
� Exercise 1 (Missing element & distinct elements). Assume we are reading a stream of n
distinct integers in {1, . . . , n+ 1}.

IQuestion1.1) Assume first thatall of theelements in the streamare indeeddistinct elements
of{1, . . . , n+1}) anddesign for this caseadeterministicO(logn)bits-memoryalgorithmthat
outputs the missing element.
Answer. ◃ Just compute S =

∑n
i=1 xi and output (n+1)(n+2)

2 − S. This requires at
most ⌈log2

(n+1)(n+2)
2 ⌉ 6 ⌈2 log2 n⌉ bits of memory to store S. ▹

Let us nowwaive the assumption that the integers aredistinct and let us design an algorithm
to check this property.

IQuestion1.2) Consideraprimenumberp > n2 andanon-zeropolynomialU(X)ofdegree
atmostn over the fieldZp. Show that Pra{U(a) = 0mod p} 6 1

n whena is chosen uniformly
at random inZp.
◃ Hint. Howmany solutions are there toU(a) = 0 in the fieldZp?

Answer. ◃AsZp is a field, a non-zero polynomial of degree d has at most d roots. It follows
that U(a) = 0 admits at most n solutions. Thus, Pra{U(a) = 0mod p} 6 n

p 6 1
n . ▹

Consider the following algorithm: Pick a prime number p such that n2 6 p < 2n2

(there is always one). Pick an integer a ∈ {0, . . . , p − 1} uniformly at random. Compute

S :=
∑n

i=1 xi, y := (n+1)(n+2)
2 − S , U :=

∑n
i=1 a

xi−1 mod p and V :=
∑n

i=0 a
i mod p.

IfU == V − ay−1 mod p, thenanswer « y is themissingelement », andanswer « the streamdoes
not containn distinct integers in {1, . . . , n+ 1} » otherwise.

I Question 1.3) Show that this is aO(logn) bits-memory streaming algorithm that always
outputs the right answer when the streammatches the specification, and that detects every er-
roneous streamwith probability at least 1− 1/n.
Answer. ◃ Assume that all the element in the stream are distinct integers in {1, . . . , n+
1}, then by the previous question, y is indeed the missing element and the difference
between U and V is indeed ay−1.

Assume now that the elements in the stream are not all distinct. Then, the difference
of the polynomials U(X) =

∑n
i=1X

xi−1 and Vy(x) =
∑n

i=0X
i −Xy−1 is a non-zero

polynomial in Zp whatever y is in Zp. It follows that U(a) = U ̸= V −ay−1 = Vy(a) with
probability at least 1− 1/n by the previous question. ▹

� Exercise 2 (Trafficmonitoring: uniformity detection). Imagine that we are running a huge
website and we want to prevent attacks by keeping track of the origins of the various clients
currently connected to the server. Along time, clients connect and then disconnect from the
website. And wewant to detect if all the clients connected are from the same IP address. But we
do not want to slow down the server and wish to dedicate to this task only a constantmemory,
i.e. only a constant number of integers. We model the problem as follows:

We are given an inönite stream of events e1, e2, . . . , en, . . . where each ei is either
connect(x) or disconnect(x) where x is a positive integer standing for the IP address of the
client (dis-)connecting. We assume that the stream is wellformed, i.e. that there are always at
least as many events connect(x) as disconnect(x) from the beginning of the stream to any po-
sition for every integer x. We want to detect when all the clients connected have the same IP
address x.

IQuestion 2.1) Spot when to set the alarm on in the following sequencewherex denotes the
event connect(x) and x̄ the event disconnect(x):

1, 2, 3, 2̄, 3̄, 1, 1, 1̄, 4, 6, 7, 1̄, 6̄, 1̄, 2, 2̄, 4̄, 8, 3, 3̄, 7̄, 9
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Answer. ◃ The sets of currently connected clients are (an ∗ spots every date when all the
clients connected have the same IP address):

1 : 1∗

2 : 12
3 : 123
2̄ : 13

3̄ : 1∗

1 : 11∗

1 : 111∗

1̄ : 11∗

4 : 114
6 : 1146
7 : 11467
1̄ : 1467

6̄ : 147
1̄ : 47
2 : 247
2̄ : 47

4̄ : 7∗

8 : 78
3 : 378
3̄ : 78

7̄ : 8∗

9 : 89

▹

We consider the following algorithm that uses only three integer variables:

• start with n := 0, a := 0 and b := 0 at t = 0;
• on event connect(x): do n := n + 1, a := a + x and b := b + x2;
• on event disconnect(x): do n := n − 1, a := a − x and b := b − x2;
• set on the alarm every time that n > 0 and b = a2/n.

