M Exercise 1 (A streaming algorithm for counting the number of distinct values). [¥]

We are given a stream of numbers z1, . .., z, € [m]and we want to compute the number of
distinct values in the stream: Fy(z) = #{x; : i € [n]}. (Note thatif f,(x) = #{i : z; = a},
we can express Fy(z) = ZZZ}(fA:U))Q as the zero-th moment of the frequencies of each
element of [m] in the stream). Let us denote by S, = {z; : i € [n]} the set of the values in
the stream x. Note that Fj (ac) = #5... (We may drop the x when the context is clear.)

The streaming constraint is that the algorithm will see every x; only once as it reads the
stream from left to right and we want to minimize the memory needed by the algorithm to ac-
complish this task. One can show that any deterministic algorithm that approximates the value
of Fy within 10% requires at least §2(n) bits of memory. Here, we will design a randomized
algorithm that accomplish this task using only O(log n + log m) bits of memory.

We start with an hypothetical algorithm using uniform real random numbers and a hypo-
thetical family of hash functions and then see how to turn it into an effective algorithm.

Assume that we are given a random function b : [m] — (0, 1], i.e. such that for every
x € [m], h(x) is a (fixed) independent uniform random real in (0, 1]. The algorithm proceeds
as follows: when reading the stream, record in memory the minimum value zi so far of the A (z; )s,
and output 1/ — 1 at the end.

» Question1.1) Show thatPr{y >t} = (1 — t)fo
Answer. > By independence of the values of h,
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However, the following fact seems to imply that the algorithm is wrong.
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But, fortunately:
» Question1.4) Compute Var(p) and show that Var(u1) < E[u)%
1
Answer. > E[u?] = / 2 Fy- (1 —t)folat = < 2E[u]? Thus,
p= ), Fefor =) eSSV

Var(u) = E[p’] — E[u]* <E[p]%. <

» Question1.5) Designand analyze a (g, &)-estimator for Fy. Still, what is the expected value
of its output? Is there a paradox here?
> Hint. First, design an (e, §)-estimator for p.
Answer. > We use the standard technics: output the median v of A = [aIn(1/6)]
average of B = [/e%] simultaneous independent evaluations of pi: ,ué» for i € [A] and
Jj € [B]. ‘ ‘
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Let pu* = WTHB. We have E[p'] = E[p| = 1 and Var(u') =

Var(u)

B Thus, by Chebyshev inequality, for all © € [A] Pr {
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Now, let Y; be the indicator variable for the event u' ¢ From the

1+ A
above, EY;] < %. But, we have Pr{l/ ¢ 2 _::1} < Pr ‘;[A]Yé = 3 <
A
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The (e, 0)-estimator thus compute v according to the above and output 1/v — 1.
This ensures that with probability at least 1 — 6, the output value belongs to [1L+Oe7 £o]
yielding a (& + o(e), d)-estimator for Fyp.

Note that the expected value of each 1/;12- is still oo and thus the expected value of
the output 1/v — 1 is 00 as well. However, with probability 1 — 6, 1/v — 1 is within & of Fy.

N

Unfortunately, such a random function A requires storing m reals in memory. The key to
reduce the memory needed is to relax the independence of the hash value to pairwise indepen-
dence only. In the following, we will approximate the minimum of the hash keys by recording
only the position of their first non-zero bit in their binary writing. We proceed as follows.

Let £ = [logym] such that 2671 < m < 2¢and consider the field with 2 elements
T We identify o through canonical bijections to the set of bit-vectors {0, 1}¢ and to the set
of integers {0, ..., 2¢ — 1} written in binary. For every pair (a,b) € IF;Z, consider the hash
function hyp : Foe — For defined as hgp(y) = a + b - y. Forevery y € F(2%) = {0, 1}, we
denote by p(y) = max{j € [{] : y1 = --- = y; = 0} the largestindex j such that the first j
bits of y, seen as a bit-vector, are all zero. Let us now consider the following streaming algorithm:

Algorithm 2 Streaming algorithm for F{

Let £ = [logy m], we identify each element 2; € [m] of the stream with its corresponding
elementin Fy,.

Pick uniformly and independently two random elements a, b € Fye .

