{1}$. We show using induction on $\|a\|$ that, for every a in M_{1}, the set $M \backslash a$ is included in M_{1}. For $\|a\|=0$, we have $M \backslash 1=\{1\}$. Assume $\|a\|>0$. Then we have $a=x a^{\prime}$ for some atom x in A_{1} and some a^{\prime} in M_{1}. We claim that Δ_{x} belongs to M_{1} : let y be an atom in A_{1} dividing Δ_{x}, then, by Lemma 2.7, Δ_{y} divides Δ_{x}, and, by Lemma 2.9, we have $x \stackrel{\wedge}{\sim} y$, hence $y \in A_{1}$. Now, let $b \in M$. By Lemma 1.2, we have

$$
b \backslash a=b \backslash\left(x a^{\prime}\right)=(b \backslash x)\left((x \backslash b) \backslash a^{\prime}\right) .
$$

The element $b \backslash x$ belongs to M_{1} as it divides Δ_{x}, and, by induction hypothesis, the element $(x \backslash b) \backslash a^{\prime}$ belongs to M_{1}. Therefore, $b \backslash a$ belongs to M_{1}. Let $c, d \in M_{1}$. Then, from $c \vee d=c(c \backslash d)$ and $M \backslash M_{1}=M_{1}$, we deduce $c \vee d \in M_{1}$. Symmetrically, we have $c \widetilde{\vee} d \in M_{1}$. So, every pair ($\left.c, d\right)$ of elements in M_{1} admits right and left lcm's in M_{1}. Finally, M_{1} is a small Gaussian monoid since the closure of A_{1} under \backslash is included in the closure of A under \backslash.

Now, we have to investigate the relations amongst those atoms x, y satisfying $x \not \approx y$. Though very easy, the following lemma is technically crucial.

Lemma 4.3. Assume that M is a small Gaussian monoid.
(i) Distinct atoms x, y in M satisfy $y \backslash x \not \approx x$.
(ii) For every atom x and every b in $M, b \stackrel{\sim}{\sim}$ implies $c \stackrel{\sim}{\sim}$ for every non trivial element c dividing b in M.

Proof. (i) As Δ_{x} is $\bigvee(M \backslash x), y \backslash x$ is a left divisor of Δ_{x}, and, by Lemma 2.7, $\Delta_{y \backslash x}$ is a left divisor of Δ_{x}. As y is an atom distinct from $x, y \backslash x$ is not trivial, and Lemma 2.9 implies $\Delta_{y \backslash x}=\Delta_{x}$.
(ii) Let $c \neq 1$ be a divisor of b in M. As b divides Δ_{b}, which is Δ_{x} by hypothesis, c divides Δ_{x}. Lemmas 2.7 and 2.9 imply then $\Delta_{c}=\Delta_{x}$.

Lemma 4.4. Assume that M is a small Gaussian monoid. Then, for all disjoint full sets A_{1}, A_{2} of atoms, the application $x_{1} \mapsto x_{2} \backslash x_{1}$ is a permutation of A_{1} for every atom x_{2} in A_{2}.

Proof. It suffices to show the following assertions:
(i) for all atoms x, y in M satisfying $x \not \approx y$, the elements $y \backslash x$ and $x \backslash y$ are atoms in M, and they satisfy $y \backslash x \triangleq x$ and $x \backslash y \triangleq y$;
(ii) for all atoms x, y_{1}, y_{2} in M satisfying $x \not \approx y_{1}, x \not \approx y_{2}$ and $y_{1} \neq y_{2}$, the atoms $x \backslash y_{1}$ and $x \backslash y_{2}$ are distinct.
First, let us show (i). Let x, y be atoms in M satisfying $x \not \approx y$. We have so $x \neq y$, and atomicity implies $x \backslash y \neq 1$ and $y \backslash x \neq 1$. Therefore, there exist atoms x^{\prime}, y^{\prime} and elements a, b in M satisfying $x \vee y=x a y^{\prime}=y b x^{\prime}$, hence, by Lemma 1.4,

$$
x \vee y=x a y^{\prime}=y b x^{\prime}=(x a \wedge y b)\left(y^{\prime} \widetilde{\vee} x^{\prime}\right) .
$$

