Colorful well-foundedness

Yann Pequignot

University of California, Los Angeles

YST workshop, Bernoulli Center, Lausanne June 29, 2018 Part I Well-quasi-orders and Better-quasi-orders

Well-quasi-orders

A **quasi-order** (qo) is a set Q together with a *reflexive* and *transitive* binary relation \leq .

Definition

A **well-quasi-order** (wqo) is a qo that satisfies one of the following equivalent conditions.

- **1** Q is well-founded and has no infinite antichain;
- 2 there exists no bad sequence, i.e. no $(q_n)_n$ s.t.

$$\forall m, n \in \omega \quad m < n \to q_m \notin q_n.$$

3 $\mathcal{P}(Q)$ is well-founded, under:

$$X \leqslant Y \quad \longleftrightarrow \quad \forall x \in X \; \exists y \in Y \; x \leqslant y.$$

Well-quasi-orders

Examples of wqos

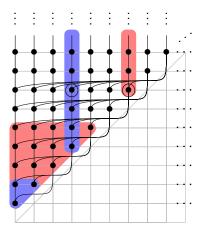
- Finite quasi-orders
- Well-orders
- If P and Q are wqo, then $P \times Q$ is wqo.
- (Higman 52') If P is wqo, then $P^{<\omega}$ is wqo under

$$(p_i)_{i < n} \leqslant (q_j)_{j < m} \quad \longleftrightarrow \quad \exists f : n \to m \text{ strictly increasing}$$

s.t. $p_i \leqslant q_{f(i)}$ for all $i < n$

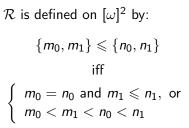
- (Laver 71') Countable linear orders under embeddability.
- (Robertson-Seymour, 500 pages, 1983-2004) The finite undirected graphs under the minor relation.

A wqo Q such that $\mathcal{P}(Q)$ is not wqo



Rado's poset \mathcal{R}

Richard Rado, 1954.



Better quasi-orders

Fix a quasi-order Q and treat the element of Q as *atoms*, namely they have no elements but they are different from the empty set. We define by transfinite recursion:

$$egin{aligned} &Q_0^* = Q \ &Q_{lpha+1}^* = \mathcal{P}^*(Q_lpha^*) & (ext{the non-empty subsets of } V_lpha^*) \ &Q_\lambda^* = igcup_{lpha < \lambda} Q_lpha^*, & ext{for } \lambda ext{ limit.} \end{aligned}$$

Let

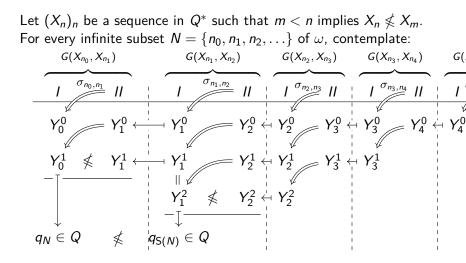
$$Q^* = \bigcup_{lpha} Q^*_{lpha}.$$

We define a quasi-order on Q^* via the existence of a winning strategy in a suitable game G(X, Y).

Definition (Intuitive definition)

A quasi-order Q is a better-quasi-order if Q^* is well-founded.

Making sense of the definition



Where $S(N) = N \setminus \{\min N\}$. This defines a map $f : [\omega]^{\infty} \to Q$, $f(N) = Q_N$, such that $f(N) \notin f(S(N))$.

A working definition for better-quasi-orders

 $[\omega]^\infty$ is a Polish space homeomorphic to $\omega^\omega.$ Considering Q with the discrete topology, we just proved:

Proposition If Q^* is ill-founded, then there exists a continuous map $f : [\omega]^{\infty} \to Q$ s.t. $f(N) \nleq f(S(N))$ for every N.

