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To Lolita



Bien que les pieds de l’homme
n’occupent qu’un petit coin de la terre,
c’est par tout l’espace qu’il n’occupe pas
que l’homme peut marcher sur la terre immense.

Bien que l’intelligence de l’homme
ne pénètre qu’une parcelle de la vérité totale,
c’est par ce qu’elle ne pénètre pas
que l’homme peut comprendre ce qu’est le ciel.

— Tchouang-tseu
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1 Introduction
Mathematicians have imagined a myriad of objects, most of them infinite, and
inevitably followed by an infinite suite.

What does it mean to understand them? How does a mathematician venture
to make sense of these infinities he has imagined?

Perhaps, one attempt could be to organise them, to arrange them, to order
them. At first, the mathematician can try to achieve this in a relative sense
by comparing the objects according to some idea of complexity; this object
should be above that other one, those two should be side by side, etc. So the
graph theorist may consider the minor relation between graphs, the recursion
theorist may study the Turing reducibility between sets of natural numbers,
the descriptive set theorist can observe subsets of the Baire space through the
lens of the Wadge reducibility or equivalence relations through the prism of the
Borel reducibility, or the set theorist can organise ultrafilters according to the
Rudin-Keisler ordering.

This act of organising objects amounts to considering an instance of the
very general mathematical notion of a quasi-order (qo), namely a transitive
and reflexive relation.

As a means of classifying a family of objects, the following property of a
quasi-order is usually desired: a quasi-order is said to be well-founded if every
non-empty sub-family of objects admits a minimal element. This means that
there are minimal – or simplest – objects which we can display on a first
bookshelf, and then, amongst the remaining objects there are again simplest
objects which we can display on a second bookshelf above the previous one,
and so on and so forth – most probably into the transfinite.

However, as a matter of fact another concept has been ‘frequently discovered’
[Kru72] and proved even more relevant in diverse contexts: a well-quasi-order
(wqo) is a well-founded quasi-order which contains no infinite antichain. In-
tuitively a well-quasi-order provides a satisfactory notion of hierarchy: as a
well-founded quasi-order, it comes naturally equipped with an ordinal rank
and there are up to equivalence only finitely many elements of any given rank.
To prolong our metaphor, this means that, in addition, every bookshelf displays
only finitely many objects – up to equivalence.

The theory of wqos consists essentially of developing tools in order to show
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1 Introduction

that certain quasi-orders suspected to be wqo are indeed so. This theory exhib-
its a curious and interesting phenomenon: to prove that a certain quasi-order
is wqo, it may very well be easier to show that it enjoys a much stronger
property. This observation may be seen as a motivation for considering the
complicated but ingenious concept of better-quasi-order (bqo) invented by
Crispin St. J. A. Nash-Williams [Nas65]. The concept of bqo is weaker than
that of well-ordered set but it is stronger than that of wqo. In a sense, wqo is
defined by a single ‘condition’, while uncountably many ‘conditions’ are neces-
sary to characterise bqo. Still, as Joseph B. Kruskal [Kru72, p.302] observed
in 1972: ‘all “naturally occurring” wqo sets which are known are bqo’1.

The first contribution of this thesis is to the theory of wqo and bqo. The
main result is the proof of a conjecture made by Maurice Pouzet [Pou78] which
states that any wqo whose ideal completion remainder is bqo is actually bqo.
Our proof relies on new results with both a combinatorial and a topological
flavour concerning maps from a front into a compact metric space. We think
that these results are of independent interest and hope that they can be applied
in other situations where fronts and barriers are used, as in the theory of
Banach spaces for example.

Our second contribution is of a more applied nature and deals with topolo-
gical spaces. We define a quasi-order on the subsets of every second countable
𝑇0 topological space in a way that generalises the Wadge quasi-order on the
Baire space, while extending its nice properties to virtually all these topological
spaces.

Our starting point is the celebrated Wadge quasi-order – of reducibility by
continuous functions – on subsets of the Baire space. This quasi-order is de-
scribed by Alessandro Andretta and Alain Louveau [AL] as ‘the ultimate ana-
lysis of the subsets of the Baire space’. The fact that the extremely fine Wadge
quasi-order is wqo on Borel sets is doubtless among the most attractive of its
properties. The proof of this fact given by Tony Martin, building on previous
work by Leonard Monk, is an example of one of the main techniques of bqo
theory, namely the use of infinite games and determinacy. Moreover, as we
explain in this thesis, this property of the Wadge quasi-order follows from an
extension of the idea underlying the very definition of a bqo.

