Distributed colouring with non-local resources

Cyril GAVOILLE ${ }^{2}$ Ghazal KACHIGAR ${ }^{1,2}$ Gilles ZÉMOR ${ }^{1}$

${ }^{1}$ Institut de Mathématiques de Bordeaux
${ }^{2}$ LaBRI

January 10, 2019

Introduction

Distributed protocol

Centralised protocol

Distributed protocol

A distributed protocol may use ：
－no randomness ： $\mathbb{P}\left(y_{i}^{*} \mid x_{i}^{*}\right)=1, \mathbb{P}\left(y_{i}^{*} \mid x_{i}\right)=0$ for all $x_{i} \neq x_{i}^{*}$ ．
－local randomness ： $\mathbb{P}\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \mathbb{P}\left(y_{i}, \mid x_{i}, \lambda_{i}\right)$ ．
－shared randomness ： $\mathbb{P}\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{n}\right)=\sum_{\lambda} \mathbb{P}(\lambda) \prod_{i=1}^{n} \mathbb{P}\left(y_{i} \mid x_{i}, \lambda\right)$ ．
－quantum entanglement

Introduction

[Bell '64] : Existence of correlations arising from quantum mechanics that cannot be modelled by a "local hidden variable theory", i.e.,

$$
\text { "shared randomness } \lesseqgtr \text { quantum entanglement" }
$$

Introduction

[Bell '64] : Existence of correlations arising from quantum mechanics that cannot be modelled by a "local hidden variable theory", i.e.,

$$
\text { "shared randomness } \leq \text { quantum entanglement" }
$$

Winning condition :

$$
y_{a} \oplus y_{b}=x_{a} \wedge x_{b}
$$

Probability of winning :

- Using shared randomness : at most 0.75 .
- Using a quantum "Bell state" : $\cos ^{2}(\pi / 8) \approx 0.86$.

Introduction

CHSH game
[Bell '64] : Existence of correlations arising from quantum mechanics that cannot be modelled by a "local hidden variable theory", i.e.,

$$
\text { "shared randomness } \lesseqgtr \text { quantum entanglement" }
$$

Probability of winning :

- Using shared randomness : at most 0.75 .
- Using a quantum "Bell state" : $\cos ^{2}(\pi / 8) \approx 0.86$.

Introduction

[Bell '64] : Existence of correlations arising from quantum mechanics that cannot be modelled by a "local hidden variable theory", i.e.,

$$
\text { "shared randomness } \leq \text { quantum entanglement" }
$$

Winning condition :

$$
y_{a} \oplus y_{b}=x_{a} \wedge x_{b}
$$

Probability of winning :

- Using shared randomness : at most 0.75 .
- Using a quantum "Bell state" : $\cos ^{2}(\pi / 8) \approx 0.86$.

Introduction

Correlations arising from the quantum solution are non-signalling, i.e. the output of A doesn't give any information on the input of B and vice-versa.

Mathematically

$$
\begin{gathered}
\sum_{y_{b}} \mathbb{P}\left(y_{a}, y_{b} \mid x_{a}, x_{b}\right)=\sum_{y_{b}} \mathbb{P}\left(y_{a}, y_{b} \mid x_{a}, x_{b}^{\prime}\right)=\mathbb{P}\left(y_{a} \mid x_{a}\right) \\
\quad \text { and } \\
\sum_{y_{a}} \mathbb{P}\left(y_{a}, y_{b} \mid x_{a}, x_{b}\right)=\sum_{y_{a}} \mathbb{P}\left(y_{a}, y_{b} \mid x_{a}^{\prime}, x_{b}\right)=\mathbb{P}\left(y_{b} \mid x_{b}\right)
\end{gathered}
$$

Introduction

Correlations arising from the quantum solution are non-signalling, i.e. the output of A doesn't give any information on the input of B and vice-versa.