Assume $x a \wedge y b \neq 1$. Let z be an atom in M dividing $x a \wedge y b$ on the left. As $y \vee(x a \wedge$ $y b)$ is a left divisor of $y b$, we have $z \neq x$. Therefore, $x \vee z$ being a left divisor of $x \vee y$, $x \backslash z$ is a non trivial left divisor of $x \backslash y$, and Lemma 4.3 implies $z \stackrel{\sim}{\sim} x \backslash \approx x \backslash y \triangleq y$. Symmetrically, we find $z \stackrel{\sim}{y}$ \z $\Rightarrow y \backslash x 』 x$, which contradicts the hypothesis $x \not \approx y$. We obtain then

$$
x \vee y=x a y^{\prime}=y b x^{\prime}=y^{\prime} \widetilde{\vee} x^{\prime} .
$$

By Lemma 4.3(i), $x \backslash y=a y^{\prime}$ and $y \backslash x=b x^{\prime}$ imply

$$
a y^{\prime} \triangleq y \quad \text { and } \quad b x^{\prime} \nRightarrow x
$$

whereas $x^{\prime} / y^{\prime}=x a$ and $y^{\prime} / x^{\prime}=y b$ imply $x a \Delta x^{\prime}$ and $y b \stackrel{\sim}{\sim} y^{\prime}$, hence, by using Lemma 4.3(ii),

$$
x a \triangleq x \text { and } y b \nRightarrow y .
$$

By Lemma 4.3(ii) again, the conjunction of $a y^{\prime} \stackrel{\Delta}{\sim} y$ and $x a \stackrel{\sim}{\sim}$ implies $a=1$, while the conjunction of $b x^{\prime} \stackrel{\sim}{\sim} x$ and $y b \stackrel{\sim}{\sim} y$ implies $b=1$.

Now, we prove (ii). Assume $x \backslash y_{1}=x \backslash y_{2}$. Then we have $y_{1}\left(y_{1} \backslash x\right)=y_{2}\left(y_{2} \backslash x\right)$. In particular, $y_{1} \backslash y_{2}$ is a left divisor of $y_{1} \backslash x$. Now, by (i), $y_{1} \backslash x$ is an atom. The atoms y_{1} and y_{2} being distinct, $y_{1} \backslash y_{2}$ is not 1 , and we deduce $y_{1} \backslash y_{2}=y_{1} \backslash x$, which, by Lemma $4.3(\mathrm{i})$, implies $y_{2} \stackrel{\sim}{\sim}$, a contradiction.

Proposition 4.5. Every small Gaussian monoid is an iterated crossed product of Δ-pure small Gaussian submonoids.

Proof. Assume that M is a small Gaussian monoid. Let A be its set of atoms, and $A=A_{1} \sqcup \ldots \sqcup A_{n}$ be a partition such that, for $1 \leq i \leq n, A_{i}$ is a minimal nonempty full subset of A. For $1 \leq i \leq n$, let M_{i} (resp. $\overline{M_{i}}$) denote the submonoid generated by A_{i} (resp. by $A \backslash A_{i}$). Then, for $1 \leq i \leq n$, by Lemma 4.2, M_{i} and $\overline{M_{i}}$ are small Gaussian monoids, and, by Lemma 4.4, there exists a family $\vec{\theta}^{(i)}$ satisfying Condition (\#) for $M_{i}, \overline{M_{i}}$ satisfying $M=M_{i} \bowtie_{\vec{\theta}^{(i)}} \overline{M_{i}}$. We find

$$
M=\bigotimes_{i}^{\vec{\theta}} M_{i} \quad \text { with } \quad \vec{\theta}=\bigsqcup_{i}\left\{\theta_{x}^{(i)} ; x \in A_{i}\right\} .
$$

Except for $n=1$, the small Gaussian monoids M_{i} need not be Δ-pure-see Example 4.8. Now, an iteration of the previous process leads to a decomposition of M as an iterated crossed product of Δ-pure small Gaussian monoids. Indeed, as the number of atoms strictly decreases, such an iteration is necessarily finite.

Corollary 4.6. Every small Gaussian monoid with two atoms is Δ-pure, except the rank two free abelian monoid.

