

The Sparsest Additive Spanner via Multiple Weighted BFS Trees

Ami Paz IRIF-CNRS \& Paris Diderot University
Joint work with:
Keren Censor-Hillel, Noam Ravid Technion
This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement no. 755839

The CONGEST Model

- Communication graph on $|V|=n$ nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous

The CONGEST Model

- Communication graph on $|V|=n$ nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous
- Input
- Unique ID
- Neighbors

The CONGEST Model

- Communication graph on $|V|=n$ nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous
- Input
- Unique ID
- Neighbors
- Output—subgraph
- Neighbors in the subgraph

The CONGEST Model

- Communication graph on $|V|=n$ nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous
- Input
- Unique ID
- Neighbors
- Output—subgraph
- Neighbors in the subgraph

Example: Distributed BFS

Example: Distributed BFS

Message:
source

Example: Distributed BFS

Example: Distributed BFS

- BFS in $O(D)$ rounds

Example: Multiple BFS trees

Example: Multiple BFS trees

Example: Multiple BFS trees

Example: Multiple BFS trees

- Prioritize by distance
- Secondary: by source

Message format: (dist, source)

Example: Multiple BFS trees

- Prioritize by distance
- Secondary: by source

Message format: (dist, source)

Example: Multiple BFS trees

- Prioritize by distance
- Secondary: by source
- Here:
- s_{1} before s_{2}

Message format: (dist, source)

Example: Multiple BFS trees

- Prioritize by distance
- Secondary: by source

Message format:
(dist, source)

Example: Multiple BFS trees

- Prioritize by distance
- Secondary: by source

Example: Multiple BFS trees

- Prioritize by distance
- Secondary: by source

Example: Multiple BFS trees

- Prioritize by distance
- Secondary: by source

Example: Multiple BFS trees

BFS from τ sources

- Trivial: $O(\tau \cdot D)$ rounds

Theorem [LP13]
It is possible to construct BFS trees from τ sources in $O(\tau+D)$ rounds

Weighted BFS

G weighted graph, τ source
Want: a BFS tree with minimal-weight paths from s

That is: from all shortest (s, t)-paths, find the lightest

Weighted BFS

G weighted graph, τ source
Want: a BFS tree with minimal-weight paths from s

- Is this a tree?
- Can we build it in CONGEST?
- Can we build multiple trees?

Weighted BFS

Claims:

- There is a tree with shortest-lightest paths
- It can be built in CONGEST

Weighted BFS

Claims:

- There is a tree with shortest-lightest paths
- It can be built in CONGEST

Message format: (dist, source,w_dist)

Weighted BFS

Claims:

- There is a tree with shortest-lightest paths
- It can be built in CONGEST

Weighted BFS

G weighted graph, s source
Want: a BFS tree with minimal weight paths from s

- Is this a tree?
- Can we build it in CONGEST?
- Can we build multiple trees?

Weighted BFS

Claim:

- We can be build multiple wBFS trees in CONGEST

Message format:
(dist, source,w_dist)

Weighted BFS

Claim:

- We can be build multiple wBFS trees in CONGEST

Message format:
(dist, source,w_dist)

Weighted BFS

Claim:

- We can be build multiple wBFS trees in CONGEST

Message format:
(dist, source,w_dist)

Weighted BFS

Claim:

- We can be build multiple wBFS trees in CONGEST

Message format:
(dist, source,w_dist)

Weighted BFS

Claim:

- We can be build multiple wBFS trees in CONGEST

Message format:
(dist, source,w_dist)

Weighted BFS

Claim:

- We can be build multiple wBFS trees in CONGEST

Weighted BFS

G weighted graph, s source
Want: a BFS tree with minimal weight paths from s

- Is this a tree?
- Can we build it in CONGEST?
- Can we build multiple trees?

Multiple Weighted BFS trees

Weighted BFS from τ sources

Theorem (New)
It is possible to construct weighted BFS trees from τ sources in $O(\tau+D)$ rounds

Spanners

A graph G on n nodes
Want: a subgraph H on the same nodes, that

- Approximately preserves distances
- Sparse

Spanners

A graph G on n nodes
Want: a subgraph H on the same nodes, that

- Approximately preserves distances
- Sparse

This talk:

only additive all-pairs spanners

Spanners

A $(+\beta)$-spanner of G is a subgraph H on the same nodes, s.t.

- for all $(u, v) \in V \times V$: $\operatorname{dist}_{H}(u, v) \leq \operatorname{dist}_{G}(u, v)+\beta$

Spanners

A $(+\beta)$-spanner of G is a subgraph H on the same nodes, s.t.

- for all $(u, v) \in V \times V$: $\operatorname{dist}_{H}(u, v) \leq \operatorname{dist}_{G}(u, v)+\beta$

Spanners

A $(+\beta)$-spanner of G is a subgraph H on the same nodes, s.t.

- for all $(u, v) \in V \times V$: $\operatorname{dist}_{H}(u, v) \leq \operatorname{dist}_{G}(u, v)+\beta$

Spanners

A $(+\beta)$-spanner of G is a subgraph H on the same nodes, s.t.

- for all $(u, v) \in V \times V$: $\operatorname{dist}_{H}(u, v) \leq \operatorname{dist}_{G}(u, v)+\beta$

(+2)-spanner

Applications

- Synchronizers [Awe85,PU89]
- Information dissemination [CHHKM12]
- Compact routing schemes [PU89,TZ01,Che13]
- And many more...