Mathematically

$$
\begin{gathered}
\sum_{y_{b}} \mathbb{P}\left(y_{a}, y_{b} \mid x_{a}, x_{b}\right)=\sum_{y_{b}} \mathbb{P}\left(y_{a}, y_{b} \mid x_{a}, x_{b}^{\prime}\right)=\mathbb{P}\left(y_{a} \mid x_{a}\right) \\
\quad \text { and } \\
\sum_{y_{a}} \mathbb{P}\left(y_{a}, y_{b} \mid x_{a}, x_{b}\right)=\sum_{y_{a}} \mathbb{P}\left(y_{a}, y_{b} \mid x_{a}^{\prime}, x_{b}\right)=\mathbb{P}\left(y_{b} \mid x_{b}\right)
\end{gathered}
$$

Classical \subsetneq Quantum \subsetneq Non-Signalling

- Not Non-Signalling implies not Quantum
- [Arfaoui '14] showed that for 2 players with binary input and ouput and output condition $\neq y_{a} \oplus y_{b}$ the best non-signalling probability distribution is classical.

Introduction

Suppose we have a graph $G=(V, E)$ modelling a communication network．

LOCAL model

－Every node has a（unique）identifier．
－One round of communication ：send \＆receive information to neighbours \＆do computation．
－Reliable synchronous rounds（no crash nor fault）．
－k rounds of communication \Leftrightarrow exchange with neighbours at distance $\leq k$ and do computation．
－Unbounded local computing power and bandwith．

Introduction

The Colouring Problem : a fundamental symmetry breaking problem

Distributed Colouring Problem in the LOCAL model
How many rounds of communication are necessary and sufficient for q-colouring a graph ?

Introduction

The Colouring Problem : a fundamental symmetry breaking problem

Distributed Colouring Problem in the LOCAL model

How many rounds of communication are necessary and sufficient for q-colouring a graph ?

$q=\Delta+1$ and graph=cycle or path

[Cole \& Vishkin '86] : $O\left(\log ^{*}(n)\right)$ rounds of communcation are sufficient.
[Linial '92] : $\Omega\left(\log ^{*}(n)\right)$ rounds of communication are necessary.

$$
\log ^{*} n=\min \left\{i \geq 0: \log ^{(i)} n \leq 1\right\}
$$

Physical Locality

［Gavoille，Kosowki \＆Markiewicz＇09］：Non－Signalling＋LOCAL＝ϕ－LOCAL
Non－Signalling

ϕ－LOCAL

Output

A Probabilistic Formulation

Colouring the infinite path

Consider a stochastic process $\left(X_{n}\right)_{n \in \mathbb{Z}}$ on \mathbb{Z} ．

q－colouring process ：$X_{i} \in\{1, \ldots, q\}$ and $X_{n} \neq X_{n+1}$ ．

A Probabilistic Formulation

Colouring the infinite path

Consider a stochastic process $\left(X_{n}\right)_{n \in \mathbb{Z}}$ on \mathbb{Z}.

q-colouring process : $X_{i} \in\{1, \ldots, q\}$ and $X_{n} \neq X_{n+1}$.

k-localisability

For all (possibly empty) connected sets I, J at distance at least k of each other, $\mathbb{P}\left(X_{I}, X_{J}\right)$ depends only on $\{|I|,|J|\}$.

A Probabilistic Formulation

Colouring the infinite path

Consider a stochastic process $\left(X_{n}\right)_{n \in \mathbb{Z}}$ on \mathbb{Z}.

q-colouring process : $X_{i} \in\{1, \ldots, q\}$ and $X_{n} \neq X_{n+1}$.

k-localisability

For all (possibly empty) connected sets I, J at distance at least k of each other, $\mathbb{P}\left(X_{I}, X_{J}\right)$ depends only on $\{|I|,|J|\}$.

k-dependence

For every $n \in \mathbb{Z}$,

$$
\mathbb{P}\left(X_{\leq n}, X_{>n+k}\right)=\mathbb{P}\left(X_{\leq n}\right) \cdot \mathbb{P}\left(X_{>n+k}\right)
$$

k-dependence : an example
If $\left(Z_{n}\right)_{n \in \mathbb{Z}}$ is iid, then $\left(X_{n}\right)_{n \in \mathbb{Z}}$ where each $X_{n}:=Z_{n}+\ldots+Z_{n+k}$ is k-dependent.

