Finite versus infinite: an intricate shift

Yann Pequignot

University of California, Los Angeles
UIUC, Urbana-Champaign, IL
April 3, 2018

Directed graphs

- A directed graph is a pair $\mathbf{D}=(X, D)$ where D is an irreflexive binary relation on X.
- A homomorphism from (X, D) to $\left(X^{\prime}, D^{\prime}\right)$ is a map $h: X \rightarrow X^{\prime}$ such that $x D$ implies $h(x) D^{\prime} h(y)$.
■ A coloring of a directed graph (X, D) is a map $c: X \rightarrow Y$ such that $x D x^{\prime}$ implies $c(x) \neq c\left(x^{\prime}\right)$.
- The chromatic number of $\mathbf{D}=(X, D), \chi(\mathbf{D})$, is the smallest cardinality of a set Y s.t. there exists a coloring $c: X \rightarrow Y$.

Borel chromatic number

- If X is a Polish space, the Borel chromatic number, $\chi_{B}(\mathbf{D})$, of $\mathbf{D}=(X, D)$ is the smallest cardinality of a Polish space Y such that there exists a Borel coloring $c: X \rightarrow Y$.
- Write $(X, D) \preceq\left(X^{\prime}, D^{\prime}\right),\left(\preceq_{c}, \preceq_{B}\right)$ if there exists a (continuous, Borel) homomorphism from (X, D) to $\left(X^{\prime}, D^{\prime}\right)$.

Remark: $1 \chi_{B}(\mathbf{D}) \in\left\{1,2,3, \ldots, \aleph_{0}, 2^{\aleph_{0}}\right\}$.
2 if $(X, D) \preceq_{B}\left(X^{\prime}, D^{\prime}\right)$ then $\chi_{B}(X, D) \leqslant \chi_{B}\left(X^{\prime}, D^{\prime}\right)$.

Theorem (Kechris-Solecki-Todorcevic, 96)

There is a graph \mathbf{G}_{0} on 2^{ω} s.t. for every analytic graph $\mathbf{G}=(X, G)$ on a Polish space X, exactly one of the following holds:
$1 \chi_{B}(\mathbf{G}) \leqslant \aleph_{0}$,
$2 \mathbf{G}_{0} \preceq_{c} \mathbf{G}$ (and therefore $\chi_{B}(\mathbf{G})=2^{\aleph_{0}}$).
See the survey on Descriptive graph combinatorics by Marks and Kechris.

Graphs generated by a function

For any function $f: X \rightarrow X$, let (X, f) denote the directed graph whose arrows are given by: $x D_{f} y \leftrightarrow x \neq y$ and $f(x)=y$. Example: For s: $\omega \rightarrow \omega, n \mapsto n+1$,

$$
(\omega, \mathrm{s})=\bullet \longrightarrow \bullet \longrightarrow \bullet \bullet \cdots
$$

Theorem (Kechris-Solecki-Todorcevic, Miller)

Let $f: X \rightarrow X$ be a Borel function with no fixed point. Then the following are equivalent:
$1 \chi_{B}(X, f) \leqslant 3$,
$2 \chi_{B}(X, f)$ is finite,
3 there exists a Borel subset B of X such that

$$
\forall x \in X\left(\exists m \in \omega f^{m}(x) \in B \text { and } \exists n \in \omega f^{n}(x) \notin B\right) .
$$

Finite vs Infinite: The shift graph

Let $[\omega]^{\infty}$ be the space of infinite subsets of ω. As a subspace of 2^{ω} it is Polish and homeomorphic to ω^{ω}. The shift map is defined by

$$
\begin{aligned}
S:[\omega]^{\infty} & \longmapsto[\omega]^{\infty} \\
X & \longrightarrow X \backslash\{\min X\}
\end{aligned}
$$

The Shift Graph is the directed graph $\mathcal{G}_{S}=\left([\omega]^{\infty}, \mathrm{S}\right)$.

