Finite versus infinite: an intricate shift

Yann Pequignot

University of California, Los Angeles

UIUC, Urbana-Champaign, IL April 3, 2018

Directed graphs

- A directed graph is a pair $\mathbf{D} = (X, D)$ where D is an irreflexive binary relation on X.
- A homomorphism from (X, D) to (X', D') is a map $h: X \to X'$ such that x D y implies h(x) D' h(y).
- A coloring of a directed graph (X, D) is a map $c : X \to Y$ such that xDx' implies $c(x) \neq c(x')$.
- The chromatic number of $\mathbf{D} = (X, D)$, $\chi(\mathbf{D})$, is the smallest cardinality of a set Y s.t. there exists a coloring $c : X \to Y$.

Borel chromatic number

- If X is a Polish space, the *Borel chromatic number*, $\chi_B(\mathbf{D})$, of $\mathbf{D} = (X, D)$ is the smallest cardinality of a Polish space Y such that there exists a Borel coloring $c : X \to Y$.
- Write $(X, D) \preceq (X', D')$, (\preceq_c, \preceq_B) if there exists a (continuous, Borel) homomorphism from (X, D) to (X', D').

1 $\chi_B(\mathbf{D}) \in \{1, 2, 3, \dots, \aleph_0, 2^{\aleph_0}\}.$

Remark:

2 if
$$(X, D) \preceq_B (X', D')$$
 then $\chi_B(X, D) \leq \chi_B(X', D')$.

Theorem (Kechris–Solecki–Todorcevic, 96)

There is a graph \mathbf{G}_0 on 2^{ω} s.t. for every analytic graph $\mathbf{G} = (X, G)$ on a Polish space X, exactly one of the following holds:

1
$$\chi_B(\mathbf{G}) \leqslant \aleph_0$$
,

2
$$\mathbf{G}_0 \leq_c \mathbf{G}$$
 (and therefore $\chi_B(\mathbf{G}) = 2^{\aleph_0}$).

See the survey on Descriptive graph combinatorics by Marks and Kechris.

Graphs generated by a function

For any function $f : X \to X$, let (X, f) denote the directed graph whose arrows are given by: $x D_f y \leftrightarrow x \neq y$ and f(x) = y. Example: For $s : \omega \to \omega$, $n \mapsto n + 1$,

Theorem (Kechris-Solecki-Todorcevic, Miller)

Let $f : X \to X$ be a Borel function with no fixed point. Then the following are equivalent:

- 1 $\chi_B(X, f) \leq 3$,
- 2 $\chi_B(X, f)$ is finite,
- 3 there exists a Borel subset B of X such that

 $\forall x \in X \ (\exists m \in \omega \ f^m(x) \in B \text{ and } \exists n \in \omega \ f^n(x) \notin B).$

Finite vs Infinite: The shift graph

Let $[\omega]^{\infty}$ be the space of infinite subsets of ω . As a subspace of 2^{ω} it is Polish and homeomorphic to ω^{ω} . The *shift map* is defined by

$$\mathsf{S}: [\omega]^\infty \longmapsto [\omega]^\infty \ X \longrightarrow X \smallsetminus \{\min X\}$$

The *Shift Graph* is the directed graph $\mathcal{G}_{S} = ([\omega]^{\infty}, S)$.

- As \mathcal{G}_{S} is acyclic, we have $\chi(\mathcal{G}_{S}) = 2$.
- The Galvin–Prikry theorem: for every finite Borel coloring of [ω][∞] there exists an infinite X ⊆ ω such that [X][∞] is monochromatic. In particular X and S(X) have same color. Hence χ_B(G_S) is infinite. But c : [ω][∞] → ω, X ↦ min X is a continuous coloring, so

$$\chi_{\mathcal{B}}(\mathcal{G}_{\mathsf{S}}) = \omega.$$

Finite vs infinite

(Kechris-Solecki-Todorcevic, 1996) Is the following true?

If X is a Polish space and $f : X \to X$ is a Borel function, then exactly one of the following holds:

1 The Borel chromatic number of (X, f) is finite;

2 $\mathcal{G}_{S} \leq_{c} (X, f).$

The answer is negative.

There exists a Polish space X and a continuous function $f: X \to X$ such that $\chi_B(X, f) = \aleph_0$ and there is no Borel homomorphism from \mathcal{G}_S to (X, f).

- However no specific example is known.
- This result follows from a representation theorem for Σ_2^1 sets.
- Actually no basis result at all (Todorčević-Vidnyánszky).

