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Semi Definite Programs

A Semidefinite Program (SDP) is an optimization problem
with inputs a vector c ∈ Rm and matrices A(1), . . . ,A(m),B in
Rn×n.

The primal and dual SDP are given by,

Opt(P) = min
x∈Rm
{ctx |

∑
k∈[m]

xkA
(k) � B}.

Opt(D) = max
Y�0
{Tr(BY ) | Y � 0,Tr(YA(j)) = cj}.

We will be working in the case where P,D are strictly feasible,
in this case strong duality holds and Opt(P) = Opt(D).
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Semi Definite Programs

A linear programs (LP) is a special cases of an SDP where
(A(i),B) are diagonal matrices,

Opt(P) = min
x∈Rm
{ctx |

∑
i∈[m]

xiai ≥ b, ai ∈ Rn}

Opt(D) = max
y≥0
{bty | y taj = cj}

SDPs are one of the most general class of optimization
problems for which we have efficient algorithms.

SDPs capture a large class of convex optimization problems,
they are also used for approximate solutions to NP hard
problems.
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SDP algorithms

The running time for SDP algorithms will be given in terms of
m, n and ε, here we consider m = O(n2).

The first polynomial time algorithms for LPs and SDPs were
obtained using the ellipsoid method and the interior point
method.

The best known LP and SDP algorithms have complexity
O(n2.5 log(1/ε)) and O((m3 + mnω + mn2s) log(mn/ε)).

In addition there is the Arora Kale method, whose complexity
is upper bounded by,

Õ
(
nms

(
Rr

ε

)4

+ ns

(
Rr

ε

)7 )
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Quantum SDP algorithms

Quantum SDP algorithms based on Arora-Kale framework
were proposed by [Brandao-Svore 17] and subsequently
improved by [van Appeldoorn-Gribling-Gilyen-de Wolf 17].

These algorithms were recently improved even further in
[BKLLSW18] and [AG18].

The best known running time for a quantum SDP algorithm
using the Arora-Kale framework is,

Õ

((√
m +

√
n

(
Rr

ε

))(
Rr

ε

)4√
n

)
.

For Max-Cut and scheduling LPs , the complexity is at least
O(n6) [AGGW17, Theorem 20].
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Our Results

We provide a quantum interior point method with complexity
Õ(n

2.5

ξ2 µκ
3 log(1/ε)) for SDPs and Õ(n

1.5

ξ2 µκ
3 log(1/ε)) for

LPs .

The output of our algorithm is a pair of matrices (S ,Y ) that
are ε-optimal ξ-approximate SDP solutions.

The parameter µ is at most
√

2n for SDPs and
√

2n for LPs .

The parameter κ is an upper bound on the condition number
of the intermediate solution matrices.

If the intermediate matrices are ’well conditioned’, the running
time scales as Õ(n3.5) and Õ(n2).
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Input models

Sparse oracle model [BS16, AGGW17]: The input matrices
A(i) are assumed to be s-sparse and we have access to
OA : |i , k, l , 0〉 → |i , k , l , index(i , k , l)〉.
Quantum state model [BKLLSW17]: A(i) = A

(i)
+ + A

(i)
− and

we have access to the purifications of the corresponding
density matrices for all i ∈ [m].

Operator model [AG18]: Access to unitary block encodings of
the A(i), that is implementations of:

Uj =

(
A(j)/αj .

. .

)
.

How to construct block encodings for A and what α can be
achieved?
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QRAM data structure model

QRAM data structure model: Access to efficient data
structure storing A(i), i ∈ [m] in a QRAM (Quantum Random
Access Memory).

Given di , i ∈ [N] stored in the QRAM, the following queries
require time polylog(N),

|i , 0〉 → |i , xi 〉

Definition

A QRAM data structure for storing a dataset D of size N is
efficient if it can be constructed in a single pass over the entries
(i , di ) for i ∈ [N] and the update time per entry is O(polylog(N)).

Introduced to address the state preparation problem in
Quantum Machine Learning, to prepare arbitrary vector states
|x〉 without incurring an O(

√
n) overhead.
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Block encodings using QRAM

The optimal value of α = ‖A‖, any minor of a unitary matrix
has spectral norm at most 1.

The quantum linear system problem with A ∈ Rn×n is to
produce states |Ab〉 , |A−1b〉, it is scale invariant so we assume
‖A‖ = 1.