- As \mathcal{G}_{S} is acyclic, we have $\chi\left(\mathcal{G}_{\mathrm{S}}\right)=2$.
- The Galvin-Prikry theorem: for every finite Borel coloring of $[\omega]^{\infty}$ there exists an infinite $X \subseteq \omega$ such that $[X]^{\infty}$ is monochromatic. In particular X and $S(X)$ have same color. Hence $\chi_{B}\left(\mathcal{G}_{\mathrm{S}}\right)$ is infinite. But $c:[\omega]^{\infty} \rightarrow \omega, X \mapsto \min X$ is a continuous coloring, so

$$
\chi_{B}\left(\mathcal{G}_{\mathrm{S}}\right)=\omega .
$$

Finite vs infinite

(Kechris-Solecki-Todorcevic, 1996) Is the following true?

If X is a Polish space and $f: X \rightarrow X$ is a Borel function, then exactly one of the following holds:
1 The Borel chromatic number of (X, f) is finite;
[$\mathcal{G}_{S} \preceq_{c}(X, f)$.
The answer is negative.
There exists a Polish space X and a continuous function $f: X \rightarrow X$ such that $\chi_{B}(X, f)=\aleph_{0}$ and there is no Borel homomorphism from \mathcal{G}_{S} to (X, f).

■ However no specific example is known.

- This result follows from a representation theorem for $\boldsymbol{\Sigma}_{2}^{1}$ sets.

■ Actually no basis result at all (Todorčević-Vidnyánszky).

Representation of analytic sets

Let $\mathbb{G}=2^{\omega}$ be the Polish space of (codes for) countable directed graphs, where $\alpha \in 2^{\omega} \operatorname{codes}\left(X_{\alpha}, D_{\alpha}\right)$ given by
$X_{\alpha}=\{n \mid \alpha(\langle n, n\rangle)=0\}$, and $m D_{\alpha} n \leftrightarrow \alpha(\langle m, n\rangle)=1, m, n \in X_{\alpha}$.
Recall that a subset $A \subseteq \omega^{\omega}$ is analytic $\left(\boldsymbol{\Sigma}_{1}^{1}\right)$ if there exists a closed subset C of $\omega^{\omega} \times \omega^{\omega}$ s.t. $\alpha \in A \leftrightarrow \exists \beta \in \omega^{\omega}(\alpha, \beta) \in C$.

Proposition (Folklore)

A subset A of ω^{ω} is $\boldsymbol{\Sigma}_{1}^{1}$ iff there exists a continuous function $\omega^{\omega} \rightarrow \mathbb{G}, \alpha \mapsto \mathbf{G}_{\alpha}$ such that

$$
\alpha \in A \quad \longleftrightarrow \quad(\omega,<) \preceq \mathbf{G}_{\alpha}
$$

Proof sketch: Let $T=\left\{\left(x \upharpoonright_{n}, y \upharpoonright_{n}\right) \mid(x, y) \in C\right.$ and $\left.n \in \omega\right\}$ and set $T(\alpha)=\left\{s \in \omega^{<\omega} \mid\left(\left.\alpha\right|_{s}, s\right) \in T\right\}$. We have

$$
\begin{aligned}
\alpha \in A & \longleftrightarrow \exists \beta \in \omega^{\omega} \forall n\left(\alpha \upharpoonright_{n}, \beta \upharpoonright_{n}\right) \in T \\
& \longleftrightarrow \exists \beta \in \omega^{\omega} \forall n \beta \upharpoonright_{n} \in T(\alpha) \\
& \longleftrightarrow(\omega,<) \preceq(T(\alpha), \sqsubset)=\mathbf{G}_{\alpha} .
\end{aligned}
$$

Representation of $\boldsymbol{\Sigma}_{2}^{1}$ sets

Recall that a subset $P \subseteq \omega^{\omega}$ is $\boldsymbol{\Sigma}_{2}^{1}$ if there exists a closed subset C of $\omega^{\omega} \times \omega^{\omega} \times \omega^{\omega}$ such that

$$
\alpha \in P \quad \longleftrightarrow \quad \exists \beta \in \omega^{\omega} \forall \gamma \in \omega^{\omega}(\alpha, \beta, \gamma) \notin C
$$