The right way to the correctness of this deterministic algorithm passes through the analysis
of a random variable. Consider a random variableX taking positive integer values. We denote
by supp(X) = {x : Pr{X = x} > 0 } and assume that |supp(X)| < ∞. We denote by
E[X] andVar[X] = E[(X − E(X))2] respectively the expectation and the variance ofX .

IQuestion 2.2) Show that |supp(X)| = 1 if and only if Var[X] = 0.
Answer. ◃ First remark that for all integer valued random variable X , supp(X) ̸= ∅. If
supp(X) = {x}, then Pr{X = x} = 1 andE[X] = x andVar[X] = 0. Assume now that
| supp(X)| > 2, there are x, x′ ∈ supp(X) such that x ̸= x′, and thus either E[X] ̸= x
or E[X] ̸= x′ (or both). Assume that E[X] ̸= x. The random variable Z = (X −E[X])2

only takes non-negative values. Thus, Var[X] = E[Z] =
∑

y Pr{X = y} · (y−E[X])2 >
Pr{X = x}︸ ︷︷ ︸

>0

· (x− E[X])2︸ ︷︷ ︸
>0

> 0. ▹

IQuestion 2.3) Conclude that the algorithm is correct.
Answer. ◃ Let us fix some time t, and let T denote the multiset of the IP adresses of the
people currently connected to the server at time t. Assume that |T | > 1. We want to
decide if T contains only the same integer. let X be the uniform random variable over the
multiset T . Since supp(X) = T , by the previous question, Var(X) = 0 if and only if T
contains only the same integer. But, at time t, n = |T | and E[X] = 1

n

∑
x∈T x = a/n

and Var(X) = E[(X − E[X])2] = E
[
X2 − 2E[X]X + E[X]2

]
= E[X2] − E[X] =

1
n

∑
x∈T x2 − a2/n2 = b/n − a2/n2 = 0 if and only if b = a2/n. The algorithm detects

thus correctly when all the clients connected have the same IP address. ▹

� Exercise 3 ((ε, δ)-estimator). Suppose we want to compute a valueµ from some data. As-
sume that we have a randomized algorithm A that computes a random variable Z such that
E[Z] = µ andVar(Z) 6 A · µ2 for some constantA > 0.

I Question 3.1) Design a (ε, δ)-estimator for µ for all ε > 0 and δ > 0makingO( log(1/δ)
ε2

)
calls to the randomized algorithmA. Give exact bounds on the number of calls, explain howyou
proceed.
Answer. ◃ We proceed as usual by outputting the median Y of k averages of ℓ independent
runs Zij of A for i ∈ [k] and j ∈ [ℓ]. Let us denote by µi = Zi1+···+Ziℓ

ℓ . E[µi] =

E[Z] = µ and Var(µi) =
Var(Zi1)+···+Var(Ziℓ)

ℓ2
= Var(Z)

ℓ 6 Aµ2

ℓ . By Chebychev inequality,
Pr{|µi − µ| > εµ} 6 Var(µi)

ε2µ2 6 A
ℓε2

6 1
4 as soon as ℓ > 4A

ε2
.

Now, let Xi be the indicator random variable for the event µi ̸∈ (1 ± ε)µ. Then,
E[Xi] = Pr{|µi − µ| > εµ} 6 1

4 . Not that if the median Y ̸∈ (1± ε)µ then at least k
2
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variables among µ1, . . . , µk do not belong to (1± ε)µ, i.e. X1 + · · ·+Xk > k
2 . It follows

that:

Pr{|Y−µ| > εµ} 6 Pr{X1 + · · ·+Xk > k

2
}

6 Pr

{
X1 + · · ·+Xk − E[X1] + · · ·+ E[Xk] >

k

4

}
since E[X1] + · · ·+ E[Xk] 6

k

4

6 exp

(
−2(k/4)2

k

)
by Hoeffding's inequality

6 δ,

as soon as k > 8 ln(1/δ). Thus taking ℓ = ⌈4A/ε2⌉ and k = ⌈8 ln(1/δ)⌉ yields the
desired (ε, δ)-estimator for µ. ▹

Assume now that we have an algorithm B that computes a random variable Y such that
Pr{Y ̸∈ [µa , a · µ]} 6 b for some a > 1 and b < 1

2 . (No assumption is made onE[Y ], it might
even be ̸= µ)

I Question 3.2) Can we design a (ε, δ)-estimator for µ using algorithmB for all ε > 0 and
δ > 0? If not, what are the values of ε and δ for which we can design a (ε, δ)-estimator and
how do you proceed?
Answer. ◃ As we have no information on the expected value nor the variance of Y , it
is impossible to improve on the precision ε and the best ε we can get is ε = max(a −
1, 1 − 1/a). Now, as b < 1

