Distributed colouring with non-local resources

Cyril GAVOILLE² Ghazal KACHIGAR^{1,2} Gilles ZÉMOR¹

¹ Institut de Mathématiques de Bordeaux

² LaBRI

January 10, 2019

Centralised protocol

A distributed protocol may use :

- no randomness : $\mathbb{P}(y_i^*|x_i^*) = 1$, $\mathbb{P}(y_i^*|x_i) = 0$ for all $x_i \neq x_i^*$.
- local randomness : $\mathbb{P}(y_1,...,y_n|x_1,...,x_n) = \prod_{i=1}^n \mathbb{P}(y_i,|x_i,\lambda_i).$
- shared randomness : $\mathbb{P}(y_1, ..., y_n | x_1, ..., x_n) = \sum_{\lambda} \mathbb{P}(\lambda) \prod_{i=1}^n \mathbb{P}(y_i | x_i, \lambda).$
- quantum entanglement

"shared randomness \lneq quantum entanglement"

"shared randomness \leq quantum entanglement"

Probability of winning :

- Using shared randomness : at most 0.75.
- Using a quantum "Bell state" : $\cos^2(\pi/8)\approx 0.86.$

"shared randomness \lneq quantum entanglement"

Probability of winning :

- Using shared randomness : at most 0.75.
- Using a quantum "Bell state" : $\cos^2(\pi/8)\approx 0.86.$

"shared randomness \leq quantum entanglement"

Probability of winning :

- Using shared randomness : at most 0.75.
- Using a quantum "Bell state" : $\cos^2(\pi/8)\approx 0.86.$

Correlations arising from the quantum solution are **non-signalling**, i.e. the output of A doesn't give any information on the input of B and vice-versa.

Mathematically

$$\sum_{y_b} \mathbb{P}(y_a, y_b | x_a, x_b) = \sum_{y_b} \mathbb{P}(y_a, y_b | x_a, x'_b) = \mathbb{P}(y_a | x_a)$$

and
$$\sum_{y_a} \mathbb{P}(y_a, y_b | x_a, x_b) = \sum_{y_a} \mathbb{P}(y_a, y_b | x'_a, x_b) = \mathbb{P}(y_b | x_b)$$

Correlations arising from the quantum solution are **non-signalling**, i.e. the output of A doesn't give any information on the input of B and vice-versa.

Mathematically

$$\begin{split} \sum_{y_b} \mathbb{P}(y_a, y_b | x_a, x_b) &= \sum_{y_b} \mathbb{P}(y_a, y_b | x_a, x_b') = \mathbb{P}(y_a | x_a) \\ \text{and} \\ \sum_{y_a} \mathbb{P}(y_a, y_b | x_a, x_b) &= \sum_{y_a} \mathbb{P}(y_a, y_b | x_a', x_b) = \mathbb{P}(y_b | x_b) \end{split}$$

$\textbf{Classical} \subsetneq \textbf{Quantum} \subsetneq \textbf{Non-Signalling}$

• Not Non-Signalling implies not Quantum

• [Arfaoui '14] showed that for 2 players with binary input and ouput and output condition $\neq y_a \oplus y_b$ the best non-signalling probability distribution is classical.

Suppose we have a graph G = (V, E) modelling a communication network.

LOCAL model

- Every node has a (unique) identifier.
- One round of communication : send & receive information to neighbours & do computation.
- Reliable synchronous rounds (no crash nor fault).
- *k* rounds of communication \Leftrightarrow exchange with neighbours at distance $\leq k$ and do computation.

• Unbounded local computing power and bandwith.

Introduction The Colouring Problem : a fundamental symmetry breaking problem

Distributed Colouring Problem in the LOCAL model

How many rounds of communication are necessary and sufficient for *q*-colouring a graph ?

<□▶ < □▶ < □▶ < □▶ < □▶ = □ - つへ⊙

Introduction The Colouring Problem : a fundamental symmetry breaking problem

Distributed Colouring Problem in the LOCAL model

How many rounds of communication are necessary and sufficient for *q*-colouring a graph ?

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで

$q = \Delta + 1$ and graph=cycle or path

[Cole & Vishkin '86] : $O(\log^*(n))$ rounds of communcation are sufficient. [Linial '92] : $\Omega(\log^*(n))$ rounds of communication are necessary.

 $\log^* n = \min\{i \ge 0 : \log^{(i)} n \le 1\}$

Physical Locality

[Gavoille, Kosowki & Markiewicz '09] : Non-Signalling + LOCAL = ϕ -LOCAL

Non-Signalling

Consider a stochastic process $(X_n)_{n \in \mathbb{Z}}$ on \mathbb{Z} .