Representation of analytic sets

Let $\mathbb{G} = 2^{\omega}$ be the Polish space of (codes for) countable directed graphs, where $\alpha \in 2^{\omega}$ codes (X_{α}, D_{α}) given by

$$X_{lpha} = \{n \mid lpha(\langle n, n
angle) = 0\}$$
, and $m \ D_{lpha} \ n \leftrightarrow lpha(\langle m, n
angle) = 1$, $m, n \in X_{lpha}$.

Recall that a subset $A \subseteq \omega^{\omega}$ is analytic (Σ_1^1) if there exists a closed subset C of $\omega^{\omega} \times \omega^{\omega}$ s.t. $\alpha \in A \leftrightarrow \exists \beta \in \omega^{\omega} (\alpha, \beta) \in C$.

Proposition (Folklore)

A subset A of ω^{ω} is Σ_1^1 iff there exists a continuous function $\omega^{\omega} \to \mathbb{G}$, $\alpha \mapsto \mathbf{G}_{\alpha}$ such that

$$\alpha \in A \quad \longleftrightarrow \quad (\omega, <) \preceq \mathbf{G}_{\alpha}$$

Proof sketch: Let $T = \{(x \upharpoonright_n, y \upharpoonright_n) \mid (x, y) \in C \text{ and } n \in \omega\}$ and set $T(\alpha) = \{s \in \omega^{<\omega} \mid (\alpha \upharpoonright_s, s) \in T\}$. We have

$$\begin{array}{rcl} \alpha \in A & \longleftrightarrow & \exists \beta \in \omega^{\omega} \ \forall n \ (\alpha \upharpoonright_n, \beta \upharpoonright_n) \in T \\ & \longleftrightarrow & \exists \beta \in \omega^{\omega} \ \forall n \ \beta \upharpoonright_n \in T(\alpha) \\ & \longleftrightarrow & (\omega, <) \preceq (T(\alpha), \sqsubset) = \mathbf{G}_{\alpha}. \end{array}$$

Representation of Σ_2^1 sets

Recall that a subset $P \subseteq \omega^{\omega}$ is Σ_2^1 if there exists a closed subset C of $\omega^{\omega} \times \omega^{\omega} \times \omega^{\omega}$ such that

$$\alpha \in P \quad \longleftrightarrow \quad \exists \beta \in \omega^{\omega} \ \forall \gamma \in \omega^{\omega} \ (\alpha, \beta, \gamma) \notin C.$$

Theorem (Marcone, 1995)

A subset $P \subseteq \omega^{\omega}$ is Σ_2^1 iff there exists a continuous function $\omega^{\omega} \to \mathbb{G}, \ \alpha \mapsto \mathbf{G}_{\alpha}$ such that

$$\alpha \in P \quad \longleftrightarrow \quad \mathcal{G}_{\mathsf{S}} \preceq_{c} \mathbf{G}_{\alpha}.$$

Here a countable graph $\bm{G}\in\mathbb{G}$ is considered with the discrete topology. Notice that

$$(\omega, <) \preceq \mathbf{G}$$
 implies $\mathcal{G}_{\mathsf{S}} \preceq_{c} \mathbf{G}$.

A Π_2^1 complete set

Corollary $\{\mathbf{G} \in \mathbb{G} \mid \mathcal{G}_{\mathsf{S}} \preceq_{c} \mathbf{G}\}$ is a $\boldsymbol{\Sigma}_{2}^{1}$ non $\boldsymbol{\Pi}_{2}^{1}$ subset of \mathbb{G} .

Proof.

It is not hard to give a Σ_2^1 definition. Suppose it is also Π_2^1 . As Π_2^1 is closed under continuous preimages, the representation theorem implies that $\Sigma_2^1 \subseteq \Pi_2^1$. This would contradict the existence of a universal Σ_2^1 set.

Definition

A countable directed graph $\mathbf{G} \in \mathbb{G}$ is **better** if $\mathcal{G}_S \not\preceq_c \mathbf{G}$ when the vertex set is considered with the discrete topology.

The set

$$\mathsf{BG} = \{\mathbf{G} \in \mathbb{G} \mid \mathcal{G}_{\mathsf{S}} \not\preceq_{c} \mathbf{G}\}$$

of better graphs is a Π_2^1 -complete set.

Shift on rays of a countable directed graph Let $\mathbf{G} = (X, D)$ be directed graph on $X \subseteq \omega$. The *Ray Graph* of \mathbf{G} is the graph ($\mathbf{\vec{G}}$, S) where:

 $\vec{\mathbf{G}} = \{ (n_i)_{i \in \omega} \in \omega^{\omega} \mid \forall i \ n_i \ D \ n_{i+1} \}$ (closed subset of ω^{ω})

and S : $\vec{\mathbf{G}} \to \vec{\mathbf{G}}$ is the shift map given by $S((n_i)_{i \in \omega}) = (n_{i+1})_{i \in \omega}$.

