
� Exercise 1 (A streaming algorithm for counting the number of distinct values). [⋆]
We are given a stream of numbers x1, . . . , xn ∈ [m] and we want to compute the number of
distinct values in the stream: F0(x) = #{xi : i ∈ [n]}. (Note that if fa(x) = #{i : xi = a},
we can express F0(x) =

∑m−1
a=0 (fa(x))

0, as the zero-th moment of the frequencies of each
element of [m] in the stream). Let us denote by Sx = {xi : i ∈ [n]} the set of the values in
the stream x. Note thatF0(x) = #Sx. (We may drop the xwhen the context is clear.)

The streaming constraint is that the algorithm will see every xi only once as it reads the
stream from left to right and we want to minimize the memory needed by the algorithm to ac-
complish this task. One can show that any deterministic algorithm that approximates the value
of F0 within 10% requires at least Ω(n) bits of memory. Here, we will design a randomized
algorithm that accomplish this task using onlyO(logn+ logm) bits of memory.

We start with an hypothetical algorithm using uniform real random numbers and a hypo-
thetical family of hash functions and then see how to turn it into an effective algorithm.

Assume that we are given a random function h : [m] → (0, 1], i.e. such that for every
x ∈ [m], h(x) is a (öxed) independent uniform random real in (0, 1]. The algorithm proceeds
as follows: when reading the stream, record inmemory theminimumvalueµ so far of theh(xi)s,
and output 1/µ− 1 at the end.

IQuestion 1.1) Show that Pr{µ > t} = (1− t)F0 .
Answer. ◃ By independence of the values of h,

Pr{µ > t} = by definition of µ Pr
{
∀i ∈ [n], h(xi) > t

}
= Pr

{
∀a ∈ Sx, h(a) > t

}
= by independence of the h(a)s

∏
a∈Sx

Pr{h(a) > t} = (1− t)F0 . ▹

IQuestion 1.2) Show thatE[µ] = 1
F0+1 .

Answer. ◃ As µ > 0, E[µ] =
∫ ∞

0
Pr{µ > t}dt =

∫ 1

0
(1− t)F0dt =

1

F0 + 1
. ▹

However, the following fact seems to imply that the algorithm is wrong.

IQuestion 1.3) Show thatE[1/µ] = ∞.

Answer. ◃ Indeed, E[1/µ] =
∫ 1

0
−dPr{µ > t}

t
=

∫ 1

0

F0 · (1− t)F0−1

t
dt = ∞ since

(1− t)F0−1

t
∼

1

t
for t → 0 and

∫ ε

0

dt

t
= ∞ for all ε > 0. ▹

But, fortunately:

IQuestion 1.4) ComputeVar(µ) and show thatVar(µ) 6 E[µ]2.

Answer. ◃ E[µ2] =

∫ 1

0
t2 · F0 · (1 − t)F0−1dt =

2

(F0 + 2)(F0 + 1)
< 2E[µ]2. Thus,

Var(µ) = E[µ2]− E[µ]2 < E[µ]2. ▹

IQuestion1.5) Designandanalyze a (ε, δ)-estimator forF0. Still, what is the expected value
of its output? Is there a paradox here?
◃ Hint. First, design an (ε, δ)-estimator forµ.
Answer. ◃ We use the standard technics: output the median ν of A = ⌈α ln(1/δ)⌉
average of B = ⌈β/ε2⌉ simultaneous independent evaluations of µ: µi

j for i ∈ [A] and
j ∈ [B].