For other important topological spaces the quasi-order of reducibility by
continuous functions is however far less satisfactory. For example, the family
of Borel subsets of the real line is very far from being wqo under continuous
reducibility. While reducibility by discontinuous functions has been studied by

1The minor relations on finite graphs, proved to be wqo by Robertson and Seymour [RS04],
is to our knowledge the only naturally occurring wqo which is not yet known to be bqo.

2



1 Introduction

some authors to remedy this situation, we propose instead to keep continuity
but to weaken the notion of function to that of relation. Using the notion of
admissible representation studied in Type-2 theory of effectivity, we define the
quasi-order of reducibility by relatively continuous relations. We show that this
quasi-order both refines the classical hierarchies of complexity and is wqo on
the Borel subsets of virtually every second countable 𝑇0 space.

1.1 From well to better
A quasi-order 𝑄 is a wqo if it contains no infinite descending chain nor infinite
antichain. However using Ramsey’s Theorem this is equivalent to the absence
of a so-called bad sequence, namely a sequence (𝑞𝑛)𝑛∈𝜔 such that 𝑚 < 𝑛 in 𝜔
implies 𝑞𝑚 ⩽̸ 𝑞𝑛 in 𝑄.

The concept of better-quasi-order was invented by Nash-Williams [Nas65].
Its definition relies on a generalisation of Ramsey’s Theorem to transfinite
dimension: the notion of front. It generalises the definition of wqo given above
in the sense that it does not only forbid bad sequences, but also bad sequences
of sequences, bad sequences of sequences of sequences and so on and so forth
in the transfinite. A front can be thought of as a convenient notion of index
sets for these sequences of … of sequences and we call any map from a front
into some set a super-sequence. A bqo is then a quasi-order which admits no
bad super-sequence.

One contribution of this thesis is to show that super-sequences deserve their
name since they share significant properties with usual sequences. A crucial
property for a sequence in the context of metric spaces is the Cauchy con-
dition. In order to generalise the notion of being Cauchy to super-sequences,
we observe that a sequence (𝑥𝑛)𝑛∈𝜔 in a metric space 𝒳 satisfies the Cauchy
condition if and only if the mapping 𝜔 → 𝒳, 𝑛 ↦ 𝑥𝑛 is uniformly continuous,
when 𝜔 is identified with a subspace of the Cantor space 2𝜔 via 𝑛 ↦ 0𝑛10𝜔.

As observed notably by Todorčević [AT05; Tod10], fronts can naturally be
seen as subsets of the Cantor space. Being a compact Hausdorff space, the
Cantor space admits a unique uniformity that is compatible with its topology.
Even though a front is a discrete topological subspace of 2𝜔, we observe that it
inherits a non-trivial uniformity from 2𝜔. Let us say that a super-sequence in a
metric space is Cauchy when it is uniformly continuous. We show the following
theorem, which generalises the usual sequential compactness for metric spaces.

Theorem 1.1 (with R. Carroy). Every super-sequence in a compact metric
space has a Cauchy sub-super-sequence.
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This combinatorial result should be compared with Erdös-Rado Theorem
[ER50] and Pudlak-Rödl Theorem [PR82] as a Ramsey theorem for partitions
into infinitely many classes. We also note also that this result subsumes Nash-
Williams’ Theorem.

Given a complete metric space 𝒳, every Cauchy sequence 𝑓 ∶ 𝜔 → 𝒳 con-
verges, and thus extends to a continuous map 𝑓 ∶ 𝜔 → 𝒳, where 𝜔 is the one
point compactification of 𝜔. The same is true about Cauchy super-sequences:
any uniformly continuous super-sequence 𝑓 ∶ 𝐹 → 𝒳 from a front 𝐹 into a
complete metric space 𝒳 continuously extends to the uniform completion 𝐹 of
𝐹 , which coincides with the topological closure of the front inside the Cantor
space, to yield a continuous map 𝑓 ∶ 𝐹 → 𝑋.

We also study the continuous extension of Cauchy super-sequences. In full
generality, we are concerned with continuous maps from the topological closure
of a front into some topological space.