Define sp(A) = maxi∈[n]

∑
j∈[n] A

p
ij and let

µ(A) = minp∈[0,1](‖A‖F ,
√

s2p(A)s(1−2p)(AT )).

Theorem (KP16, KP17, CGJ18)

There are efficient QRAM data structures, that allow a block
encodings for A ∈ Rn×n with α = µ(A) to be implemented in time
O(polylog(n)).

Notice that µ(A) <
√
n is sub-linear, it can be O(

√
n) in the

worst case.
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Quantum linear system solvers

Given an efficient block encoding for A, there is a quantum
linear system solver with running time Õ(µ(A)κ2(A)/ε)
[KP16, KP17].

Given an efficient block encoding for A, there is a quantum
linear system solver with running time Õ(µ(A)κ(A) log(1/ε)).
[CGJ18, GSLW18].

Composing block encodings: Given block encodings for
M1,M2 with paramaters µ1, µ2, the linear system in
M = M1M2 can be solved in time O((µ1 +µ2)κ(M) log(1/ε)).

Can quantum linear systems be leveraged for optimization
using iterative methods? Gradient descent with affine update
rules. [KP17].

This work: Quantum LP and SDP solvers are not much
harder than quantum linear systems!
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Interior Point Method overview

The classical IPM starts with feasible solutions (S ,Y ) to the
SDP and updates them (S ,Y )→ (S + dS ,Y + dY )
iteratively.

The updates (dS , dY ) are obtained by solving a n2 × n2 linear
system called the Newton linear system.

The matrix for the Newton linear system is not explicit and is
expensive to compute from the data.

After O(
√
n log(1/ε)) iterations, the method converges to

feasible solutions (S ,Y ) with duality gap at most ε
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Classical Interior Point Method

Algorithm 1 Classical interior point method.

Require: Matrices A(k) with k ∈ [m], B ∈ Rn×n, c ∈ Rm in mem-
ory, precision ε > 0.

1 Find feasible initial point (S0,Y0, ν0) close to the analytic
center.

2 Starting with (S0,Y0, ν0) repeat the following steps
O(
√
n log(1/ε)) times.

1 Solve the Newton linear system to get (dS , dY ).

2 Update S ← S + dS ,Y ← Y + dY , ν ← Tr(SY )/n.

3 Output (S ,Y ).
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Quantum Interior Point Method overview

We construct block encodings for the Newton linear system
matrix which allows us to solve this linear system with low
cost in the quantum setting.

We need to find (dS , dY ) classically to write the Newton
linear system for the next iteration.

We give a linear time tomography algorithm that reconstructs
d-dimensional state to error δ with complexity O(d log d

δ2 ).

We show that with tomography precision δ = O( 1
κ) the

method converges at the same rate as the classical IPM.

The solutions output by the QIPM are ξ-approximately
feasible as (dS , dY ) are reconstructed by tomography.
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Quantum Interior Point Method

Algorithm 2 Quantum interior point method.

Require: Same as classical algorithm with inputs stored in QRAM.

1 Find feasible initial point (S ,Y , ν) = (S0,Y0, ν0) and
store in QRAM.

2 Repeat the for T iterations and output the final (S ,Y ).

1 Solve Newton linear system to obtain state close to
|dS ◦ dY 〉 to error δ2/n3.

2 Estimate ‖dS ◦ dY ‖, perform tomography and use the
norm estimate to obtain,∥∥dS ◦ dY − dS ◦ dY

∥∥
2
≤ 2δ ‖dS ◦ dY ‖2 .

3 Update Y ← Y + dY and S ← S + dS and store in
QRAM. Update ν ← Tr(SY )/n.
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Running time overview

Running time for SDPs is Õ(n
2.5

ξ2 µκ
3 log(1/ε)).

There are O(n0.5 log(1/ε)) iterations.

In each iteration, we solve Newton linear system having size
O(n2) in time O(µκ log(1/ε)).

We then perform tomography in time O(n
2κ2

ξ2 ).

Running time for LPs is Õ(n
1.5

ξ2 µκ
3 log(1/ε)), the linear

system has size O(n).
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Talk Overview

Tomography for efficient vector states.

Classical interior point method.

Analysis of the approximate interior point method.