Compute R = max;—1., p(hap(25)).

return 27,

» Question 1.6) Show thatforallc € Focandr € {0, ..., 1}, Ez{p(hab(c)) >r}=—.

B> Hint. Show that hay(c) is uniform in Foe.

Answer. > Since a is chosen uniformly at random in Foe and independently from be, then
a+ be is uniform in For and hep(c) is an uniform random variable for all ¢ € Fye. It follows
that for all ¢ € Fye and r € {0,. .., £}, the probability that the binary writing of hap(c)
starts with r zeros is exactly 1/2". <

Let W the indicator random variable for the event p(hap(c)) = r.LetZ, = > s W/,
be the number of the values in the stream whose 7 first bits of their hash key are all zero.

» Question1.7) ShowthatE[Z,] = Fy/2".
Answer. > E[ZT‘] = linearity Z E[WCT] = indicator variables Z PT{P(hab(C)) = T} =
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» Question1.8) Show that the random values hyy(0), . . . , hay(2° — 1) are uniform and pair-
wise independent.
> Hint. Show that if ¢ # d, then for all v, 8 € Fye, Pra p{ (hap(c), hap(d)) = (7,6) } = #F12 .
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Answer. > Consider ¢ # d € Fyr and (v, 6) € F3,.

#{(a,b) € F2, : (hap(c), hap(d)) = (7,6)}
#F2,

foren(15)(3)-())

2 - 2 0
#F2, #F2,

52{(%1)(6), hap(d)) = (7, 5)} _

since the matrix is inversible as ¢ # d (its determinant is d — ¢). <

F 1
» Question1.9) Show that Var(Z,) = 23(1 - 2r> < E[Z,].

Answer. > As the random variables hqp(0), ..., hap(2° — 1) are pairwise indepen-
dent, the random variables (W[ )ccs, are also pairwise independent. As the variance
is linear for pairwise independent variables, we have Var(Z,) = ) .cq Var(W.) =
> s, >(1—5)= %(1 — ) < % = E[Z,], since Var(Bernouilli(ar)) = a(1 — «).
<

Fix somen > 1.

» Question1.10) Show thatPr{Z, > 0} < %foral!r € {0,...,¢}suchthat 2" > nFy.

> Hint. Z,. is an integer and use Markov’s inequality.

Answer. > Consider T such that 2" > nFy, i.e. such that 1/n > Fy/2" = E[Z,]. Then,
Pr{Z, >0} =Pr{Z, > 1} < E[Z,] < 1/1 by Markov's inequality. <

» Question 1.11) Show thatPr{Z, = 0} < %fora[lr € {0,...,¢} suchthat 2" < Fy/n.
> Hint. Z, is an integer and apply Chebyshev’s inequality.

Answer. > Consider 1 such that 2" < Fy/n, i.e. such that n < Fy/2" = E[Z,]. Then,
Pr{Z, = 0} < Pr{|Z, — E[Z,]| < E[Z,]} < 572 < 1/E[Z,] < 1/n by Chebyshev's
inequality. <

> Question 1.12) Conclude that for alln > 2, Pr{2 € [Fy/n,nFp]} > 1 — % The
algorithm outputs thus a n-approximation of Fyy with probability at least 1 — 2 /n for alln > 2.
How many bits of memory does it require?

Answer. > Note that R = max{r : Z, > 0}. Thus, for all r €
{0,...,0}, P{R > r} =Pr{Z, > 0} and Pr{R < r} =Pr{Z, =0}. It follows that:
with 7 = |logy(Fo/n) |, we get Pr{2F < Fy/n} = Pr{Z, =0} < 1/n by question 2.
And with 7 = [logy(nFy)], we get Pr{2F > nFy} = Pr{Z, > 0} < 1/n by question 7.
It follows that the value 27 output by the algorithm belongs to [Fy/n,nFy] with prob-
ability at least 1 — 2/n > 0, for all n > 2. The algorithm requires 2¢ + [logy (] <
2logy m + loglogy m + 3 = O(logm) bits of memory to remember a, b and R. <

We have thus obtained a (g,2/(1 + ¢))-estimator for Fjy using O(log m) bits of memory
fore > 1. Gettinga (g, 6)-estimator for Fy in O s(log m+-log n) bits of memory for arbitrarily
small e, > 0 requires a lot more work...