Recall that a point 𝑥 in a topological space 𝒳 is called isolated if the singleton
{𝑥} is open in 𝒳, and limit otherwise. The following simple fact exhibits a
property of converging sequences that can always be achieved by going to a
subsequence: If (𝑥𝑛)𝑛∈𝜔 is a sequence converging in a topological space 𝒳 to
some point 𝑥, then there is a subsequence (𝑥𝑛)𝑛∈𝑁 such that

1. if 𝑥 is isolated, then (𝑥𝑛)𝑛∈𝑁 is constant equal to 𝑥;

2. if 𝑥 is limit, then
either 𝑥𝑛 is isolated for all 𝑛 ∈ 𝑁 ;
or 𝑥𝑛 is limit for all 𝑛 ∈ 𝑁 .

We generalise this fact to super-sequences by notably showing the following
result.

Theorem 1.2 (with R. Carroy). Let 𝑓 ∶ 𝐹 → 𝒳 be a continuous extension
of a super-sequence 𝑓 in a topological space 𝒳. Then there exists a sub-super-
sequence 𝑓 ′ ∶ 𝐹 ′ → 𝒳 of 𝑓 such that

either 𝑓 ′ ∶ 𝐹 ′ → 𝑋 is constant and equal to an isolated point;

or {𝑠 ∈ 𝐹 ′ ∣ 𝑓(𝑠) is limit} = 𝐺 for some front 𝐺.

We then apply these theorems to the theory of bqo. The main result is a
proof of a conjecture made by Pouzet [Pou78] in his thèse d’état. By an ideal
of a quasi-order 𝑄 we mean a downward closed and up-directed subset of 𝑄.
To every element 𝑞 ∈ 𝑄 corresponds the principal ideal ↓ 𝑞 = {𝑝 ∈ 𝑄 ∣ 𝑝 ⩽ 𝑞}.
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The ideal completion of 𝑄 is defined as the set of ideals of 𝑄 partially ordered
by inclusion, and it is denoted by Id(𝑄). Notice that 𝑄 embeds into Id(𝑄) via
the map 𝑒 ∶ 𝑞 ↦ ↓ 𝑞. We denote by Id*(𝑄) the set Id(𝑄)∖𝑒(𝑄) of non-principal
ideals of 𝑄, this is the remainder of the ideal completion of 𝑄.

The statement of the conjecture made by Pouzet [Pou78] is the following:

Theorem 1.3 (with R. Carroy). If 𝑄 is wqo and Id*(𝑄) is bqo, then 𝑄 is
bqo.

Pouzet and Sauer [PS06] advanced a proof of this statement, but their proof
contains a gap, as clearly revealed by Alberto Marcone and acknowledged by
Pouzet and Sauer. While the approach of Pouzet and Sauer [PS06] is purely
combinatorial, we follow a completely different line and make essential use of
the fact that the ideal completion of wqo admits a natural compact topology.

We view the importance of the ideal completion as the coincidence in the case
of a wqo of several notions of completions of a quasi-order. In fact, gathering
many results and facts which certainly belong to the folklore we obtain the
following:

Theorem 1.4. For a wqo 𝑃 the following completions coincide:

(i) the ideal completion Id(𝑃 ) equipped with the Lawson topology,

(ii) the Cauchy ideal completion of 𝑃 ,

(iii) the Nachbin order-compactification, or ordered Stone-Čech compactifica-
tion, of 𝑃 with the discrete topology.

The different properties of these three different completions combine to give
what we call the ideal space of a wqo. This enables us to show that Theorem 1.1
admits the following nice corollary in the context of wqo theory.

Theorem 1.5 (with R. Carroy). Every super-sequence 𝑓 ∶ 𝐹 → 𝑄 into a wqo
𝑄 admits a Cauchy sub-super-sequence 𝑓 ′ ∶ 𝐹 ′ → 𝑄, which therefore extends
to a continuous map 𝑓 ′ ∶ 𝐹 ′ → Id(𝑄) into the ideal space of 𝑄.