Remark. Let us come back to Proposition 2.15. Assume that M is a small Gaussian monoid, and $Q Z$ is its quasi-center. We have mentionned that the function $a \mapsto \Delta_{a}$ need not be a semilattice homomorphism from (M, \wedge) onto $(Q Z, \wedge)$. In fact, $a \mapsto \Delta_{a}$ is a semilattice homomorphism from (M, \wedge) onto $(Q Z, \wedge)$ if and only if M is a free abelian monoid. Indeed, for distinct atoms x, y in M satisfying $x \gtrsim y$, we have $\Delta_{x \wedge y}=\Delta_{1}=1$ and $\Delta_{x} \wedge \Delta_{y}=\Delta_{x} \neq 1$. Therefore, if $a \mapsto \Delta_{a}$ is a semilattice homomorphism from (M, \wedge) onto $(Q Z, \wedge)$, then we have $x \not \approx y$ for all distinct atoms x, y in M, and, following the proof of Proposition 4.5, we deduce that M is free abelian. The converse implication is trivial.

Let us consider the special case of spherical Artin groups and monoids. Assume that M is a Artin monoid with set of atoms X and with Coxeter matrix $\left(m_{x y}\right)_{x, y \in X}$. The Coxeter graph of M is defined to be the unoriented graph whose vertices are the atoms, and there is an edge between the vertices x and y whenever $m_{x y} \geq 3$ holds, $m_{x y}$ labelling the corresponding edge [5], [7], [13]. The monoid M is irreducible if its Coxeter graph is connected.

Proposition 4.7. Assume that M is a spherical Artin monoid. Then M is irreducible if and only if M is Δ-pure.

Proof. Let Γ be the Coxeter graph of M. First, we show that, for all atoms x, y in the same connected component of $\Gamma, x \approx y$ holds. We can suppose x and y distinct. Then there exist a positive integer n and distinct atoms $x=z_{0}, \ldots, z_{n}=y$ in M such that, for $0 \leq i \leq n, z_{i}$ and z_{i+1} are connected in Γ. Use induction on n to prove that x and y satisfy $x \nsim y$. Assume $n=1$. Then there exists an integer $m_{x y} \geq 3$ satisfying

$$
x \backslash y=\operatorname{prod}\left(y x, m_{x y}-1\right), \quad \text { and } \quad y \backslash x=\operatorname{prod}\left(x y, m_{x y}-1\right),
$$

where $\operatorname{prod}(w, k)$ denotes the length k prefix of the word w^{∞}. In particular, x divides $x \backslash y$, and y divides $y \backslash x$. Therefore, by definition, x divides Δ_{y}, and y divides Δ_{x}. By Lemma 2.7, by cancellativity and conicity, we deduce $\Delta_{x}=\Delta_{y}$, i.e., $x \Delta y$. Assume now $n>1$. Then we have $x \stackrel{\Delta}{\sim} z_{1}$ and, by induction hypothesis, $z_{1} \stackrel{\sim}{\sim} y$, hence $x \stackrel{\Delta}{\sim} y$.

Conversely, assume that M is not irreducible. Then M is the direct product of two non trivial spherical Artin monoids. Therefore, the quasi-center of M is not cyclic, and, by Proposition 4.1, M is not Δ-pure.

We conclude with an example of the decomposition mentionned in Proposition 4.5.
Example 4.8. Let us consider the monoids C_{n} considered by Garside in [14]which are not Artin monoids for $n>2$. Let C_{3} be the monoid admitting the presentation

$$
\left\langle x_{1}, x_{2}, x_{3}: x_{1} x_{2}=x_{2} x_{3}, x_{1} x_{3}=x_{3} x_{1}, x_{2} x_{1}=x_{3} x_{2}\right\rangle
$$

Then C_{3} is a small Gaussian monoid, and the lattice of its simple elements is displayed in Figure 2. We compute in C_{3}

$$
\Delta_{x_{1}}=\Delta_{x_{3}}=x_{1} x_{3}, \quad \text { and } \quad \Delta_{x_{2}}=x_{2},
$$