And in fact, this is an equivalence. So we get:

Definition (Working definition, Nash-Williams 65')

A quasi-order Q is a *better-quasi-order* (bqo) if for every continuous map $f : [\omega]^{\infty} \to Q$ there exists $N \in [\omega]^{\infty}$ such that $f(N) \leq f(S(N))$.

Examples of better-quasi-orders

Theorem (Nash-Williams, Galvin-Prikry)

For every finite partition $[\omega]^{\infty} = B_0 \cup \cdots \cup B_n$ into Borel sets, there exists an infinite $X \subseteq \omega$ such that $[X]^{\infty} \subseteq B_i$ for some $i \in \{0, \ldots, n\}$.

Examples of bqos

- Finite quasi-orders
- Well-orders
- If P and Q are boo, then $P \times Q$ is boo.
- (Nash-Williams) If P is bqo, then P^{ω} is bqo under

$$(p_i)_{i \in \omega} \leqslant (q_j)_{j \in \omega} \quad \longleftrightarrow \quad \exists f : \omega \to \omega \text{ strictly increasing}$$

s.t. $p_i \leqslant q_{f(i)}$ for all $i \in \omega$

(Laver 71') Countable linear orders under embeddability.
 every "naturally occuring" wqo.

Part II Infinite vs. infinite Borel chromatic number

Directed graphs

- A directed graph is a pair $\mathbf{D} = (X, D)$ where D is an irreflexive binary relation on X.
- A homomorphism from (X, D) to (X', D') is a map $h: X \to X'$ such that x D y implies h(x) D' h(y).
- A coloring of a directed graph (X, D) is a map $c : X \to Y$ such that xDx' implies $c(x) \neq c(x')$.
- The chromatic number of $\mathbf{D} = (X, D)$, $\chi(\mathbf{D})$, is the smallest cardinality of a set Y s.t. there exists a coloring $c : X \to Y$.

Borel chromatic number

- If X is a Polish space, the *Borel chromatic number*, $\chi_B(\mathbf{D})$, of $\mathbf{D} = (X, D)$ is the smallest cardinality of a Polish space Y such that there exists a Borel coloring $c : X \to Y$.
- Write (X, D) ≤ (X', D'), (≤_c, ≤_B) if there exists a (continuous, Borel) homomorphism from (X, D) to (X', D').

$$\chi_B(\mathbf{D}) \in \{1, 2, 3, \dots, \aleph_0, 2^{\aleph_0}\}.$$

Remark:

2 if
$$(X, D) \preceq_B (X', D')$$
 then $\chi_B(X, D) \leq \chi_B(X', D')$.

Theorem (Kechris–Solecki–Todorcevic, 96)

There is a graph \mathbf{G}_0 on 2^{ω} s.t. for every analytic graph $\mathbf{G} = (X, G)$ on a Polish space X, exactly one of the following holds:

1
$$\chi_B(\mathbf{G}) \leq \aleph_0$$
,
2 $\mathbf{G}_0 \leq_c \mathbf{G}$ (and therefore $\chi_B(\mathbf{G}) = 2^{\aleph_0}$).

Graphs generated by a function

For any function $f : X \to X$, let (X, f) denote the directed graph whose arrows are given by:

$$x D_f y \leftrightarrow x \neq y$$
 and $f(x) = y$.

Remark: If X is Polish and f is Borel, then $\chi_B(X, f) \leq \aleph_0$.

Theorem (Kechris-Solecki-Todorcevic, Miller)

Let $f : X \to X$ be a Borel function with no fixed point. Then the following are equivalent:

1
$$\chi_B(X,f) \leq 3$$
,

- 2 $\chi_B(X, f)$ is finite,
- 3 there exists a Borel subset B of X such that

 $\forall x \in X \ (\exists^{\infty} m \in \omega \ f^{m}(x) \in B \text{ and } \exists^{\infty} n \in \omega \ f^{n}(x) \notin B).$

Finite vs Infinite: The shift graph (again :-)

Let $[\omega]^{\infty}$ be the space of infinite subsets of ω . As a subspace of 2^{ω} it is Polish and homeomorphic to ω^{ω} . The *shift map* is defined by

$$S: [\omega]^{\infty} \longmapsto [\omega]^{\infty}$$

 $X \longrightarrow X \smallsetminus \{\min X\}$

The *Shift Graph* is the directed graph $\mathcal{G}_{S} = ([\omega]^{\infty}, S)$.