As a matter of fact, the ideal space of a wqo is a scattered compact space
whose limit points are exactly the non principal ideals. Applying Theorem 1.2,
this allows us to prove that any bad super-sequence in a wqo 𝑄 yields a bad
super-sequence into the non principal ideals of 𝑄. Therefore proving Pouzet’s
conjecture.
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1 Introduction

1.2 A well-quasi-order on the subsets of a
topological space

The versatile concept of a topological space has proved valuable in various areas
of mathematics. In many cases of interest, the spaces are second countable, i.e.
their topology admits a countable base. While separable metrisable spaces are
of primary importance to Analysis [Kec95], topological spaces that do not
satisfy the Hausdorff separation property are central to Algebraic Geometry
[EH00] and to Computer Science [Gou13]. We consider without distinction
all second countable spaces which satisfy the weakest separation property 𝑇0,
namely every two points which have exactly the same neighbourhoods are
equal.

We are interested in finding a way to quasi-order the subsets of a topological
space according to their complexity. Among the properties of such a quasi-
ordering the following are arguably desired.

• It should agree with an a priori idea of topological complexity, in partic-
ular it should refine the classical hierarchies.

• It should be as fine as possible.

• It should be wqo or even bqo – at least on Borel subsets.

The very act of defining a topology on a set of objects consists in specifying
simple, easily observable properties: the open sets. We are then interested in
understanding the complexity of the other subsets relatively to the open sets.

Already at the turn of the twentieth century, the French analysts – Baire,
Borel and Lebesgue – stratified the Borel sets of a metric space into a transfinite
hierarchy: the Baire classes 𝚺0

𝛼, 𝚷0
𝛼 and 𝚫0

𝛼. These classes are well-known to
exhibit the following pattern:

𝚺0
1 𝚺0

2 𝚺0
𝛼

𝚫0
2 𝚫0

3 ⋯ 𝚫0
𝛼 𝚫0

𝛼+1 ⋯
𝚷0

1 𝚷0
2 𝚷0

𝛼

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

Borel sets are thus classified according to the complexity of their definition
from open sets along this transfinite ladder. This classification was further
refined by Hausdorff, and later by Kuratowski, by identifying what is now
called the difference hierarchies, consisting of the Hausdorff–Kuratowski classes
𝐷𝜉(𝚺0

𝛼). Since for every map 𝑓 ∶ 𝒳 → 𝒳, the preimage function 𝑓−1 ∶ 𝒫(𝒳) →
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1 Introduction

𝒫(𝒳) is a complete Boolean homomorphism, it directly follows from their
definition that the Borel classes and the Hausdorff–Kuratowski classes are
closed under continuous preimages2.

Wadge in his Ph.D. thesis [Wad82] was the first to investigate the quasi-order
of continuous reducibility on the subsets of the Baire space 𝜔𝜔: for 𝐴, 𝐵 ⊆
𝜔𝜔 we say that 𝐴 is Wadge reducible to 𝐵, 𝐴 ⩽W 𝐵, if and only if there
exists a continuous 𝑓 ∶ 𝜔𝜔 → 𝜔𝜔 such that 𝑓−1(𝐵) = 𝐴. This quasi-order
called the Wadge quasi-order relates to the complexity of the subsets of the
Baire space in the sense that 𝐴 ⩽W 𝐵 if and only if one can continuously
reduce the membership problem for 𝐴 to the membership problem for 𝐵. This
quasi-order is remarkable. By considering suitable infinite games and using the
determinacy of these games, which follows from Borel determinacy, this quasi-
order turns out to be well-founded and to admit antichains of size at most 2 on
the Borel sets. As Andretta and Louveau [AL] describe in their introduction to
[KLS12]: ‘The Wadge hierarchy is the ultimate analysis of 𝒫(𝜔𝜔) in terms of
topological complexity’. While the Borel classes and the Hausdorff–Kuratowski
classes are closed under continuous preimages, and therefore represent initial
segments for ⩽W, there are in fact many more initial segments, so that the
Wadge qo refines greatly these classical hierarchies.

Of course the quasi-order of continuous reducibility can be defined in any
topological space 𝒳 in the obvious way, for 𝐴, 𝐵 ⊆ 𝒳 let 𝐴 ⩽W 𝐵 if and only
if there exists a continuous function 𝑓 ∶ 𝒳 → 𝒳 such that 𝐴 = 𝑓−1(𝐵). The
nice properties of the Wadge quasi-order extend easily to all zero-dimensional
Polish spaces, or even to all Luzin – or Borel absolute – zero-dimensional
spaces. The restriction to Luzin spaces and their Borel subsets comes from the
use of determinacy in the proof, but it can be weaken if one is willing to assume
the determinacy of a larger class of games. In particular assuming the Axiom
of Determinacy, the same holds for the quasi-order of continuous reducibility
on all subsets of any zero-dimensional second countable space.