Lemma (1)

For every $\mathbf{G} \in \mathbb{G}$:

$$\mathcal{G}_{\mathsf{S}} \preceq_{c} \mathsf{G} \quad \longleftrightarrow \quad \mathcal{G}_{\mathsf{S}} \preceq_{c} \vec{\mathsf{G}}.$$

Moreover, the map $\mathbb{G} \to \mathcal{F}(\omega^{\omega})$, $\mathbf{G} \mapsto \vec{\mathbf{G}}$ is $\mathbf{\Delta}_2^1$ -measurable.

Where $\mathcal{F}(\omega^{\omega})$ is the Effros Borel space of closed subsets of ω^{ω} whose Borel sets are generated by the sets of the form

$$\{F \in \mathcal{F}(\omega^{\omega}) \mid F \cap N_{s} \neq \emptyset\}$$

where $N_{s} = \{ \alpha \in \omega^{\omega} \mid s \sqsubseteq \alpha \}$, $s \in \omega^{<\omega}$.

A very *discrete* graph

Recall: $BG = \{ \mathbf{G} \in \mathbb{G} \mid \mathcal{G}_S \not\preceq_c \mathbf{G} \}$ is $\mathbf{\Pi}_2^1$ and not $\mathbf{\Sigma}_2^1$.

Lemma (2)

The set $\mathsf{F} = \{ \mathsf{F} \in \mathcal{F}(\omega^{\omega}) \mid \chi_{\mathsf{B}}(\mathsf{F},\mathsf{S}) < \aleph_0 \}$ is $\mathbf{\Sigma}_2^1$.

Theorem

There exists $\mathbf{G} \in \mathbb{G}$ such that

$$\chi_B(\vec{\mathbf{G}},\mathsf{S}) = \aleph_0 \quad and \quad \mathcal{G}_\mathsf{S} \not\preceq_c (\vec{\mathbf{G}},\mathsf{S}).$$

Proof.

- The set $\tilde{\mathsf{F}} = \{ \mathbf{G} \in \mathbb{G} \mid \chi_B(\vec{\mathbf{G}}) < \aleph_0 \} = \{ \mathbf{G} \in \mathbb{G} \mid \vec{\mathbf{G}} \in F \}$ is $\mathbf{\Sigma}_2^1$.
- Moreover $\tilde{\mathsf{F}} \subseteq \mathsf{BG}$: for if $\mathcal{G}_{\mathsf{S}} \preceq_c \mathbf{G}$, then by Lemma (1) $\mathcal{G}_{\mathsf{S}} \preceq_c \mathbf{G}$ and so $\aleph_0 = \chi_B(\mathcal{G}_{\mathsf{S}}) \leqslant \chi_B(\mathbf{G})$.
- Since BG is not Σ_2^1 , we cannot have $\tilde{F} = BG$. Hence there exists **G** with **G** \in BG and **G** $\notin \tilde{F}$. Such a **G** is as desired.

In search for a specific example

Consider the set $2^{<\omega}$ of finite binary words equipped with the subword ordering, i.e.

 $u \preccurlyeq v \quad \longleftrightarrow$ there exists a strictly increasing map $h: |u| \rightarrow |v|$ such that for every i < |u| we have u(i) = v(h(i)),

where |u| denotes the length of $u \in 2^{<\omega}$. E.g. $01 \preccurlyeq 100100$.

• Let
$$\mathbf{H} = (2^{<\omega}, H)$$
 where $u H v \leftrightarrow u \not\preccurlyeq v$.

Since $(2^{<\omega}, \preccurlyeq)$ is a *better-quasi-order*, so $\mathcal{G}_S \not\leq_c (2^{<\omega}, H)$ and so $\mathcal{G}_S \not\leq_c \vec{H}$.

Question

What is the Borel chromatic number of \vec{H} ? Is it \aleph_0 ?

Remark: there is no **continuous** 2-coloring of \vec{H} .

One conjecture for the road

Conjecture

The Borel chromatic number of \mathcal{G}_{S} is *effectively* infinite: for all $n \in \omega$ and all $\Delta_{1}^{1} \max c : [\omega]^{\infty} \to n$ there exists a Δ_{1}^{1} point $X \in [\omega]^{\infty}$ with c(X) = c(S(X)).