- As \mathcal{G}_{S} is acyclic, we have $\chi(\mathcal{G}_{\mathsf{S}}) = 2$ (Axiom of choice :-)
- The Galvin–Prikry theorem: for every finite Borel coloring of [ω][∞] there exists an infinite X ⊆ ω such that [X][∞] is monochromatic. In particular X and S(X) have same color. Hence χ_B(G_S) is infinite. But c : [ω][∞] → ω, X ↦ min X is a continuous coloring, so

$$\chi_B(\mathcal{G}_{\mathsf{S}}) = \aleph_0.$$

Finite vs infinite

(Kechris-Solecki-Todorcevic, 1996) Is the following true?

If X is a Polish space and $f : X \to X$ is a Borel function, then exactly one of the following holds:

1 The Borel chromatic number of (X, f) is finite;

2 $\mathcal{G}_{\mathsf{S}} \preceq_{c} (X, f).$

The answer is negative.

Finite vs infinite

Theorem (P)

There exists a closed subset C of $[\omega]^\infty$ such that

- $X \in C$ implies $S(X) \in C$,
- the Borel chromatic number of (C,S) is infinite,
- there is no Borel homomorphism from \mathcal{G}_S to (C,S).
- However no "natural" example is known.
- The proof consists of showing that the collection of closed sets as above is a true Π¹₂ set, hence non empty.
- It relies on a representation theorem for Σ_2^1 sets.

Actually there is no basis result at all since:

Theorem (Todorčević, Vidnyánszky)

The set of codes for closed subsets C of $[\omega]^{\infty}$ for which (C,S) has finite Borel chromatic number is Σ_2^1 -complete.

Representation of analytic sets

Let $\mathbb{G} = 2^{\omega}$ be the Polish space of (codes for) countable directed graphs, where $\alpha \in 2^{\omega}$ codes (X_{α}, D_{α}) given by

$$X_{lpha} = \{n \mid lpha(\langle n, n \rangle) = 0\}, \text{ and}$$

 $m D_{lpha} \ n \leftrightarrow lpha(\langle m, n \rangle) = 1 \text{ and } m, n \in X_{lpha}.$

Proposition (Folklore)

A subset A of ω^{ω} is Σ_1^1 iff there exists a continuous function $\omega^{\omega} \to \mathbb{G}$, $\alpha \mapsto \mathbf{G}_{\alpha}$ such that

$$\alpha \in A \quad \longleftrightarrow \quad (\omega, <) \preceq \mathbf{G}_{\alpha}$$

Proof sketch: Let $T = \{(x \upharpoonright_n, y \upharpoonright_n) \mid (x, y) \in C \text{ and } n \in \omega\}$ and set $T(\alpha) = \{s \in \omega^{<\omega} \mid (\alpha \upharpoonright_s, s) \in T\}$. We have

$$\begin{array}{rcl} \alpha \in A & \longleftrightarrow & \exists \beta \in \omega^{\omega} \ \forall n \ (\alpha \upharpoonright_n, \beta \upharpoonright_n) \in T \\ & \longleftrightarrow & \exists \beta \in \omega^{\omega} \ \forall n \ \beta \upharpoonright_n \in T(\alpha) \\ & \longleftrightarrow & (\omega, <) \preceq (T(\alpha), \sqsubset) = \mathbf{G}_{\alpha}. \end{array}$$