However the restriction to zero-dimensional spaces is of a different nature. In
fact when the space is not zero-dimensional there may be very few continuous
functions, independently of any determinacy hypothesis. Hertling in his Ph.D.
thesis [Her96] shows that the qo of continuous reducibility of the Borel subsets
of the real line ℝ exhibits a more complicated pattern than in the case of
the Baire space. For example, Ikegami showed in his Ph.D. thesis [Ike10] (see
also [IST]) that the powerset 𝒫(𝜔) of 𝜔 partially ordered by inclusion modulo
finite – and hence any partial order of size ℵ1 – embeds in the qo of continuous

2i.e. for every 𝐴 ⊆ 𝒳 in the class and every continuous 𝑓 ∶ 𝒳 → 𝒳 the set 𝑓−1(𝐴) belongs
to the class.
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1 Introduction

reducibility of Borel sets of the real line (cf. Subsection 5.6.1). In a more general
setting, Schlicht showed in [Sch] that in any non zero-dimensional metric space
there is an antichain for the qo of continuous reducibility of size continuum
consisting of Borel sets. Selivanov [Sel06, and references there] and also Becher
and Grigorieff [BG15] studied continuous reducibility in non Hausdorff spaces,
where the situation is in general much less satisfactory than in the case of the
Baire space.

In search for a useful notion of hierarchy outside Polish zero-dimensional
spaces, Motto Ros, Schlicht, and Selivanov [MSS15] consider reductions by
discontinuous functions. For example they obtain that the Borel subsets of the
real line are well-founded with antichains of size at most 2 when quasi-ordered
by reducibility via functions 𝑓 ∶ ℝ → ℝ such that for every 𝐴 ∈ 𝚺0

3(ℝ) we have
𝑓−1(𝐴) ∈ 𝚺0

3. They leave open the question whether 𝚺0
3 can be replaced by

𝚺0
2 in the above statement. Arguably one defect of this qo is that it does not

refine the low level Borel classes, nor does it respect the Hausdorff hierarchy
of the 𝚫0

2.
Instead of considering reduction by discontinuous functions, we propose to

keep continuity but to release the second concept at stake, namely that of func-
tion. In the abstract, our first remark is that total relations account perfectly
for the idea of reducibility and in fact generalise the framework of reductions
as functions.

The notion of continuity for relations that fits our purpose is called relat-
ive continuity. It relies on the simple and fundamental concept of admissible
representation of a topological space which is the starting point of the devel-
opment of computable analysis from the point of view of Type-2 theory of
effectivity [Wei00].

The basic idea is to represent the points of a topological space 𝒳 by means
of infinite sequences of natural numbers. Given such a representation of 𝒳, i.e.
a partial surjective function 𝜌 ∶⊆ 𝜔𝜔 → 𝒳, an 𝛼 ∈ 𝜔𝜔 is a name for a point
𝑥 ∈ 𝒳 when 𝜌(𝛼) = 𝑥. A function 𝑓 ∶ 𝒳 → 𝒳 is then said to be relatively
continuous (resp. computable) with respect to 𝜌 if the function 𝑓 is continuous
(or computable) in the 𝜌-names, i.e. there exists a continuous (resp. comput-
able) 𝐹 ∶ dom 𝜌 → dom 𝜌 such that 𝑓 ∘ 𝜌 = 𝜌 ∘ 𝐹 . Of course the notion of
relatively continuous function depends on the considered representation. How-
ever, for every second countable 𝑇0 space 𝒳 there exists – up to equivalence
– a greatest representation (cf. Theorem 5.17) among the continuous ones,
called an admissible representation of 𝒳. The importance of admissible rep-
resentations resides in the following fact (cf. Theorem 5.24): for an admissible
representation 𝜌 of 𝒳, a function 𝑓 ∶ 𝒳 → 𝒳 is relatively continuous with
respect to 𝜌 if and only if 𝑓 is continuous. Notice however that in general as
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long as the representation is not injective, many continuous transformations of
the names exist which do not induce a map on the space 𝒳. Indeed different
names 𝛼, 𝛽 of some point 𝑥 can be sent by a continuous function 𝐹 onto names
𝐹(𝛼), 𝐹(𝛽) representing different points, i.e. 𝜌(𝐹(𝛼)) ≠ 𝜌(𝐹(𝛽)). Such trans-
formations are called relatively continuous relations (cf. Definition 5.29) and
they were first investigated in a systematic manner by Brattka and Hertling
[BH94].