<□▶ < □▶ < □▶ < □▶ < □▶ = □ - つへ⊙

q-colouring process : $X_i \in \{1, \ldots, q\}$ and $X_n \neq X_{n+1}$.

Consider a stochastic process $(X_n)_{n \in \mathbb{Z}}$ on \mathbb{Z} .

q-colouring process : $X_i \in \{1, \ldots, q\}$ and $X_n \neq X_{n+1}$.

k-localisability

For all (possibly empty) connected sets *I*, *J* at distance at least k of each other, $\mathbb{P}(X_I, X_J)$ depends only on $\{|I|, |J|\}$.

Consider a stochastic process $(X_n)_{n \in \mathbb{Z}}$ on \mathbb{Z} .

q-colouring process : $X_i \in \{1, \ldots, q\}$ and $X_n \neq X_{n+1}$.

k-localisability

For all (possibly empty) connected sets *I*, *J* at distance at least k of each other, $\mathbb{P}(X_I, X_J)$ depends only on $\{|I|, |J|\}$.

k-dependence

For every $n \in \mathbb{Z}$, $\mathbb{P}(X_{\leq n}, X_{>n+k}) = \mathbb{P}(X_{\leq n}) \cdot \mathbb{P}(X_{>n+k})$

k-dependence : an example

If $(Z_n)_{n \in \mathbb{Z}}$ is iid, then $(X_n)_{n \in \mathbb{Z}}$ where each $X_n := Z_n + \ldots + Z_{n+k}$ is *k*-dependent.

k-localisability

For all (possibly empty) connected sets *I*, *J* at distance at least k of each other, $\mathbb{P}(X_I, X_J)$ depends only on $\{|I|, |J|\}$.

k-dependence

For every $n \in \mathbb{Z}$, $\mathbb{P}(X_{\leq n}, X_{>n+k}) = \mathbb{P}(X_{\leq n}) \cdot \mathbb{P}(X_{>n+k})$

k-localisability

For all (possibly empty) connected sets *I*, *J* at distance at least k of each other, $\mathbb{P}(X_I, X_J)$ depends only on $\{|I|, |J|\}$.

k-dependence

For every
$$n \in \mathbb{Z}$$
, $\mathbb{P}(X_{\leq n}, X_{>n+k}) = \mathbb{P}(X_{\leq n}) \cdot \mathbb{P}(X_{>n+k})$

Remarks

- 0-dependent = independent
- *k*-dependent and stationary \Rightarrow *k*-localisable

k-localisability

For all (possibly empty) connected sets *I*, *J* at distance at least k of each other, $\mathbb{P}(X_I, X_J)$ depends only on $\{|I|, |J|\}$.

k-dependence

For every
$$n \in \mathbb{Z}$$
, $\mathbb{P}(X_{\leq n}, X_{>n+k}) = \mathbb{P}(X_{\leq n}) \cdot \mathbb{P}(X_{>n+k})$

Remarks

- 0-dependent = independent
- *k*-dependent and stationary \Rightarrow *k*-localisable

Example

A random permutation of $\{1, ..., n\}$ is 0-localisable but not *k*-dependent for all $k \le n$. **Easy to check** : there is no *k*-dependent 2-colouring process for any $k \in \mathbb{N}$.

A Probabilistic Formulation *k*-dependent colouring

Easy to check : there is no *k*-dependent 2-colouring process for any $k \in \mathbb{N}$.

k-dependent colouring of \mathbb{Z} [Holroyd & Liggett '15], [Holroyd & Liggett '16]

• There is a 1-dependent and stationary *q*-colouring process for every $q \ge 4$.

- There is a 2-dependent and stationary 3-colouring process.
- There is no 1-dependent 3-colouring process.

A Probabilistic Formulation *k*-dependent colouring

Easy to check : there is no *k*-dependent 2-colouring process for any $k \in \mathbb{N}$.

k-dependent colouring of \mathbb{Z} [Holroyd & Liggett '15], [Holroyd & Liggett '16]

- There is a 1-dependent and stationary *q*-colouring process for every $q \ge 4$.
- There is a 2-dependent and stationary 3-colouring process.
- There is no 1-dependent 3-colouring process.