Quantum interior point method.
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Vector state tomography

The vector state for x ∈ Rd is defined as |x〉 =
∑

i xi |i〉.
We assume that |x〉 can be prepared efficiently, that is we
have have access to a unitary U that prepares copies of |x〉.
We need to learn sgn(xi ) for vector state tomography, we
would need to learn a phase e−2πθi for pure state tomography.

Theorem

There is an algorithm with time and query complexity O(d log d
δ2 )

that produces an estimate x̃ ∈ Rd with ‖x̃‖2 = 1 such that
‖x̃ − x‖2 ≤ δ with probability at least (1− 1/poly(d)).
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Vector state tomography algorithm

Measure N = 36d ln d
δ2 copies of |x〉 in the standard basis to

obtain estimates pi = ni
N where ni is the number of times

outcome i is observed.

Store
√
pi for i ∈ [d ] in QRAM data structure so that

|p〉 =
∑

i∈[d ]

√
pi |i〉 can be prepared efficiently.

Create N copies of 1√
2
|0〉
∑

i∈[d ] xi |i〉+ 1√
2
|1〉
∑

i∈[d ]

√
pi |i〉

using a control qubit.

Apply a Hadamard gate on the first qubit of each copy of the
state to obtain 1

2

∑
i∈[d ][(xi +

√
pi ) |0, i〉+ (xi −

√
pi ) |1, i〉].

Measure each copy in the standard basis and maintain counts
n(b, i) of the number of times outcome |b, i〉 is observed for
b ∈ 0, 1. Set σi = 1 if n(0, i) > 0.4piN and −1 otherwise.

Output the unit vector x̃ with x̃i = σi
√
pi .
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Analysis of tomography algorithm

Let S = {i ∈ [d ] | x2
i ≥ δ2/d}, note that S has at most a δ2

fraction of the `2 norm.

Claim1: The sign is estimated correctly for all i ∈ S with
probability at least 1− 1/poly(d).

Claim2: For all i ∈ S we have that |xi −
√
pi | ≤ δ/

√
d with

probability at least 1− 1/poly(d).

Claim3:
∑

i∈S pi ≤ 2δ2 with probability at least
1− 1/poly(d).

Error analysis using the three claims:∑
i∈[d ]

(xi − σ(i)
√
pi )

2 =
∑
i∈S

(|xi | −
√
pi )

2 +
∑
i∈S

(|xi |+
√
pi )

2

≤ δ2 + 2
∑
i∈S

(x2
i + pi ) ≤ 3δ2 + 2

∑
i∈S

pi
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Classical Interior Point Method

Recall the primal and dual SDP ,

Opt(P) = min
x∈Rm
{ctx |

∑
k∈[m]

xkA
(k) � B}.

Opt(D) = max
Y�0
{Tr(BY ) | Y � 0,Tr(YA(j)) = cj}.

Define L = Spank∈[m](A
(k)), let L⊥ be the orthogonal

complement.

Let C be an arbitrary dual feasible solution and
S =

∑
k∈[m] xkA

(k) − B.

The SDP pair can be written in a more symmetric form,

Opt(P ′) = min
S�0
{Tr(CS) + Tr(BC ) | S ∈ (L− B)}

Opt(D) = max
Y�0
{Tr(BY ) | Y ∈ (L⊥ + C )}
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Classical Interior Point Method

As Tr((S + B)(Y − C )) = 0 we have that the duality gap is
Tr(SY ).

The logarithmic barrier is defined as K (X ) = − log(det(X )),
it is defined on the interior of the psd cone.

The central path is parametrized by ν and is given by the
solutions to,

Opt(Pν) = min
S�0
{Tr(CS) + νK (S) | S ∈ (L− B)}

Opt(Dν) = max
Y�0
{Tr(BY )− νK (Y ) | Y ∈ (L⊥ + C )}

As ν → 0 we recover solutions to the original SDP .

Theorem: The optimal solutions (Sν ,Yν) on the central path
satisfy SνYν = YνSν = νI .
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Classical Interior Point Method

An ideal interior point method would follow the central path
in the direction ν → 0. The actual method stays close to the
path.

Define the distance d(S ,Y , ν) =
∥∥I − ν−1S1/2YS1/2

∥∥2

F
.