Representation of Σ_2^1 sets

Recall that a subset $P \subseteq \omega^{\omega}$ is Σ_2^1 if there exists a closed subset C of $\omega^{\omega} \times \omega^{\omega} \times \omega^{\omega}$ such that

$$\alpha \in P \quad \longleftrightarrow \quad \exists \beta \in \omega^{\omega} \ \forall \gamma \in \omega^{\omega} \ (\alpha, \beta, \gamma) \notin C.$$

Theorem (Marcone, 95')

A subset $P \subseteq \omega^{\omega}$ is Σ_2^1 iff there exists a continuous function $\omega^{\omega} \to \mathbb{G}$, $\alpha \mapsto \mathbf{G}_{\alpha}$ such that

$$\alpha \in P \quad \longleftrightarrow \quad \mathcal{G}_{\mathsf{S}} \preceq_{c} \mathbf{G}_{\alpha}.$$

Again any $\mathbf{G} \in \mathbb{G}$ is considered with the discrete topology.

A Π_2^1 complete set

Corollary

 $\{ \textbf{G} \in \mathbb{G} \mid \mathcal{G}_{\textbf{S}} \preceq_{c} \textbf{G} \} \text{ is a } \textbf{\Sigma}_{2}^{1} \text{ non } \textbf{\Pi}_{2}^{1} \text{ subset of } \mathbb{G}.$

Proof.

- It is not too hard to give a Σ_2^1 definition.
- Suppose it is also Π¹₂. As Π¹₂ is closed under continuous preimages, the representation theorem implies that Σ¹₂ ⊆ Π¹₂. This would contradict the existence of a universal Σ¹₂ set.

Definition

A countable directed graph $\mathbf{G} \in \mathbb{G}$ is **better** if $\mathcal{G}_S \not\leq_c \mathbf{G}$ when the vertex set is considered with the discrete topology.

The set

$$\mathsf{BG} = \{\mathbf{G} \in \mathbb{G} \mid \mathcal{G}_{\mathsf{S}} \not\preceq_{c} \mathbf{G}\}$$

of better graphs is a Π_2^1 -complete set. In particular, not Σ_2^1 .

Shift on rays of a countable directed graph Let $\mathbf{G} = (X, D)$ be directed graph on $X \subseteq \omega$. Define the *Ray Graph* of \mathbf{G} as the directed graph ($\vec{\mathbf{G}}$, S) where:

$$ec{\mathbf{G}} = \{(n_i)_{i \in \omega} \in X^{\omega} \mid \forall i \in \omega \ n_i \ D \ n_{i+1}\}$$

and the shift map $S: \vec{\boldsymbol{G}} \rightarrow \vec{\boldsymbol{G}}$ given by

$$S((n_i)_{i\in\omega})=(n_{i+1})_{i\in\omega}.$$

If
$$\mathbf{G} = (\omega, <)$$
, then $\vec{\mathbf{G}} = [\omega]^{\infty}$.
If $\mathbf{G} = (\omega, s)$, $s : n \mapsto n+1$, then $\vec{\mathbf{G}} = \{\omega \smallsetminus n \mid n \in \omega\}$.

Proposition

For every $\mathbf{G} \in \mathbb{G}$:

$$\begin{aligned} \mathcal{G}_{\mathsf{S}} \preceq_{c} \mathbf{G} & \longleftrightarrow & \mathcal{G}_{\mathsf{S}} \preceq_{c} (\vec{\mathbf{G}},\mathsf{S}), \\ & \longleftrightarrow & \mathcal{G}_{\mathsf{S}} \preceq_{B} (\vec{\mathbf{G}},\mathsf{S}). \end{aligned}$$

A very discrete graph

Recall that $BG = \{ \mathbf{G} \in \mathbb{G} \mid \mathcal{G}_S \not\leq_c \mathbf{G} \}$ is Π_2^1 -complete.