We propose to consider reducibility by total relatively continuous relations.
When we fix an admissible representation 𝜌 of a second countable 𝑇0 space
𝒳, it is natural to think of reductions by relatively continuous relations as
‘reductions in the names’: if 𝐴, 𝐵 ⊆ 𝒳, then 𝐴 reduces to 𝐵, in symbols
𝐴 ≼W 𝐵, if and only if there exists a continuous function 𝐹 from the names
to the names such that for every name 𝛼, 𝜌(𝛼) ∈ 𝐴 ↔ 𝜌(𝐹(𝛼)) ∈ 𝐵. In other
words, for every point 𝑥 and every name 𝛼 for 𝑥, 𝐹(𝛼) is the name of a point
that belongs to 𝐵 if and only if 𝑥 belongs to 𝐴.

We wish to mention that in 1981 Tang [Tan81] worked with an admissible
representation of the Scott domain 𝒫𝜔 and studied on this particular space
the exact same notion of reduction that we propose here in a more general
setting. But firstly, this study is antecedent to the introduction by Kreitz and
Weihrauch [KW85] of the concept of admissible representation and Tang does
not notice that his representation of 𝒫𝜔 is admissible. This remark is indeed
important since it allows one to see that his notion of reduction is actually
topological, namely it depends only on the topology of the space 𝒫𝜔. Secondly,
even though his paper is often cited, no author seem to notice his particular
approach to reducibility on 𝒫𝜔.

To confront the quasi-order ≼W of reducibility by relatively continuous re-
lations to our expectations, we show the following results.

Firstly, we show that reducibility by relatively continuous relations is a gen-
eralisation of Wadge reducibility outside zero-dimensional spaces.
Proposition 1.6. On every zero-dimensional space, the reducibility by relat-
ively continuous relations coincides with the continuous reducibility.

Notice however that using a result of Schlicht [Sch] we show that it differs
from the continuous reducibility in every separable metrisable space that is
not zero-dimensional.

Secondly, using a result by Saint Raymond [Sai07] extended by de Brecht
[deB13] we obtain that that reducibility by relatively continuous relations re-
fines the classical hierarchies of Borel and Hausdorff–Kuratowski.
Proposition 1.7. Let 𝒳 be a second countable 𝑇0 spaces and 𝐴 and 𝐵 be
subsets of 𝒳. For every 1 ⩽ 𝛼, 𝜉 < 𝜔1,

9
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(i) if 𝐵 ∈ 𝚺0
𝛼(𝒳) and 𝐴 ≼W 𝐵, then 𝐴 ∈ 𝚺0

𝛼(𝒳),

(ii) if 𝐵 ∈ 𝐷𝜉(𝚺0
𝛼(𝒳)) and 𝐴 ≼W 𝐵, then 𝐴 ∈ 𝐷𝜉(𝚺0

𝛼(𝒳)).

Finally, we show that the quasi-order ≼W is as well behaved on the Borel sets
of a very large class of second countable 𝑇0 spaces as the Wadge quasi-order is
on the Borel subsets of the Baire space. The use of Borel determinacy naturally
leads us to define the class of Borel representable spaces, which contains every
Borel subspace of the Scott domain 𝒫𝜔, and in particular every Borel subspace
of a Polish space.

Theorem 1.8. Let 𝒳 be a Borel representable space. Then the reducibility by
relatively continuous relations ≼W is well-founded on the Borel subsets of 𝒳.
Moreover the Wadge Lemma holds, namely for every Borel subset 𝐴 and 𝐵 of
𝒳

either 𝐴 ≼W 𝐵 or 𝐵 ≼W 𝐴∁.

As in the case of the Baire space, this structural result depends on the
determinacy of the games under consideration. In particular, under the Axiom
of Determinacy, the above theorem extends to all subsets of every second
countable 𝑇0 space.

1.3 Organisation of the thesis
Chapter 2: Sequences in sets and orders Several articles – notably [Mil85;
Kru72; Sim85; Lav71; Lav76; For03] – contains valuable introductory material
to the theory of better-quasi-orders. However, a book entitled ‘Introduction
to better-quasi-order theory’ is yet to be written. This chapter represents our
attempt to give the motivated introduction to the deep definition of Nash-
Williams we wished we had when we began studying the theory two years
before.