Let µi =
µi
1 + · · ·µi

B

B
. We have E[µi] = E[µ] =

1

F0 + 1
and Var(µi) =

Var(µ)

B
. Thus, by Chebyshev inequality, for all i ∈ [A], Pr

{∣∣∣∣µi − 1

F0 + 1

∣∣∣∣ > ε

F0 + 1

}
6

Var(µ)/B

ε2/(F0 + 1)2
6 1

B · ε2
6 1

4
if we set β = 4.
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Now, let Yi be the indicator variable for the event µi ̸∈ 1±ε
F0+1 . From the

above, E[Yi] 6 1
4 . But, we have Pr

{
ν ̸∈ 1± ε

F0 + 1

}
6 Pr

∑
i∈[A]

Yi >
A

2

 6

Pr

∑
i∈[A]

Yi −
∑
i∈[A]

E[Yi] >
A

4

 6 Hoeffding exp

(
−2(A/4)2

A

)
6 δ if we set α = 8.

The (ε, δ)-estimator thus compute ν according to the above and output 1/ν − 1.
This ensures that with probability at least 1− δ, the output value belongs to [ F0

1+ε ,
F0
1−ε ]

yielding a (ε+ o(ε), δ)-estimator for F0.
Note that the expected value of each 1/µi

j is still ∞ and thus the expected value of
the output 1/ν− 1 is ∞ as well. However, with probability 1− δ, 1/ν− 1 is within ε of F0.
▹

Unfortunately, such a random function h requires storing m reals in memory. The key to
reduce thememory needed is to relax the independence of the hash value to pairwise indepen-
dence only. In the following, we will approximate the minimum of the hash keys by recording
only the position of their örst non-zero bit in their binary writing. We proceed as follows.

Let ℓ = ⌈log2m⌉ such that 2ℓ−1 < m 6 2ℓ and consider the öeld with 2ℓ elements
F2ℓ . We identifyF2ℓ through canonical bijections to the set of bit-vectors {0, 1}ℓ and to the set
of integers {0, . . . , 2ℓ − 1} written in binary. For every pair (a, b) ∈ F2

2ℓ
, consider the hash

function hab : F2ℓ → F2ℓ deöned as hab(y) = a+ b · y. For every y ∈ F(2ℓ) ≡ {0, 1}ℓ, we
denote by ρ(y) = max{j ∈ [ℓ] : y1 = · · · = yj = 0} the largest index j such that the örst j
bits of y, seen as a bit-vector, are all zero. Let us now consider the following streaming algorithm:

Algorithm 2 Streaming algorithm forF0

Let ℓ = ⌈log2m⌉, we identify each element xi ∈ [m] of the stream with its corresponding
element in F2ℓ .
Pick uniformly and independently two random elements a, b ∈ F2ℓ .
ComputeR = maxi=1..n ρ(hab(xi)).
return 2R.

IQuestion 1.6) Show that for all c ∈ F2ℓ and r ∈ {0, . . . , ℓ}, Pr
a,b

{
ρ(hab(c)) > r

}
=

1

2r
.

◃ Hint. Show that hab(c) is uniform inF2ℓ .
Answer. ◃ Since a is chosen uniformly at random in F2ℓ and independently from bc, then
a+ bc is uniform in F2ℓ and hab(c) is an uniform random variable for all c ∈ F2ℓ . It follows
that for all c ∈ F2ℓ and r ∈ {0, . . . , ℓ}, the probability that the binary writing of hab(c)
starts with r zeros is exactly 1/2r . ▹

LetW r
c the indicator random variable for the event ρ(hab(c)) > r. LetZr =

∑
c∈Sx

W r
c ,

be the number of the values in the stream whose r örst bits of their hash key are all zero.

IQuestion 1.7) Show thatE[Zr] = F0/2
r .

Answer. ◃ E[Zr] = linearity
∑
c∈Sx

E[W r
c ] = indicator variables

∑
c∈Sx

Pr{ρ(hab(c)) > r} =

#Sx

2r
=

F0

2r
. ▹

IQuestion 1.8) Show that the randomvalueshab(0), . . . , hab(2ℓ−1)are uniformandpair-
wise independent.
◃ Hint. Show that if c ̸= d, then for all γ, δ ∈ F2ℓ , Pra,b

{
(hab(c), hab(d)) = (γ, δ)

}
= 1

#F2
2ℓ

.
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Answer. ◃ Consider c ̸= d ∈ F2ℓ and (γ, δ) ∈ F2
2ℓ

.

