INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

The Sparsest Additive Spanner via Multiple Weighted BFS Trees

Ami Paz IRIF–CNRS & Paris Diderot University

Joint work with:

Keren Censor-Hillel, Noam Ravid Technion

This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement no. 755839

- Communication graph on |V| = n nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous

- Communication graph on |V| = n nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous
- Input
 - Unique ID
 - Neighbors

- Communication graph on |V| = n nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous
- Input
 - Unique ID
 - Neighbors
- Output—subgraph
 - Neighbors in the subgraph

- Communication graph on |V| = n nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous
- Input
 - Unique ID
 - Neighbors
- Output—subgraph
 - Neighbors in the subgraph

• BFS in O(D) rounds

- Prioritize by distance
 - Secondary: by source

BFS from au sources

• Trivial: $O(\tau \cdot D)$ rounds

Theorem [LP13]

It is possible to construct BFS trees from τ sources in $O(\tau + D)$ rounds

G weighted graph, au source

Want: a BFS tree with minimal-weight paths from *s*

That is: from all shortest (s, t)-paths, find the lightest

G weighted graph, au source

Want: a BFS tree with minimal-weight paths from s

- Is this a tree?
- Can we build it in CONGEST?
- Can we build multiple trees?

Claims:

- There is a tree with shortest-lightest paths
- It can be built in CONGEST

Claims:

- There is a tree with shortest-lightest paths
- It can be built in CONGEST

Claims:

- There is a tree with shortest-lightest paths
- It can be built in CONGEST

G weighted graph, s source

Want: a BFS tree with minimal weight paths from \boldsymbol{s}

- Is this a tree? 🙂
- Can we build it in CONGEST? 🙂
- Can we build multiple trees?

Claim:

• We can be build multiple wBFS trees in CONGEST

Claim:

• We can be build multiple wBFS trees in CONGEST

Claim:

• We can be build multiple wBFS trees in CONGEST

Claim:

• We can be build multiple wBFS trees in CONGEST

Weighted BFS

Claim:

• We can be build multiple wBFS trees in CONGEST

Message format: (dist, source, w_dist)

Weighted BFS

Claim:

• We can be build multiple wBFS trees in CONGEST

Weighted BFS

G weighted graph, s source

Want: a BFS tree with minimal weight paths from \boldsymbol{s}

- Is this a tree? 🙂
- Can we build it in CONGEST?
- Can we build multiple trees? 🙂

Multiple Weighted BFS trees

Weighted BFS from au sources

Theorem (New)

It is possible to construct weighted BFS trees from τ sources in $O(\tau + D)$ rounds

A graph G on n nodes

Want: a subgraph *H* on the same nodes, that

- Approximately preserves distances
- Sparse

A graph G on n nodes

Want: a subgraph *H* on the same nodes, that

- Approximately preserves distances
- Sparse

This talk:

only additive all-pairs spanners

A $(+\beta)$ -spanner of G is a subgraph Hon the same nodes, s.t.

A $(+\beta)$ -spanner of G is a subgraph Hon the same nodes, s.t.

A $(+\beta)$ -spanner of G is a subgraph Hon the same nodes, s.t.

A $(+\beta)$ -spanner of G is a subgraph Hon the same nodes, s.t.

Applications

- Synchronizers [Awe85,PU89]
- Information dissemination [CHHKM12]
- Compact routing schemes [PU89,TZ01,Che13]
- And many more...

Sequential Spanners

- Constructions
 - (+2): $O(n^{3/2})$ edges [ACIM99]
 - (+4): $\tilde{O}(n^{7/5})$ edges [Che13]
 - (+6): $O(n^{4/3})$ edges [BKMP10]
- Lower bound
 - Any: $n^{4/3}/2^{\Omega\left(\sqrt{\log n}\right)}$ edges [AB16]

Goal: Networks that build their own spanners

Distributed Additive Spanners

Spanner	Number of edges
	Sequential
(+2)-spanner	$O(n^{3/2})$ [ACIM99]
(+4)-spanner	$ ilde{O}(n^{7/5})$ [Che13]
(+6)-spanner	$O(n^{4/3})$ [BKMP10]
(+8)-spanner	
(+?)-spanner	Optimal

Distributed Additive Spanners

Spanner	Number of edges	
	Sequential	Distributed
(+2)-spanner	$O(n^{3/2})$ [ACIM99]	$ ilde{O}\left(n^{3/2} ight)$ [LP13]
(+4)-spanner	$ ilde{O}ig(n^{7/5}ig)$ [Che13]	$ ilde{O}(n^{7/5})$ [CH+17]
(+6)-spanner	$O(n^{4/3})$ [BKMP10]	
(+8)-spanner		$\tilde{O}(n^{15/11})$ [CH+17]
(+?)-spanner		$O(n^{4/3})$ (???)