In Section 2.1 we prove a large number of characterisations of well-quasi-
orders, all of them are folklore except the one stated in Proposition 2.14 which
benefits from both an order-theoretical and a topological flavour.

We make our way towards the definition of better-quasi-orders in Section 2.2.
One of the difficulties we encountered when we began studying better-quasi-
order is due to the existence of two main different definitions – obviously equi-
valent to experts – and along with them two different communities, the graph
theorists and the descriptive set theorists, who only rarely cite each other in
their contributions to the theory. The link between the original approach of
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Nash-Williams (graph theoretic) with that of Simpson (descriptive set theor-
etic) is merely mentioned by Argyros and Todorčević [AT05] alone. We present
basic observations in order to remedy this situation in Subsection 2.2.3. Build-
ing on an idea due to Forster [For03], we introduce the definition of better-
quasi-order in a new way, using insight from one of the great contributions of
descriptive set theory to better-quasi-order theory, namely the use of games
and determinacy.

Finally in Section 2.3 we put the definition of better-quasi-order into per-
spective. This last section contains original material which have not yet been
published by the author.

Chapter 3: Sequences in spaces Building on the previous chapter, we study
super-sequences in metric spaces. After making some simple observations on
Cauchy sequences, we define Cauchy super-sequences in Section 3.1 and col-
lect some basic facts about the closure of a front inside 2𝜔. The main result
of this chapter is that any super-sequence into a compact metric space 𝒳 ad-
mits a Cauchy sub-super-sequence. This general result actually follows easily
from the particular case where 𝒳 is the Cantor space. Our reason to focus
on the Cantor space lies in the fact that uniform continuity admits of a nice
characterisation in the zero-dimensional setting as showed in Section 3.2. In
particular the uniform structure of a front 𝐹 essentially consists in a distin-
guished countable Boolean algebra of subsets of 𝐹 (a characterisation of which
is given in Proposition 3.20), that we call the blocks of the front.

In Section 3.3 we prove that any countable family of subsets of a front can be
turned into blocks by eventually going to a sub-front in Theorem 3.24. From
this combinatorial result we deduce that every super-sequence in 2𝜔 admits a
Cauchy super-sequence.

Of course, when 𝒳 is a complete metric space and 𝑓 ∶ 𝐹 → 𝒳 is a Cauchy
super-sequence, then 𝑓 extends to a continuous map ̄𝑓 ∶ 𝐹 → 𝒳, where 𝐹
is the topological closure of 𝐹 inside 2𝜔. We study continuous map from the
closure 𝐹 of a front into an arbitrary topological space in Section 3.4.

In particular we define a certain ‘normal form’ for the continuous functions
𝑓 ∶ 𝐹 → 𝒴 from the closure of a front 𝐹 into a topological space 𝒴 and we
prove that this normal form can always be achieved by a restriction to some
𝐻 where 𝐻 is a sub-front of 𝐹 .

Importantly, these results are applied in the next chapter to prove the con-
jecture suggested by Pouzet [Pou78].

While the exposition given in this chapter is new, the results are published in
an article [CP14] by the author and R. Carroy in Fundamenta Mathematicae.

11
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Chapter 4: The ideal space of a well-quasi-order The main result of this
chapter is the proof of a conjecture made by Pouzet [Pou78] which relates
the bqo character of a given wqo with the bqo character of the remainder
of the ideal completion of the wqo. Our approach relies on the fact that
the ideal completion of a wqo is actually a compactification. This can be
explained by the coincidence in the case of a wqo of the ideal completion with
two other important completions of a quasi-order, the properties of which
combine to yield what we call the ideal space of a wqo. We do not attempt
to be comprehensive on the tentacular topic of completions of partial orders.
Most of the results of Section 4.1 certainly belongs to the folklore but while
most authors focus mainly on lattice theoretic or domain theoretic aspects, we
concentrate on the wqo property.

In Subsection 4.1.2 we supply the definition of the so-called Cauchy ideal
completion of a partial order which is studied by Erné and Palko [EP98] with
a different approach. We give a characterisation of the partial orders in which
the Cauchy ideals coincide with the ideals. They are the partial orders which
enjoy the so-called property 𝑀 – well-known in domain theory. Notably the
two notions coincide in the case of a wqo, since every wqo trivially satisfies
property 𝑀 . Moreover for the partial orders with property 𝑀 , we show that
the ideal completion when equipped with the Lawson topology coincides with
the Cauchy ideal completion.