Theorem

There exists $\mathbf{G} \in \mathbb{G}$ such that

$$\chi_B(\vec{\mathbf{G}},\mathsf{S}) = \aleph_0$$
 and $\mathcal{G}_{\mathsf{S}} \not\preceq_B (\vec{\mathbf{G}},\mathsf{S}).$

Sketch of the proof.

- Prove that the set $\tilde{\mathsf{F}} = \{ \mathbf{G} \in \mathbb{G} \mid \chi_B(\mathbf{G}) < \aleph_0 \}$ is $\mathbf{\Sigma}_2^1$.
- Notice that $\tilde{\mathsf{F}} \subseteq \mathsf{BG}$: for if $\mathcal{G}_{\mathsf{S}} \preceq_c \mathbf{G}$, then $\mathcal{G}_{\mathsf{S}} \preceq_c \vec{\mathsf{G}}$ and so $\aleph_0 = \chi_B(\mathcal{G}_{\mathsf{S}}) \leqslant \chi_B(\vec{\mathsf{G}})$.
- Since BG is not Σ_2^1 , we cannot have $\tilde{F} = BG$. Hence there exists **G** with **G** \in BG and **G** $\notin \tilde{F}$. Such a **G** is as desired.

Part III Ordering functions

Ordering functions

- One way to understand objects consists of ordering them.
- For sets $A, B \subseteq \omega^{\omega}$, continuous reducibility (Wadge qo):

 $\begin{array}{rcl} A \leqslant_W B & \longleftrightarrow & \exists f : \omega^\omega \to \omega^\omega \text{ continuous such that} \\ & \forall x \in \omega^\omega (x \in A \leftrightarrow f(x) \in B). \end{array}$

For equivalence relations E, F on ω^{ω} , Borel reducibility:

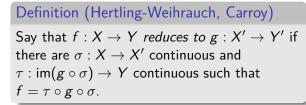
$$E \leq_B F \quad \longleftrightarrow \quad \exists f : \omega^{\omega} \to \omega^{\omega} \text{ Borel such that}$$

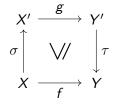
 $\forall x, y \in \omega^{\omega} (x E y \leftrightarrow f(x) F f(y)).$

What about functions?

All spaces considered are Polish zero-dimensional spaces, denoted by variables X, Y, \dots

Continuous reducibility on functions





Theorem (Carroy, 2012)

Continuous reducibility is a well-order on continuous functions with compact domains.

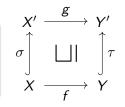
Conjecture (Carroy)

Continuous reducibility is a wqo on continuous functions.

Topological embeddability on functions

Definition

Say that $f : X \to Y$ embeds into $g : X' \to Y'$ if there are embeddings $\sigma : X \to X'$ and $\tau : \operatorname{im} f \to Y'$ such that $\tau \circ f = g \circ \sigma$.



- Embeddability is finer than reducibility: $f \sqsubseteq g \rightarrow f \leqslant q$.
- The projection p : ω^ω × ω^ω → ω^ω is a maximum for continuous functions: f : X → Y is continuous iff f ⊑ p.
- The two discontinuous functions

$$egin{array}{cccc} d_0:\omega+1 \longrightarrow 2 & & d_1:\omega+1 \longrightarrow \omega \ & & & & \omega \longmapsto 0 \ & & & n \longmapsto 1 & & n \longmapsto n+1 \end{array}$$

form a 2-element *basis* for discontinuous functions: $f : X \to Y$ is discontinuous iff $d_0 \sqsubseteq f$ or $d_1 \sqsubseteq f$.

Topological embeddability on functions, continued.

Theorem

The following classes admits a minimum under embeddability:

- **1** (Solecki, 98') The class of Baire class 1 functions that are not σ -continuous.
- **2** (Zapletal, 04') The Borel functions that are not σ -continuous.
- 3 (Carroy-Miller, 17') The class of Baire class 1 functions that are not F_{σ} -to-one.