Distributed Additive Spanners

Spanner	Number of edges	
	Sequential	Distributed
(+2)-spanner	$O(n^{3/2})$ [ACIM99]	$ ilde{O}ig(n^{3/2}ig)$ [LP13]
(+4)-spanner	$ ilde{O}ig(n^{7/5}ig)$ [Che13]	$\tilde{O}(n^{7/5})$ [CH+17]
(+6)-spanner	$O(n^{4/3})$ [BKMP10]	$\tilde{O}(n^{4/3})$ New!
(+8)-spanner		$ ilde{O}(n^{15/11})$ [CH+17]
(+?)-spanner		$O(n^{4/3})$ (???)

Spanner Construction

Two phases:

- Clustering
- Path buying

- Choose nodes as centers at random
- Add edges to their neighbors
 - All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

- Choose nodes as centers at random
- Add edges to their neighbors
 - All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

- Choose nodes as centers at random
- Add edges to their neighbors
 - All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

- Choose nodes as centers at random
- Add edges to their neighbors
 - All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

- Choose nodes as centers at random
- Add edges to their neighbors
 - All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

- Choose nodes as centers at random
- Add edges to their neighbors
 - All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

- Choose nodes as centers at random
- Add edges to their neighbors
 - All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

- For $k = 1, 2, 4, 8, ..., n^{2/3}$ do:
 - Build a set S_k of $\sim 1/k$ of the clusters
 - For each center c_i and a cluster $C_j \in S_k$
 - Add a shortest path from c_i to some $v \in C_j$
 - But only if it misses at most 2k edges

- For $k = 1, 2, 4, 8, ..., n^{2/3}$ do:
 - Build a set S_k of $\sim 1/k$ of the clusters
 - For each center c_i and a cluster $C_j \in S_k$
 - Add a shortest path from c_i to some $v \in C_j$
 - But only if it misses at most 2k edges

- For $k = 1, 2, 4, 8, ..., n^{2/3}$ do:
 - Build a set S_k of $\sim 1/k$ of the clusters
 - For each center c_i and a cluster $C_j \in S_k$
 - Add a shortest path from c_i to some $v \in C_j$
 - But only if it misses at most 2k edges

- For $k = 1, 2, 4, 8, ..., n^{2/3}$ do:
 - Build a set S_k of $\sim 1/k$ of the clusters
 - For each center c_i and a cluster $C_j \in S_k$
 - Add a shortest path from c_i to some $v \in C_j$
 - But only if it misses at most 2k edges

- For $k = 1, 2, 4, 8, ..., n^{2/3}$ do:
 - Build a set S_k of $\sim 1/k$ of the clusters
 - For each center c_i and a cluster $C_j \in S_k$
 - Add a shortest path from c_i to some $v \in C_j$
 - But only if it misses at most 2k edges

- For $k = 1, 2, 4, 8, ..., n^{2/3}$ do:
 - Build a set S_k of $\sim 1/k$ of the clusters
 - For each center c_i and a cluster $C_j \in S_k$
 - Add a shortest path from c_i to some $v \in C_j$
 - But only if it misses at most 2k edges

- For $k = 1, 2, 4, 8, ..., n^{2/3}$ do:
 - Build a set S_k of $\sim 1/k$ of the clusters
 - For each center c_i and a cluster $C_j \in S_k$
 - Add a shortest path from c_i to some $v \in C_j$
 - But only if it misses at most 2k edges

Distributed Spanner Construction

+6 streatch

Distributed Spanner Construction

Clustering

Path Buying

- For $k = 1, 2, 4, 8, ..., n^{2/3}$ do:
 - Build a set S_k of $\sim 1/k$ of the clusters
 - For each center c_i and a cluster $C_j \in S_k$
 - Add a shortest path from c_i to some $v \in C_j$
 - But only if it misses at most 2k edges

Note: Graph and spanner are **unweighted** Only use weights for the alg. For each (c_i, C_j) , for each $v \in C_j$, need to find the shortest (c_i, v) -path that misses minimal num. of edges

Join locally to S_k

Weight edges: missing=1, others=0

Run wBFS from each c_i

Distributed Spanner Construction

Theorem (New)

- It is possible to construct:
- A (+6)-spanner
- With $ilde{O}(n^{4/3})$ edges
- In $\tilde{O}(n^{2/3} + D)$ rounds

Conclusion

- New sequential algorithm for (+6)-spanners
- New distributed implementation
 - Gives an almost-optimal (+6)-spanner
- New distributed algorithm: weighted-BFS

• Open: lower bounds for distributed construction time