Next we present the Cauchy ideal completion of a partial order 𝑃 as the
Priestley dual of a certain lattice of subsets of 𝑃 . Following Bekkali, Pouzet,
and Zhani [BPZ07] we view this as a particular case of a duality result relating
the ‘taking of the topological closure’ with the ‘algebraic generation of a lattice’.
We also provide a new proof of this duality result. In particular, it turns out
that the Cauchy ideal completion of a wqo is the Priestley dual of the lattice of
downsets. This observation leads us in Subsection 4.1.4 to consider the profinite
completion of a partial order. This is also the Nachbin order-compactification
of the partial order considered with the discrete topology.

We see the coincidence of these various completions in the case of a wqo as
a sign of the importance of the space of ideals of a wqo.

We then utilise the results of Chapter 3 to prove Pouzet’s conjecture in
Section 4.2. A slightly different proof was published by the author and R.
Carroy [CP14].

We close this chapter by discussing some applications of Pouzet’s conjecture
in Section 4.3. We notably obtain as a corollary that an interval order is wqo
if and only if it is bqo, as observed by Pouzet and Sauer [PS06].

12
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Chapter 5: A Wadge Hierarchy for second countable spaces This chapter
is based on an article [Peq15] published by the author in Archive for Mathem-
atical Logic.

The fact that the Wadge quasi-order is well-founded on Borel subsets of 𝜔𝜔

relies on the determinacy of certain infinite games and this result is actually
best seen as an immediate corollary of a theorem on bqos obtained by van
Engelen, Miller, and Steel [vEMS87]. Elaborating on Chapter 2, we present in
Section 5.1 a slight generalisation of this theorem (cf Theorems 5.7 and 5.9) in
a way which makes it appear as an extension of the idea underlying the very
definition of bqo.

From these results, we get that the quasi-order of continuous reducibility on
the Borel subsets of any zero-dimensional Luzin3 space 𝒳 is a wqo – in fact
a bqo – which satisfies the Wadge Lemma, namely for every Borel 𝐴, 𝐵 ⊆ 𝒳
either 𝐴 ⩽W 𝐵 or 𝐵 ⩽W 𝒳 ∖ 𝐴. In particular antichains have size at most 2.

The main idea of this chapter is to generalise the Wadge quasi-order to a
large class of spaces while maintaining the nice properties it enjoys on the Borel
subsets of the Baire space. To do this we move from reductions by continuous
functions to reductions by ‘continuous’ relations. To begin with, we observe in
Section 5.2 that total relations account perfectly for the idea of reducibility in
the abstract and in fact generalise the framework of reductions as functions.

The notion of continuity for relations that fits our purpose is called relative
continuity. It relies on the concept of admissible representation of a topological
space. While this concept is fundamental to Type-2 Theory of Effectivity (see
the textbook by Weihrauch [Wei00]), we do not expect our reader to be familiar
with the simple and interesting underpinning of this approach to computable
analysis. We therefore review the basic definitions and provide proofs for his
convenience in Section 5.3. This Section ends with the definition of the quasi-
order ≼W of reducibility by relatively continuous relations.

We prove in Section 5.4 that the quasi-order ≼W refines the classical hier-
archies of Borel and Hausdorff–Kuratowski.

We define a general reduction game for represented spaces in Section 5.5
as a simple adaptation of the game we used in Section 5.1. This allows us
to show that the quasi-order ≼W satisfies the Wadge Lemma on Borel sub-
sets of Borel representable spaces. Also, moving from continuous functions to
relatively continuous relations we extend our version of the theorem by van
Engelen, Miller, and Steel [vEMS87] from Luzin zero-dimensional spaces to all
Borel representable spaces. This yields in particular that the reducibility by
relatively continuous relations is well-founded – in fact bqo – on the Borel

3Luzin spaces are also called Borel absolute spaces.
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subsets of every Borel representable space.
Finally in Section 5.6 we exemplify the difference between the continuous

reducibility and the reducibility by relatively continuous relations in two major
examples: the real line ℝ and the Scott domain 𝒫𝜔.
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