A Probabilistic Formulation

k－localisability and k－dependence

k－localisability

For all（possibly empty）connected sets I ，J at distance at least k of each other， $\mathbb{P}\left(X_{I}, X_{J}\right)$ depends only on $\{|I|,|J|\}$ ．

k－dependence

For every $n \in \mathbb{Z}, \mathbb{P}\left(X_{\leq n}, X_{>n+k}\right)=\mathbb{P}\left(X_{\leq n}\right) \cdot \mathbb{P}\left(X_{>n+k}\right)$

A Probabilistic Formulation

k－localisability and k－dependence

k－localisability

For all（possibly empty）connected sets I ，J at distance at least k of each other， $\mathbb{P}\left(X_{I}, X_{J}\right)$ depends only on $\{|I|,|J|\}$ ．

k－dependence

For every $n \in \mathbb{Z}, \mathbb{P}\left(X_{\leq n}, X_{>n+k}\right)=\mathbb{P}\left(X_{\leq n}\right) \cdot \mathbb{P}\left(X_{>n+k}\right)$

Remarks

－0－dependent＝independent
－k－dependent and stationary $\Rightarrow k$－localisable

A Probabilistic Formulation

k-localisability and k-dependence

k-localisability

For all (possibly empty) connected sets I, J at distance at least k of each other, $\mathbb{P}\left(X_{I}, X_{J}\right)$ depends only on $\{|I|,|J|\}$.

k-dependence

For every $n \in \mathbb{Z}, \mathbb{P}\left(X_{\leq n}, X_{>n+k}\right)=\mathbb{P}\left(X_{\leq n}\right) \cdot \mathbb{P}\left(X_{>n+k}\right)$

Remarks

- 0-dependent = independent
- k-dependent and stationary $\Rightarrow k$-localisable

Example

A random permutation of $\{1, \ldots, n\}$ is
0 -localisable but not k-dependent for all $k \leq n$.

A Probabilistic Formulation

k-dependent colouring
Easy to check : there is no k-dependent 2-colouring process for any $k \in \mathbb{N}$.

A Probabilistic Formulation
 k－dependent colouring

Easy to check ：there is no k－dependent 2－colouring process for any $k \in \mathbb{N}$ ．

k－dependent colouring of \mathbb{Z}［Holroyd \＆Liggett＇15］，［Holroyd \＆Liggett＇16］

－There is a 1 －dependent and stationary q－colouring process for every $q \geq 4$ ．
－There is a 2 －dependent and stationary 3 －colouring process．
－There is no 1 －dependent 3 －colouring process．

A Probabilistic Formulation
 k-dependent colouring

Easy to check : there is no k-dependent 2-colouring process for any $k \in \mathbb{N}$.

k-dependent colouring of \mathbb{Z} [Holroyd \& Liggett '15], [Holroyd \& Liggett '16]

- There is a 1 -dependent and stationary q-colouring process for every $q \geq 4$.
- There is a 2 -dependent and stationary 3 -colouring process.
- There is no 1 -dependent 3 -colouring process.

Iterative construction on the n-node path

$n=1$	$n=2$	$n=3$	$n=4$
		121 1/48	
		131 1/48	
$11 / 4$	12 1/12	141 1/48	1212 1/240
$21 / 4$	13 1/12	123 1/32	1213 1/120
$31 / 4$	14 1/12	124 1/32	1231 1/96
$41 / 4$	etc.	$1321 / 32$	etc.
		$\begin{gathered} 134 \quad 1 / 32 \\ \text { etc. } \end{gathered}$	

A Probabilistic Formulation

k-dependent colouring
Easy to check : there is no k-dependent 2-colouring process for any $k \in \mathbb{N}$.

k-dependent colouring of \mathbb{Z} [Holroyd \& Liggett '15], [Holroyd \& Liggett '16]

- There is a 1 -dependent and stationary q-colouring process for every $q \geq 4$.
- There is a 2 -dependent and stationary 3 -colouring process.
- There is no 1 -dependent 3 -colouring process.

