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Part I
Well-quasi-orders

and
Better-quasi-orders



Well-quasi-orders

A quasi-order (qo) is a set Q together with
a reflexive and transitive binary relation ⩽.

Definition
A well-quasi-order (wqo) is a qo that satisfies one of the
following equivalent conditions.

1 Q is well-founded and has no infinite antichain;
2 there exists no bad sequence, i.e. no (qn)n s.t.

∀m, n ∈ ω m < n→ qm ⩽̸ qn.

3 P(Q) is well-founded, under:

X ⩽ Y ←→ ∀x ∈ X ∃y ∈ Y x ⩽ y .



Well-quasi-orders

Examples of wqos
Finite quasi-orders
Well-orders
If P and Q are wqo, then P × Q is wqo.
(Higman 52’) If P is wqo, then P<ω is wqo under

(pi)i<n ⩽ (qj)j<m ←→ ∃f : n→ m strictly increasing
s.t. pi ⩽ qf (i) for all i < n

(Laver 71’) Countable linear orders under embeddability.
(Robertson-Seymour, 500 pages, 1983-2004) The finite
undirected graphs under the minor relation.



A wqo Q such that P(Q) is not wqo
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Rado’s poset R

Richard Rado, 1954.

R is defined on [ω]2 by:

{m0, m1} ⩽ {n0, n1}

iff{
m0 = n0 and m1 ⩽ n1, or
m0 < m1 < n0 < n1



Better quasi-orders
Fix a quasi-order Q and treat the element of Q as atoms, namely
they have no elements but they are different from the empty set.
We define by transfinite recursion:

Q∗
0 = Q

Q∗
α+1 = P∗(Q∗

α) (the non-empty subsets of V ∗
α)

Q∗
λ =

∪
α<λ

Q∗
α, for λ limit.

Let
Q∗ =

∪
α

Q∗
α.

We define a quasi-order on Q∗ via the existence of a winning
strategy in a suitable game G(X , Y ).

Definition (Intuitive definition)
A quasi-order Q is a better-quasi-order if Q∗ is well-founded.



Making sense of the definition
Let (Xn)n be a sequence in Q∗ such that m < n implies Xn ⩽̸ Xm.
For every infinite subset N = {n0, n1, n2, . . .} of ω, contemplate:
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Where S(N) = N ∖ {min N}. This defines a map f : [ω]∞ → Q,
f (N) = QN , such that f (N) ⩽̸ f (S(N)).



A working definition for better-quasi-orders

[ω]∞ is a Polish space homeomorphic to ωω.
Considering Q with the discrete topology, we
just proved:

Proposition
If Q∗ is ill-founded, then there exists a continuous map
f : [ω]∞ → Q s.t. f (N) ⩽̸ f (S(N)) for every N.

And in fact, this is an equivalence. So we get:

Definition (Working definition, Nash-Williams 65’)
A quasi-order Q is a better-quasi-order (bqo) if for every
continuous map f : [ω]∞ → Q there exists N ∈ [ω]∞ such that
f (N) ⩽ f (S(N)).



Examples of better-quasi-orders
Theorem (Nash-Williams, Galvin-Prikry)
For every finite partition [ω]∞ = B0 ∪ · · · ∪ Bn into Borel sets,
there exists an infinite X ⊆ ω such that [X ]∞ ⊆ Bi for some
i ∈ {0, . . . , n}.

Examples of bqos
Finite quasi-orders
Well-orders
If P and Q are bqo, then P × Q is bqo.
(Nash-Williams) If P is bqo, then Pω is bqo under

(pi)i∈ω ⩽ (qj)j∈ω ←→ ∃f : ω → ω strictly increasing
s.t. pi ⩽ qf (i) for all i ∈ ω

(Laver 71’) Countable linear orders under embeddability.
every “naturally occuring” wqo.



Part II
Infinite vs. infinite

Borel chromatic number



Directed graphs

A directed graph is a pair D = (X , D) where D is an
irreflexive binary relation on X .
A homomorphism from (X , D) to (X ′, D′) is a map
h : X → X ′ such that x D y implies h(x) D′ h(y).
A coloring of a directed graph (X , D) is a map c : X → Y
such that xDx ′ implies c(x) ̸= c(x ′).
The chromatic number of D = (X , D), χ(D), is the smallest
cardinality of a set Y s.t. there exists a coloring c : X → Y .