Theorem (Carroy-Miller, 17')

The following classes admits a finite basis under embeddability:

- **1** The Borel functions that are not in the first Baire class.
- 2 The Borel functions that are not *σ*-continuous with closed witnesses.

Conjecture, $\alpha > 1$:

The Borel functions that are not Baire class α admit a finite basis.

Order and Chaos

For X compact, C(X, Y) denotes the space of continuous functions $X \to Y$ with the topology of uniform convergence.

Proposition (Carroy, P., Vidnyánszky)

If X, Y are Polish and X is compact, then embeddability is an analytic quasi-order on C(X, Y).

An analytic qo Q on a Polish space Z is analytic complete if it Borel reduces every analytic qo on any Polish space.

Theorem (Carroy, P., Vidnyánszky)

Suppose that X, Y are Polish zero-dimensional and X is compact. Then exactly one of the following holds:

- **1** embeddability on C(X, Y) is an analytic complete quasi-order,
- **2** embeddability on C(X, Y) is a wqo. In fact, a bqo.

Moreover 1 holds exactly when X has infinitely many non-isolated points and Y is not discrete. For instance for $C(2^{\omega}, 2^{\omega})$.

Chaos

Let \mathbb{G} denote the Polish space of (simple) undirected graphs with vertex set \mathbb{N} . For $G, H \in \mathbb{G}$ let

 $G \leq_i H \quad \longleftrightarrow$ there is an injective homomorphism from G to H.

Theorem (Louveau-Rosendal)

The qo \leq_i on \mathbb{G} is an analytic complete quasi-order.

Theorem (Carroy, P., Vidnyánszky)

There is a continuous function $\mathbb{G} \to C(\omega^2 + 1, \omega + 1)$, $G \mapsto f^G$ that reduces \leq_i to \sqsubseteq :

$$G \leqslant_i H \quad \longleftrightarrow \quad f^G \sqsubseteq f^H.$$

So embeddability on $C(\omega^2 + 1, \omega + 1)$ is an analytic complete qo.

Order

Let \mathbb{Q} be the space of rationals, (P, \leq_P) a quasi-order. Let $P^{\mathbb{Q}}$ be the set of maps $I : \mathbb{Q} \to P$ quasi-ordered by

 $l_0 \leqslant l_1 \quad \longleftrightarrow \quad \text{there is a topological embedding } au : \mathbb{Q} \to \mathbb{Q}$ such that $l_0(q) \leqslant_P l_1(au(q))$ for all $q \in \mathbb{Q}$.

Theorem (van Engelen-Miller-Steel) If P is bqo, then $P^{\mathbb{Q}}$ is bqo.

Theorem (van Engelen-Miller-Steel, Carroy)

The Polish 0-dimensional spaces with embeddability are bqo.

Proposition (Carroy, P., Vidnyánszky)

The locally constant maps are bqo under embeddability.

In search of a specific example

Consider the set $2^{<\omega}$ of finite binary words equipped with the subword ordering, i.e.

 $u \preccurlyeq v \quad \longleftrightarrow$ there exists a strictly increasing map $h: |u| \rightarrow |v|$ such that for every i < |u| we have u(i) = v(h(i)),

where |u| denotes the length of $u \in 2^{<\omega}$. E.g. $01 \preccurlyeq 100100$.

• Let
$$\mathbf{H} = (2^{<\omega}, H)$$
 where $u \ H \ v \leftrightarrow u \not\preccurlyeq v$.

Since $(2^{<\omega}, \preccurlyeq)$ is a *better-quasi-order*, so $\mathcal{G}_S \not\leq_c (2^{<\omega}, H)$ and so $\mathcal{G}_S \not\leq_c \vec{H}$.

Question

What is the Borel chromatic number of \vec{H} ? Is it \aleph_0 ?

Remark: there is no **continuous** 2-coloring of \vec{H} .