Iterative construction on the n-node path

$n=1$	$n=2$	$n=3$	$n=4$
		121 1/48	
		131 1/48	
$11 / 4$	12 1/12	141 1/48	1212 1/240
$21 / 4$	13 1/12	123 1/32	1213 1/120
$31 / 4$	14 1/12	124 1/32	1231 1/96
$41 / 4$	etc.	$1321 / 32$	etc.
		$134 \quad 1 / 32$	

Example : check that $\mathbb{P}(1 * 1)=1 / 16=\mathbb{P}(1) \mathbb{P}(1)$

- $n=3: \mathbb{P}(1 * 1)=\mathbb{P}(121)+\mathbb{P}(131)+\mathbb{P}(141)=\frac{3}{48}=1 / 16$
- $n=4$:
(1) $\mathbb{P}(1 * 1)=\mathbb{P}(1 * 1 *)$

$$
\begin{aligned}
& =3 \cdot \mathbb{P}(1212)+6 \cdot \mathbb{P}(1213) \\
& =\frac{3}{240}+\frac{6}{120}=\frac{15}{240} \\
& =1 / 16
\end{aligned}
$$

(2) $\quad \mathbb{P}(1 * 1)=\mathbb{P}(1 * * 1)=6 \cdot \mathbb{P}(1231)=\frac{6}{96}=1 / 16$

A Probabilistic Formulation

1-localisable colouring

Our results

Is there a 1-localisable 3-colouring process on \mathbb{Z} ? No.

A Probabilistic Formulation

1－localisable colouring

Our results

Is there a 1－localisable 3－colouring process on \mathbb{Z} ？No．

Proof technique

Relies on studying an induced hard－core process．

The supremum of the marginal probability $\rho\left(P_{n}\right)$ of the colour black appearing in P_{n} gives a lower bound on the number of colours $q: q \geq 1 / \rho\left(P_{n}\right)$ ．

A Probabilistic Formulation

1-localisable colouring

Our results

Is there a 1-localisable 3-colouring process on \mathbb{Z} ? No.

Proof technique

Relies on studying an induced hard-core process.

The supremum of the marginal probability $\rho\left(P_{n}\right)$ of the colour black appearing in P_{n} gives a lower bound on the number of colours $q: q \geq 1 / \rho\left(P_{n}\right)$.

Proof technique (continued)

- [Holroyd \& Liggett '16] : $\rho\left(P_{n}\right) \rightarrow 1 / 4$ as $n \rightarrow \infty$ for a 1-dependent process.
- Our results : $\rho\left(P_{n}\right)=\frac{\text { Catalan }_{\lfloor n / 2\rfloor}}{\text { Catalan }_{\lfloor n / 2\rfloor+1}}$ for a 1-localisable process.
Therefore, $\rho\left(P_{n}\right) \rightarrow 1 / 4$ as $n \rightarrow \infty$ for a 1 -localisable process.
- Our proof relies on combinatorics and linear programming.

References I

- Heger Arfaoui.

Local Distributed Decision and Verification.
PhD thesis, Université Paris Diderot - Paris 7, July 2014.

- John S. Bell.

On the Einstein-Podolsky-Rosen paradox.
Physics, 1 :195-200, 1964.

- Richard Cole and Uzi Vishkin.

Deterministic coin tossing and accelerating cascades : Micro and macro techniques for designing parallel algorithms.
In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC '86, pages 206-219, New York, NY, USA, 1986. ACM.

- Cyril Gavoille, Adrian Kosowki, and Markiewicz Marcin.

What Can Be Observed Locally?
International Symposium on Distributed Computing, pages 243-257, 2009.

- Alexander E. Holroyd and Thomas M. Liggett.

Symmetric 1-dependent colorings of the integers.
Electronic Communications in Probability, 20(31), 2015.

References II

－Alexander E．Holroyd and Thomas M．Liggett．
Finitely dependent coloring．
Forum of Mathematics，Pi， 4 ：e9，43， 2016.
－Nathan Linial．
Locality in Distributed Graph Algorithms．
SIAM J．Comput．，21（1）：193－201，February 1992.