Pr
a,b

{
(hab(c), hab(d)) = (γ, δ)

}
=

#{(a, b) ∈ F2
2ℓ

: (hab(c), hab(d)) = (γ, δ)}
#F2

2ℓ

=

#

{
(a, b) ∈ F2

2ℓ
:

(
1 c
1 d

)(
a
b

)
=

(
γ
δ

)}
#F2

2ℓ
=

1

#F2
2ℓ
,

since the matrix is inversible as c ̸= d (its determinant is d− c). ▹

IQuestion 1.9) Show thatVar(Zr) =
F0

2r

(
1−

1

2r

)
< E[Zr].

Answer. ◃ As the random variables hab(0), . . . , hab(2
ℓ − 1) are pairwise indepen-

dent, the random variables (W r
c )c∈Sx are also pairwise independent. As the variance

is linear for pairwise independent variables, we have Var(Zr) =
∑

c∈Sx
Var(W r

c ) =∑
c∈Sx

1
2r (1−

1
2r ) =

F0
2r (1−

1
2r ) <

F0
2r = E[Zr], since Var(Bernouilli(α)) = α(1 − α).

▹

Fix some η > 1.

IQuestion 1.10) Show that Pr{Zr > 0} < 1
η for all r ∈ {0, . . . , ℓ} such that 2r > ηF0.

◃ Hint.Zr is an integer and use Markov’s inequality.
Answer. ◃ Consider r such that 2r > ηF0, i.e. such that 1/η > F0/2

r = E[Zr]. Then,
Pr{Zr > 0} = Pr{Zr > 1} 6 E[Zr] < 1/η by Markov's inequality. ▹

I Question 1.11) Show that Pr{Zr = 0} < 1
η for all r ∈ {0, . . . , ℓ} such that 2r < F0/η.

◃ Hint.Zr is an integer and apply Chebyshev’s inequality.
Answer. ◃ Consider r such that 2r < F0/η, i.e. such that η < F0/2

r = E[Zr]. Then,
Pr{Zr = 0} 6 Pr{|Zr − E[Zr]| 6 E[Zr]} 6 Var(Zr)

E[Zr]2
< 1/E[Zr] < 1/η by Chebyshev's

inequality. ▹

I Question 1.12) Conclude that for all η > 2, Pr
{
2R ∈ [F0/η, ηF0]

}
> 1 − 2

η . The
algorithm outputs thus a η-approximation ofF0 with probability at least 1−2/η for all η > 2.
Howmany bits of memory does it require?
Answer. ◃ Note that R = max{r : Zr > 0}. Thus, for all r ∈
{0, . . . , ℓ}, Pr{R > r} = Pr{Zr > 0} and Pr{R < r} = Pr{Zr = 0}. It follows that:
with r = ⌊log2(F0/η)⌋, we get Pr{2R < F0/η} = Pr{Zr = 0} < 1/η by question ??.
And with r = ⌈log2(ηF0)⌉, we get Pr{2R > ηF0} = Pr{Zr > 0} < 1/η by question ??.
It follows that the value 2R output by the algorithm belongs to [F0/η, ηF0] with prob-
ability at least 1 − 2/η > 0, for all η > 2. The algorithm requires 2ℓ + ⌈log2 ℓ⌉ <
2 log2m+ log log2m+ 3 = O(logm) bits of memory to remember a, b and R. ▹

We have thus obtained a (ε, 2/(1 + ε))-estimator for F0 usingO(logm) bits of memory
forεεε > 1. Getting a (ε, δ)-estimator forF0 inOε,δ(logm+logn)bits ofmemory for arbitrarily
small ε, δ > 0 requires a lot more work...
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