Borel chromatic number

If X is a Polish space, the Borel chromatic number, χB(D), of
D = (X , D) is the smallest cardinality of a Polish space Y
such that there exists a Borel coloring c : X → Y .
Write (X , D) ⪯ (X ′, D′), (⪯c ,⪯B) if there exists a
(continuous, Borel) homomorphism from (X , D) to (X ′, D′).

Remark:
1 χB(D) ∈ {1, 2, 3, . . . ,ℵ0, 2ℵ0}.
2 if (X , D) ⪯B (X ′, D′) then χB(X , D) ⩽ χB(X ′, D′).

Theorem (Kechris–Solecki–Todorcevic, 96)
There is a graph G0 on 2ω s.t. for every analytic graph G = (X , G)
on a Polish space X, exactly one of the following holds:

1 χB(G) ⩽ ℵ0,
2 G0 ⪯c G (and therefore χB(G) = 2ℵ0).



Graphs generated by a function
For any function f : X → X , let (X , f ) denote the directed graph
whose arrows are given by:

x Df y ↔ x ̸= y and f (x) = y .

Remark: If X is Polish and f is Borel, then χB(X , f ) ⩽ ℵ0.

Theorem (Kechris–Solecki–Todorcevic, Miller)
Let f : X → X be a Borel function with no fixed point. Then the
following are equivalent:

1 χB(X , f ) ⩽ 3,
2 χB(X , f ) is finite,
3 there exists a Borel subset B of X such that

∀x ∈ X
(
∃∞m ∈ ω f m(x) ∈ B and ∃∞n ∈ ω f n(x) ̸∈ B

)
.



Finite vs Infinite: The shift graph (again :-)

Let [ω]∞ be the space of infinite subsets of ω. As a subspace of 2ω

it is Polish and homeomorphic to ωω. The shift map is defined by

S : [ω]∞ 7−→ [ω]∞

X −→ X ∖ {min X}

The Shift Graph is the directed graph GS = ([ω]∞, S).
As GS is acyclic, we have χ(GS) = 2 (Axiom of choice :-)
The Galvin–Prikry theorem: for every finite Borel coloring of
[ω]∞ there exists an infinite X ⊆ ω such that [X ]∞ is
monochromatic. In particular X and S(X ) have same color.
Hence χB(GS) is infinite. But c : [ω]∞ → ω, X 7→ min X is a
continuous coloring, so

χB(GS) = ℵ0.



Finite vs infinite

(Kechris–Solecki–Todorcevic, 1996) Is the following true?
If X is a Polish space and f : X → X is a Borel function,
then exactly one of the following holds:

1 The Borel chromatic number of (X , f ) is finite;
2 GS ⪯c (X , f ).

The answer is negative.



Finite vs infinite
Theorem (P)
There exists a closed subset C of [ω]∞ such that

X ∈ C implies S(X ) ∈ C,
the Borel chromatic number of (C , S) is infinite,
there is no Borel homomorphism from GS to (C , S).

However no “natural” example is known.
The proof consists of showing that the collection of closed
sets as above is a true Π1

2 set, hence non empty.
It relies on a representation theorem for Σ1

2 sets.
Actually there is no basis result at all since:

Theorem (Todorčević,Vidnyánszky)
The set of codes for closed subsets C of [ω]∞ for which (C , S) has
finite Borel chromatic number is Σ1

2-complete.



Representation of analytic sets
Let G = 2ω be the Polish space of (codes for) countable directed
graphs, where α ∈ 2ω codes (Xα, Dα) given by

Xα = {n | α(⟨n, n⟩) = 0}, and
m Dα n↔ α(⟨m, n⟩) = 1 and m, n ∈ Xα.

Proposition (Folklore)
A subset A of ωω is Σ1

1 iff there exists a continuous function
ωω → G, α 7→ Gα such that

α ∈ A ←→ (ω, <) ⪯ Gα

Proof sketch: Let T = {(x↾n, y↾n) | (x , y) ∈ C and n ∈ ω} and set
T (α) = {s ∈ ω<ω | (α↾s , s) ∈ T}. We have

α ∈ A ←→ ∃β ∈ ωω ∀n (α↾n, β↾n) ∈ T
←→ ∃β ∈ ωω ∀n β↾n ∈ T (α)
←→ (ω, <) ⪯ (T (α),<) = Gα.