Theorem: The duality gap and distance from central path are
related as,

ν(n −
√
nd(S ,Y , ν)) ≤ Tr(SY ) ≤ ν(n +

√
nd(S ,Y , ν))

It suffices to stay close to the central path, if d(S ,Y , ν)) ≤ η
for η ∈ [0, 1] then Tr(SY ) ≤ 2νn.
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Classical Interior Point Method

The interior point method starts with a pair of feasible
solutions (S ,Y ) with duality gap Tr(SY ) = νn and
d(S ,Y , ν) ≤ η for a constant η ≤ 0.1.

A single step of the method updates the solution to
(S ′ = S + dS ,Y ′ = Y + dY ) such that Tr(S ′Y ′) = ν ′n for
ν ′ = (1− χ/

√
n)ν where χ ≤ η is a positive constant.

The updates are found by solving the Newton linear system,

dS ∈ L, dY ∈ L⊥

dSY + SdY = ν ′I − SY

The classical analysis shows that: (i) The Newton linear
system has a unique solution. (ii) The updated solutions
(S ′,Y ′) are positive definite. (iii) The distance
d(S ,Y , ν ′) ≤ η.
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The approximate interior point method

Approximate interior point method analysis:

Theorem

Let
∥∥dY − dY

∥∥
F
≤ ξ
‖Y−1‖2

and
∥∥dS − dS

∥∥
F
≤ ξ
‖Y ‖2

be

approximate solutions to the Newton linear system and let
(S = S + dS ,Y = Y + dY ) be the updated solution. Then,
• The updated solution is positive definite, that is S � 0 and
Y � 0.
• The updated solution satisfies d(S ,Y , ν) ≤ η and Tr(S Y ) = νn
for ν = (1− α√

n
)ν for a constant 0 < α ≤ χ.
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The quantum interior point method

How to solve the Newton linear system? If we use the
variables (dS , dY ) then dS ∈ L is hard to express.

With variables (dx , dY ) the Newton linear system is given by
M(dx , dY ) = (ν ′I − SY , 0m).

M =



(A(1)Y )11 . . . (A(m)Y )11 (1⊗ S1)T

...
...

...
. . .

(A(1)Y )ij . . . (A(m)Y )ij (j ⊗ Si )
T

...
...

...
. . .

(A(1)Y )nn . . . (A(m)Y )nn (n ⊗ Sn)T

0 . . . 0 (vec(A(1)))T

...
...

...
. . .

0 . . . 0 (vec(A(m)))T


Iordanis Kerenidis , Anupam Prakash QuData Workshop, Paris, 2019



The quantum interior point method

Let Z ∈ Rn×n, then define matrix Z̃ with rows Z̃ij = (i ⊗ Zj)
T

and Ẑ with rows Ẑij = (j ⊗ Zi )
T .

Z̃ is a block diagonal matrix with n copies of Z on diagonal
blocks while Ẑ is obtained by permuting the rows of Z̃ .

The Newton linear system matrix can be factorized as a
product of matrices,

M = M1M2 =

(
Ỹ 0
0 Im

)
.

(
AT Ỹ−1Ŝ

0 A

)

Block encoding for M1: Is the same as constructing a block
encoding for Y .
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The quantum interior point method

Block encoding for M2: Rows of Ỹ−1Ŝ are tensor products of

the rows of Y−1 and S , that is Ỹ−1Ŝ = (Y−1
j ⊗ Si )

T .

It suffices to prepare the rows and columns of M2 efficiently, if
we pre-compute Y−1 the rows and columns can be prepared
efficiently.

In addition we provide a procedure for preparing |a ◦ b〉 given
unitaries for preparing |a〉 , |b〉 in time O(T (Ua) + T (Ub)).

Further technical details: Recovery of dS , the precision O( 1
κ)

for tomography, linear programs.

Guarantees: Tr(SY ) ≤ ε and (S ,Y ) ∈ (L− B ′, L⊥ + C ′) with
‖B ⊕ C − B ′ ⊕ C ′‖ ≤ ξ ‖B ⊕ C‖F .
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Open questions

For what optimization problems can one get a polynomial
quantum speedup?

Find quantum analogs of interior point methods for the case
of sparse SDPs .

Improve the classical step in the IPM, find better quantum
algorithms for LPs .

Quantum algorithms for convex optimization with provable
polynomial speedups?
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