and deduce that the quasi-center (resp. the center) of C_{3} is generated by $x_{1} x_{3}$ and x_{2} (resp. by $x_{1} x_{3}$ and x_{2}^{2}). In particular, the monoid C_{3} is not Δ-pure : we have $C_{3}=M_{1} \bowtie_{\vec{\theta}} M_{2}$ with $M_{1}=\left\langle x_{1}, x_{3}: x_{1} x_{3}=x_{3} x_{1}\right\rangle, M_{2}=\left\langle x_{2}:\right\rangle$, and $\theta_{x_{1}}=\theta_{x_{3}}=\left(\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ x_{1} & x_{2} & x_{3}\end{array}\right), \theta_{x_{2}}=\left(\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{3} & x_{2} & x_{1}\end{array}\right)$. Now, M_{2} is Δ-pure, while M_{1} is not: we have $M_{1}=\left\langle x_{1}:\right\rangle \times\left\langle x_{3}:\right\rangle$. Hence, we obtain $C_{3}=\bigvee_{i=1,2,3}^{\vec{\theta}}\left\langle x_{i}: \quad\right\rangle$. According to Proposition 3.12, the lattice of simples in C_{3} is isomorphic to the lattice of simples in the rank 3 free abelian monoid \mathbf{N}^{3}.

Figure 2. The lattice of simple elements in C_{3}.

Let us come back finally to the so-called parabolic submonoids of a small Gaussian monoid. A natural question is whether every submonoid of a small Gaussian monoid generated by atoms is a (small) Gaussian monoid as well-see Proposition 4.2. Considering the monoid C_{3} of Example 4.8 again gives a negative answer. The submonoid M_{∞} of C_{3} generated by $\left\{x_{1}, x_{2}\right\}$ is not a Gaussian monoid. Indeed, the element x_{2}^{2} is central in M_{∞}, but cannot be a multiple of x_{1}, and Proposition 2.8 does not work in this case. Actually, we can show that M_{∞} admits the infinite presentation $\left\langle x_{1}, x_{2}: x_{1} x_{2} x_{1}^{k} x_{2}=x_{2} x_{1}^{k} x_{2} x_{1}, k \in \mathbf{N}\right\rangle$.

Remark. Except the property of effective computability of the function $a \mapsto \Delta_{a}$, most of the results in the previous sections extend to the most general framework of those monoids M where there exists an element Δ such that the left divisors of Δ coincide with its right divisors and they generate M, but whose we do not require the divisors of Δ to be finite in number. A typical example is the monoid presented by $\left\langle x, y: x y x=y x^{2} y\right\rangle$, whose group of fractions is isomorphic to the 3 -strand braid group.

Acknowledgments

The author wishes to thank Patrick Dehornoy for some technical help, Luis Paris and François Digne for valuable comments and suggestions, and the referee for pointing out a gap in the proof of Proposition 3.6.

References

[1] D. Bessis, The dual braid monoid, arXiv:math.GR/0101158.
[2] D. Bessis, F. Digne \& J. Michel, Springer theory in braid groups and the Birman-Ko-Lee monoid, arXiv:math.GR/0010254.
[3] G. Birkhoff, Lattice theory, Third Edition, Colloq. Publ. 25, American Math. Soc., Providence (1967).
[4] J. Birman, K. H. Ko \& S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Advances in Math. 139 (1998) 322-353.
[5] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 et 6 , Hermann, Paris (1968).
[6] M. Broué, G. Malle \& R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998) 127-190.
[7] E. Brieskorn \& K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972) 245-271.
[8] A. H. Clifford \& G. B. Preston, The algebraic theory of semigroups, vol. 1, AMS Surveys 7 (1961).
[9] P. Dehornoy, Gaussian groups are torsion free, J. of Algebra 210 (1998) 291-297.
[10] -, Braids and Self-Distributivity, Progress in Math. 192, Birkhäuser (2000).
[11] —, Petits groupes gaussiens, Ann. Sci. Ec. Norm. Supér (2001), to appear.
[12] P. Dehornoy \& L. Paris, Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc. 79-3 (1999) 569-604.
[13] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273-302.
[14] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20 (1969) 235-254.
[15] Ch. Kassel, Quantum groups, Springer (1995).
[16] M. H. A. Newman, On theories with a combinatorial definition of "equivalence", Ann. of Math. 43-2 (1942) 223-243.
[17] M. Picantin, The conjugacy problem in small Gaussian groups, Comm. in Algebra 23-9 (2001) 1021-1039.
[18] -, Petits groupes gaussiens, Ph. D. Thesis, Université de Caen (2000).
[19] -, Automatic structures for torus link groups, preprint (2001) submitted.
[20] D. Rolfsen, Knots and links, Publish or Perish, Inc (1976).
[21] M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Comm. in Algebra 9 (1981) 841-882.