Representation of Σ1
2 sets

Recall that a subset P ⊆ ωω is Σ1
2 if there exists a closed subset C

of ωω × ωω × ωω such that

α ∈ P ←→ ∃β ∈ ωω ∀γ ∈ ωω (α, β, γ) /∈ C .

Theorem (Marcone, 95’)
A subset P ⊆ ωω is Σ1

2 iff there exists a continuous function
ωω → G, α 7→ Gα such that

α ∈ P ←→ GS ⪯c Gα.

Again any G ∈ G is considered with the discrete topology.



A Π1
2 complete set

Corollary
{G ∈ G | GS ⪯c G} is a Σ1

2 non Π1
2 subset of G.

Proof.
It is not too hard to give a Σ1

2 definition.
Suppose it is also Π1

2. As Π1
2 is closed under continuous

preimages, the representation theorem implies that Σ1
2 ⊆ Π1

2.
This would contradict the existence of a universal Σ1

2 set.

Definition
A countable directed graph G ∈ G is better if GS ⪯̸c G when the
vertex set is considered with the discrete topology.

The set
BG = {G ∈ G | GS ⪯̸c G}

of better graphs is a Π1
2-complete set. In particular, not Σ1

2.



Shift on rays of a countable directed graph
Let G = (X , D) be directed graph on X ⊆ ω.
Define the Ray Graph of G as the directed graph (G⃗, S) where:

G⃗ =
{
(ni)i∈ω ∈ Xω

∣∣ ∀i ∈ ω ni D ni+1
}

and the shift map S : G⃗→ G⃗ given by

S((ni)i∈ω) = (ni+1)i∈ω.

If G = (ω, <), then G⃗ = [ω]∞.
If G = (ω, s), s : n 7→ n + 1, then G⃗ = {ω ∖ n | n ∈ ω}.

Proposition
For every G ∈ G:

GS ⪯c G ←→ GS ⪯c (G⃗, S),
←→ GS ⪯B (G⃗, S).



A very discrete graph

Recall that BG = {G ∈ G | GS ⪯̸c G} is Π1
2-complete.

Theorem
There exists G ∈ G such that

χB(G⃗, S) = ℵ0 and GS ⪯̸B (G⃗, S).

Sketch of the proof.

Prove that the set F̃ = {G ∈ G | χB(G⃗) < ℵ0} is Σ1
2.

Notice that F̃ ⊆ BG: for if GS ⪯c G, then GS ⪯c G⃗ and so
ℵ0 = χB(GS) ⩽ χB(G⃗).

Since BG is not Σ1
2, we cannot have F̃ = BG. Hence there exists G

with G ∈ BG and G /∈ F̃. Such a G is as desired.



Part III
Ordering functions



Ordering functions

One way to understand objects consists of ordering them.
For sets A, B ⊆ ωω, continuous reducibility (Wadge qo):

A ⩽W B ←→ ∃f : ωω → ωω continuous such that
∀x ∈ ωω(

x ∈ A↔ f (x) ∈ B
)
.

For equivalence relations E , F on ωω, Borel reducibility:

E ⩽B F ←→ ∃f : ωω → ωω Borel such that
∀x , y ∈ ωω(

x E y ↔ f (x) F f (y)
)
.

What about functions?

All spaces considered are Polish zero-dimensional spaces, denoted
by variables X , Y ,...



Continuous reducibility on functions

Definition (Hertling-Weihrauch, Carroy)
Say that f : X → Y reduces to g : X ′ → Y ′ if
there are σ : X → X ′ continuous and
τ : im(g ◦ σ)→ Y continuous such that
f = τ ◦ g ◦ σ.

X ′ Y ′

X Y
f

g

σ τ⩽

Theorem (Carroy, 2012)
Continuous reducibility is a well-order on continuous functions with
compact domains.

Conjecture (Carroy)
Continuous reducibility is a wqo on continuous functions.