2 , we can use k runs of Y and output their median W . For
the same reason as before, using Hoeffding's inequality, one can show that the probability
that W ̸∈ [µ/a, a · µ] is at most exp(−2(k/2 − bk)2/k) = exp(−2(12 − b)2k) 6 δ

as soon as k > ln(1/δ)
2( 1

2
−b)2

. We can then obtain a (ε, δ)-estimator for µ from Y for all

ε > max(a− 1, 1− 1/a) and all δ > 0. ▹

� Exercise 4 (Pairwise independent randombits). Wewill describe a way to generaten pair-
wise independent uniform random bits X1, . . . , Xn using only ℓ = ⌈log2 n⌉ “true” uniform
independent random bits Y1, . . . , Yℓ.

I Question 4.1) Let (G, ·) be a finite group,X a random variable overG andU an indepen-
dent uniform random variable overG. Show thatX · U is an uniform random variable overG
independent fromX .
Answer. ◃ First, X · U is uniform, indeed for all g ∈ G:

Pr
{
X · U = g

}
=

∑
g′∈G

Pr
{
X = g′

}
· Pr

{
U = g′

−1 · g |X = g′
}

=
∑
g′∈G

Pr
{
X = g′

}
· Pr

{
U = g′

−1 · g
}

=
∑
g′∈G

Pr
{
X = g′

}
· 1

|G|
=

1

|G|
,

since X and U are independent. Furthermore, X and X · U are independent, indeed for
all (g, g′) ∈ G2:

Pr
{
X = g and X · U = g′

}
= Pr

{
X = g ∧ U = g−1 · g′

}
= Pr

{
X = g

}
· Pr

{
U = g−1 · g′

}
= Pr

{
X = g

}
· 1

|G|
= Pr

{
X = g

}
· Pr

{
X · U = g′

}
,

since U and X · U are uniform random variables over G. ▹
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Let [i] = {j : j-th bit of iwritten in binary is 1} ⊆ {1, . . . , ℓ} such that i =
∑

j∈[i] 2
j−1

for all i ∈ {1, . . . , n}. Consider Y1, . . . , Yℓ, ℓ uniform independent random bits. We then
set Xi =

⊕
j∈[i] Yj for i = 1 . . . n, where a ⊕ b denote the XOR of a and b (i.e. their sum

modulo 2). For instance: 13 = 1101 in binary, thusX13 = Y4 ⊕ Y3 ⊕ Y1.

IQuestion 4.2) Show thatX1, . . . , Xn aren pairwise independent uniform random bits.
Answer. ◃ Since for every i ∈ {1, . . . , n}, Xi is a non-empty sum of independent uniform
random bits, every Xi is an uniform random bit by Question 4.1 with (G, ·) = (Z2,+).

Let us now prove their pairwise independence. Take i ̸= i′ ∈ {1, . . . , n}; [i] and
[i′] are two different non-empty sets. Let A =

⊕
j∈[i]r[i′] Yj , B =

⊕
j∈[i′]r[i] Yj and

C =
⊕

j∈[i]∩[i′] Yj , such that Xi = A ⊕ C and Xi′ = B ⊕ C where A, B, and C

are independent random {0, 1}-variables. Since i ̸= i′, we can assume without loss of
generality that [i]r [i′] ̸= ∅. From above, A is thus an uniform random bit. Furthermore
since [i] and [i′] are two different non-empty sets, [i′] r [i] or [i] ∩ [i′] is non-empty.
Consider first the case where [i′]r [i] ̸= ∅, then B is an uniform random bit, independent
fromA andC . The same proof as in Question 4.1 shows thatXi = A⊕C andXi′ = B⊕C
are independent uniform random bits, indeed for all (a, b) ∈ {0, 1}2:

Pr
{
A⊕ C = a and B ⊕ C = b

}
 

=
∑

c∈{0,1}

Pr
{
C = c} · Pr{A = a⊕ c and B = b⊕ c |C = c

}
=

∑
c∈{0,1}

Pr
{
C = c} · Pr{A = a⊕ c

}
· Pr

{
B = b⊕ c

}
=

∑
c∈{0,1}

Pr
{
C = c

}
· 1
2
· 1
2
=

1

2
· 1
2
= Pr

{
A⊕ C = a

}
· Pr

{
B ⊕ C = b

}
 

since A, B and C are independent random variables and A ⊕ C and B ⊕ C are uniform
random bits.

Finally, consider the remaining case where [i′] ( [i], thenA andC are two independent
uniform random bits; it follows from Question 4.1 that Xi = A ⊕ C and Xi′ = C are
independent. ▹
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