Theorem (Marcone, 1995)

A subset $P \subseteq \omega^{\omega}$ is $\boldsymbol{\Sigma}_{2}^{1}$ iff there exists a continuous function $\omega^{\omega} \rightarrow \mathbb{G}, \alpha \mapsto \mathbf{G}_{\alpha}$ such that

$$
\alpha \in P \quad \longleftrightarrow \quad \mathcal{G}_{\mathrm{S}} \preceq_{c} \mathbf{G}_{\alpha} .
$$

Here a countable graph $\mathbf{G} \in \mathbb{G}$ is considered with the discrete topology. Notice that

$$
(\omega,<) \preceq \mathbf{G} \text { implies } \mathcal{G}_{\mathrm{S}} \preceq_{c} \mathbf{G} .
$$

A Π_{2}^{1} complete set

Corollary

$\left\{\mathbf{G} \in \mathbb{G} \mid \mathcal{G}_{S} \preceq_{c} \mathbf{G}\right\}$ is a $\boldsymbol{\Sigma}_{2}^{1}$ non $\boldsymbol{\Pi}_{2}^{1}$ subset of \mathbb{G}.

Proof.

It is not hard to give a $\boldsymbol{\Sigma}_{2}^{1}$ definition. Suppose it is also $\boldsymbol{\Pi}_{2}^{1}$. As $\boldsymbol{\Pi}_{2}^{1}$ is closed under continuous preimages, the representation theorem implies that $\boldsymbol{\Sigma}_{2}^{1} \subseteq \boldsymbol{\Pi}_{2}^{1}$. This would contradict the existence of a universal $\boldsymbol{\Sigma}_{2}^{1}$ set.

Definition

A countable directed graph $\mathbf{G} \in \mathbb{G}$ is better if $\mathcal{G}_{\mathbf{S}} \nless c \mathbf{G}$ when the vertex set is considered with the discrete topology.

The set

$$
\mathrm{BG}=\left\{\mathbf{G} \in \mathbb{G} \mid \mathcal{G}_{\mathrm{S}} \npreceq c \mathbf{G}\right\}
$$

of better graphs is a $\boldsymbol{\Pi}_{2}^{1}$-complete set.

Shift on rays of a countable directed graph

Let $\mathbf{G}=(X, D)$ be directed graph on $X \subseteq \omega$.
The Ray Graph of \mathbf{G} is the graph $(\overrightarrow{\mathbf{G}}, \mathrm{S})$ where:

$$
\overrightarrow{\mathbf{G}}=\left\{\left(n_{i}\right)_{i \in \omega} \in \omega^{\omega} \mid \forall i n_{i} D n_{i+1}\right\} \quad \text { (closed subset of } \omega^{\omega} \text {) }
$$

and $S: \overrightarrow{\mathbf{G}} \rightarrow \overrightarrow{\mathbf{G}}$ is the shift map given by $\mathrm{S}\left(\left(n_{i}\right)_{i \in \omega}\right)=\left(n_{i+1}\right)_{i \in \omega}$.

Lemma (1)

For every $\mathbf{G} \in \mathbb{G}$:

$$
\mathcal{G}_{\mathrm{S}} \preceq_{c} \mathbf{G} \quad \longleftrightarrow \quad \mathcal{G}_{\mathrm{S}} \preceq_{c} \overrightarrow{\mathbf{G}} .
$$

Moreover, the map $\mathbb{G} \rightarrow \mathcal{F}\left(\omega^{\omega}\right), \mathbf{G} \mapsto \overrightarrow{\mathbf{G}}$ is $\boldsymbol{\Delta}_{2}^{1}$-measurable.
Where $\mathcal{F}\left(\omega^{\omega}\right)$ is the Effros Borel space of closed subsets of ω^{ω} whose Borel sets are generated by the sets of the form

$$
\left\{F \in \mathcal{F}\left(\omega^{\omega}\right) \mid F \cap N_{s} \neq \emptyset\right\}
$$

where $N_{s}=\left\{\alpha \in \omega^{\omega} \mid s \sqsubseteq \alpha\right\}, s \in \omega^{<\omega}$.