Iterative construction on the *n*-node path

<i>n</i> = 1	n = 2	n = 3	<i>n</i> = 4
1 1/4 2 1/4 3 1/4 4 1/4	12 1/12 13 1/12 14 1/12 etc.	121 1/48 131 1/48 141 1/48 123 1/32 124 1/32 132 1/32 134 1/32 etc.	1212 1/240 1213 1/120 1231 1/96 etc.

A Probabilistic Formulation *k*-dependent colouring

Easy to check : there is no *k*-dependent 2-colouring process for any $k \in \mathbb{N}$.

k-dependent colouring of \mathbb{Z} [Holroyd & Liggett '15], [Holroyd & Liggett '16]

- There is a 1-dependent and stationary *q*-colouring process for every $q \ge 4$.
- There is a 2-dependent and stationary 3-colouring process.
- There is no 1-dependent 3-colouring process.

<i>n</i> = 1	n = 2	<i>n</i> = 3	n = 4
1 1/4 2 1/4 3 1/4 4 1/4	12 1/12 13 1/12 14 1/12 etc.	121 1/48 131 1/48 141 1/48 123 1/32 124 1/32 132 1/32 134 1/32 etc.	1212 1/240 1213 1/120 1231 1/96 etc.

Example : check that $\mathbb{P}(1 * 1) = 1/16 = \mathbb{P}(1)\mathbb{P}(1)$ • n = 3 : $\mathbb{P}(1 * 1) = \mathbb{P}(121) + \mathbb{P}(131) + \mathbb{P}(141) = \frac{3}{48} = 1/16$ • n = 4 : (1) $\mathbb{P}(1 * 1) = \mathbb{P}(1 * 1*)$ $= 3 \cdot \mathbb{P}(1212) + 6 \cdot \mathbb{P}(1213)$ $= \frac{3}{240} + \frac{6}{120} = \frac{15}{240}$ = 1/16(2) $\mathbb{P}(1 * 1) = \mathbb{P}(1 * * 1) = 6 \cdot \mathbb{P}(1231) = \frac{6}{96} = 1/16$

Iterative construction on the *n*-node path

Our results

Is there a 1-localisable 3-colouring process on \mathbb{Z} ? No.

Our results

Is there a 1-localisable 3-colouring process on \mathbb{Z} ? No.

Proof technique

Relies on studying an induced hard-core process.

The supremum of the marginal probability $\rho(P_n)$ of the colour black appearing in P_n gives a lower bound on the number of colours $q : q \ge 1/\rho(P_n)$.

Our results

Is there a 1-localisable 3-colouring process on \mathbb{Z} ? No.

Proof technique

Relies on studying an induced hard-core process.

The supremum of the marginal probability $\rho(P_n)$ of the colour black appearing in P_n gives a lower bound on the number of colours $q : q \ge 1/\rho(P_n)$.

Proof technique (continued)

- [Holroyd & Liggett '16] : $\rho(P_n) \rightarrow 1/4$ as $n \rightarrow \infty$ for a 1-dependent process.
- Our results : $\rho(P_n) = \frac{\text{Catalan}_{\lfloor n/2 \rfloor}}{\text{Catalan}_{\lfloor n/2 \rfloor+1}}$ for a 1-localisable process. Therefore, $\rho(P_n) \rightarrow 1/4$ as $n \rightarrow \infty$ for a 1-localisable process.
- Our proof relies on combinatorics and linear programming.

References I

Heger Arfaoui.

Local Distributed Decision and Verification. PhD thesis, Université Paris Diderot - Paris 7, July 2014.

► John S. Bell.

On the Einstein-Podolsky-Rosen paradox. *Physics*, 1 :195–200, 1964.

► Richard Cole and Uzi Vishkin.

Deterministic coin tossing and accelerating cascades : Micro and macro techniques for designing parallel algorithms.

In *Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing*, STOC '86, pages 206–219, New York, NY, USA, 1986. ACM.

► Cyril Gavoille, Adrian Kosowki, and Markiewicz Marcin.

What Can Be Observed Locally?

International Symposium on Distributed Computing, pages 243–257, 2009.

► Alexander E. Holroyd and Thomas M. Liggett.

Symmetric 1-dependent colorings of the integers. *Electronic Communications in Probability*, 20(31), 2015.

References II

- Alexander E. Holroyd and Thomas M. Liggett. Finitely dependent coloring.
 Forum of Mathematics, Pi, 4 :e9, 43, 2016.
- Nathan Linial.
 Locality in Distributed Graph Algorithms.
 SIAM J. Comput., 21(1) :193–201, February 1992.

<□▶ < □▶ < □▶ < □▶ < □▶ = □ - つへ⊙