Topological embeddability on functions

Definition
Say that f : X → Y embeds into g : X ′ → Y ′

if there are embeddings σ : X → X ′ and
τ : im f → Y ′ such that τ ◦ f = g ◦ σ.

X ′ Y ′

X Y
f

g

σ τ⊑

Embeddability is finer than reducibility: f ⊑ g → f ⩽ q.
The projection p : ωω × ωω → ωω is a maximum for
continuous functions: f : X → Y is continuous iff f ⊑ p.
The two discontinuous functions

d0 : ω + 1 −→ 2 d1 : ω + 1 −→ ω

ω 7−→ 0 ω 7−→ 0
n 7−→ 1 n 7−→ n + 1

form a 2-element basis for discontinuous functions:
f : X → Y is discontinuous iff d0 ⊑ f or d1 ⊑ f .



Topological embeddability on functions, continued.
Theorem
The following classes admits a minimum under embeddability:

1 (Solecki, 98’) The class of Baire class 1 functions that are not
σ-continuous.

2 (Zapletal, 04’) The Borel functions that are not σ-continuous.
3 (Carroy-Miller, 17’) The class of Baire class 1 functions that

are not Fσ-to-one.

Theorem (Carroy-Miller, 17’)
The following classes admits a finite basis under embeddability:

1 The Borel functions that are not in the first Baire class.
2 The Borel functions that are not σ-continuous with closed

witnesses.

Conjecture, α > 1:
The Borel functions that are not Baire class α admit a finite basis.



Order and Chaos
For X compact, C(X , Y ) denotes the space of continuous
functions X → Y with the topology of uniform convergence.

Proposition (Carroy, P., Vidnyánszky)
If X , Y are Polish and X is compact, then embeddability is an
analytic quasi-order on C(X , Y ).

An analytic qo Q on a Polish space Z is analytic complete if it
Borel reduces every analytic qo on any Polish space.

Theorem (Carroy, P., Vidnyánszky)
Suppose that X , Y are Polish zero-dimensional and X is compact.
Then exactly one of the following holds:

1 embeddability on C(X , Y ) is an analytic complete quasi-order,
2 embeddability on C(X , Y ) is a wqo. In fact, a bqo.

Moreover 1 holds exactly when X has infinitely many non-isolated
points and Y is not discrete. For instance for C(2ω, 2ω).



Chaos
Let G denote the Polish space of (simple) undirected graphs with
vertex set N.
For G , H ∈ G let

G ⩽i H ←→ there is an injective homomorphism from G to H.

Theorem (Louveau-Rosendal)
The qo ⩽i on G is an analytic complete quasi-order.

Theorem (Carroy, P., Vidnyánszky)
There is a continuous function G→ C(ω2 + 1, ω + 1), G 7→ f G

that reduces ⩽i to ⊑:

G ⩽i H ←→ f G ⊑ f H .

So embeddability on C(ω2 + 1, ω + 1) is an analytic complete qo.



Order
Let Q be the space of rationals, (P,⩽P) a quasi-order.
Let PQ be the set of maps l : Q→ P quasi-ordered by

l0 ⩽ l1 ←→ there is a topological embedding τ : Q→ Q
such that l0(q) ⩽P l1(τ(q)) for all q ∈ Q.

Theorem (van Engelen-Miller-Steel)
If P is bqo, then PQ is bqo.

Theorem (van Engelen-Miller-Steel, Carroy)
The Polish 0-dimensional spaces with embeddability are bqo.

Proposition (Carroy, P., Vidnyánszky)
The locally constant maps are bqo under embeddability.



In search of a specific example

Consider the set 2<ω of finite binary words equipped with the
subword ordering, i.e.

u ≼ v ←→ there exists a strictly increasing map h : |u| → |v |
such that for every i < |u| we have u(i) = v(h(i)),

where |u| denotes the length of u ∈ 2<ω. E.g. 01 ≼ 100100.

Let H = (2<ω, H) where u H v ↔ u ̸≼ v .
Since (2<ω,≼) is a better-quasi-order, so GS ⪯̸c (2<ω, H) and
so GS ⪯̸c H⃗.

Question
What is the Borel chromatic number of H⃗? Is it ℵ0?

Remark: there is no continuous 2-coloring of H⃗.