A very discrete graph

Recall: $B G=\left\{\mathbf{G} \in \mathbb{G} \mid \mathcal{G}_{s} \npreceq_{c} \mathbf{G}\right\}$ is $\boldsymbol{\Pi}_{2}^{1}$ and not $\boldsymbol{\Sigma}_{2}^{1}$.

Lemma (2)

The set $\mathrm{F}=\left\{F \in \mathcal{F}\left(\omega^{\omega}\right) \mid \chi_{B}(F, S)<\aleph_{0}\right\}$ is $\boldsymbol{\Sigma}_{2}^{1}$.

Theorem

There exists $\mathbf{G} \in \mathbb{G}$ such that

$$
\chi_{B}(\overrightarrow{\mathbf{G}}, \mathrm{~S})=\aleph_{0} \quad \text { and } \quad \mathcal{G}_{\mathrm{S}} \preceq_{C}(\overrightarrow{\mathbf{G}}, \mathrm{~S}) .
$$

Proof.

- The set $\tilde{F}=\left\{\mathbf{G} \in \mathbb{G} \mid \chi_{B}(\overrightarrow{\mathbf{G}})<\aleph_{0}\right\}=\{\mathbf{G} \in \mathbb{G} \mid \overrightarrow{\mathbf{G}} \in F\}$ is $\boldsymbol{\Sigma}_{2}^{1}$.
- Moreover $\tilde{\mathrm{F}} \subseteq \mathrm{BG}$: for if $\mathcal{G}_{\mathrm{S}} \preceq_{c} \mathbf{G}$, then by Lemma (1) $\mathcal{G}_{\mathrm{S}} \preceq_{c} \overrightarrow{\mathbf{G}}$ and so $\aleph_{0}=\chi_{B}\left(\mathcal{G}_{\mathrm{S}}\right) \leqslant \chi_{B}(\overrightarrow{\mathbf{G}})$.
- Since BG is not $\boldsymbol{\Sigma}_{2}^{1}$, we cannot have $\tilde{F}=B G$. Hence there exists \mathbf{G} with $\mathbf{G} \in B G$ and $\mathbf{G} \notin \tilde{F}$. Such a \mathbf{G} is as desired.

In search for a specific example

Consider the set $2^{<\omega}$ of finite binary words equipped with the subword ordering, i.e.
$u \preccurlyeq v \quad \longleftrightarrow$ there exists a strictly increasing map $h:|u| \rightarrow|v|$ such that for every $i<|u|$ we have $u(i)=v(h(i))$,
where $|u|$ denotes the length of $u \in 2^{<\omega}$. E.g. $01 \preccurlyeq 100100$.
■ Let $\mathbf{H}=\left(2^{<\omega}, H\right)$ where $u H v \leftrightarrow u \nless v$.
■ Since $\left(2^{<\omega}, \preccurlyeq\right)$ is a better-quasi-order, so \mathcal{G} S $\npreceq c\left(2^{<\omega}, H\right)$ and so $\mathcal{G}_{S} \npreceq c \vec{H}$.

Question

What is the Borel chromatic number of $\overrightarrow{\mathbf{H}}$? Is it \aleph_{0} ?
Remark: there is no continuous 2-coloring of $\overrightarrow{\mathbf{H}}$.

One conjecture for the road

Conjecture

The Borel chromatic number of \mathcal{G}_{S} is effectively infinite: for all $n \in \omega$ and all Δ_{1}^{1} map $c:[\omega]^{\infty} \rightarrow n$ there exists a Δ_{1}^{1} point $X \in[\omega]^{\infty}$ with $c(X)=c(S(X))$.