Sequential Spanners

- Constructions
- (+2): O($\left.n^{3 / 2}\right)$ edges [ACIM99]
- $(+4): \tilde{O}\left(n^{7 / 5}\right)$ edges [Che13]
- $(+6): O\left(n^{4 / 3}\right)$ edges [BKMP10]

- Lower bound
- Any: $n^{4 / 3} / 2^{\Omega(\sqrt{\log n})}$ edges [AB16]

Goal:
Networks that build their own spanners

Distributed Additive Spanners

Spanner
(+2)-spanner
$(+4)$-spanner $\tilde{O}\left(n^{7 / 5}\right)$ [Che13]
(+6)-spanner
(+8)-spanner
(+?)-spanner

Number of edges

Sequential
$O\left(n^{3 / 2}\right)$ [ACIM99]
$O\left(n^{4 / 3}\right)$ [BKMP10]

Optimal

Distributed Additive Spanners

Spanner	Number of edges	
	Sequential	Distributed
$(+2)$-spanner	$O\left(n^{3 / 2}\right)[$ ACIM99]	$\tilde{O}\left(n^{3 / 2}\right)[$ LP13]
$(+4)$-spanner	$\tilde{O}\left(n^{7 / 5}\right)[$ Che13]	$\tilde{O}\left(n^{7 / 5}\right)[C H+17]$
$(+6)$-spanner	$O\left(n^{4 / 3}\right)[$ BKMP10 $]$	
$(+8)$-spanner		$\tilde{O}\left(n^{15 / 11}\right)[C H+17]$
$(+?)$-spanner		$O\left(n^{4 / 3}\right)(? ? ?)$

Distributed Additive Spanners

Spanner	Number of edges	
	Sequential	Distributed
$(+2)$-spanner	$O\left(n^{3 / 2}\right)[$ ACIM99]	$\tilde{O}\left(n^{3 / 2}\right)[\mathrm{LP} 13]$
$(+4)$-spanner	$\tilde{O}\left(n^{7 / 5}\right)[$ Che13]	$\tilde{O}\left(n^{7 / 5}\right)[\mathrm{CH}+17]$
$(+6)$-spanner	$O\left(n^{4 / 3}\right)[$ BKMP10]	$\tilde{O}\left(n^{4 / 3}\right)$
$(+8)$-spanner		$\tilde{O}\left(n^{15 / 11}\right)[\mathrm{CH}+17]$
$(+?)$-spanner		$O\left(n^{4 / 3}\right)($??? $)$

Spanner Construction

Two phases:

- Clustering
- Path buying

Clustering

- Choose nodes as centers at random
- Add edges to their neighbors
- All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

Clustering

- Choose nodes as centers at random
- Add edges to their neighbors
- All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

Clustering

- Choose nodes as centers at random
- Add edges to their neighbors
- All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

Clustering

- Choose nodes as centers at random
- Add edges to their neighbors
- All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

Clustering

- Choose nodes as centers at random
- Add edges to their neighbors
- All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

Clustering

- Choose nodes as centers at random
- Add edges to their neighbors
- All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

Clustering

- Choose nodes as centers at random
- Add edges to their neighbors
- All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes

Path Buying

- For $k=1,2,4,8, \ldots, n^{2 / 3}$ do:
- Build a set S_{k} of $\sim 1 / k$ of the clusters
- For each center c_{i} and a cluster $C_{j} \in S_{k}$
- Add a shortest path from c_{i} to some $v \in C_{j}$
- But only if it misses at most $2 k$ edges

Path Buying

- For $k=1,2,4,8, \ldots, n^{2 / 3}$ do:
- Build a set S_{k} of $\sim 1 / k$ of the clusters
- For each center c_{i} and a cluster $C_{j} \in S_{k}$
- Add a shortest path from c_{i} to some $v \in C_{j}$
- But only if it misses at most $2 k$ edges

That is, for each $\left(c_{i}, C_{j}\right)$:

1. $A \leftarrow \emptyset$
2. For each $v \in C_{j}$, if there is a $\left(c_{i}, v\right)$-path that is shortest and misses $\leq 2 k$ edges add one to A
3. If $A \neq \emptyset$, add a shortest path from A

Path Buying

- For $k=1,2,4,8, \ldots, n^{2 / 3}$ do:
- Build a set S_{k} of $\sim 1 / k$ of the clusters
- For each center c_{i} and a cluster $C_{j} \in S_{k}$
- Add a shortest path from c_{i} to some $v \in C_{j}$
- But only if it misses at most $2 k$ edges

Path Buying

- For $k=1,2,4,8, \ldots, n^{2 / 3}$ do:
- Build a set S_{k} of $\sim 1 / k$ of the clusters
- For each center c_{i} and a cluster $C_{j} \in S_{k}$
- Add a shortest path from c_{i} to some $v \in C_{j}$
- But only if it misses at most $2 k$ edges

Path Buying

- For $k=1,2,4,8, \ldots, n^{2 / 3}$ do:
- Build a set S_{k} of $\sim 1 / k$ of the clusters
- For each center c_{i} and a cluster $C_{j} \in S_{k}$
- Add a shortest path from c_{i} to some $v \in C_{j}$
- But only if it misses at most $2 k$ edges

Path Buying

- For $k=1,2,4,8, \ldots, n^{2 / 3}$ do:
- Build a set S_{k} of $\sim 1 / k$ of the clusters
- For each center c_{i} and a cluster $C_{j} \in S_{k}$
- Add a shortest path from c_{i} to some $v \in C_{j}$
- But only if it misses at most $2 k$ edges

Path Buying

- For $k=1,2,4,8, \ldots, n^{2 / 3}$ do:
- Build a set S_{k} of $\sim 1 / k$ of the clusters
- For each center c_{i} and a cluster $C_{j} \in S_{k}$
- Add a shortest path from c_{i} to some $v \in C_{j}$
- But only if it misses at most $2 k$ edges

Distributed Spanner Construction

Theorem (New)

It is possible to construct:

- A (+6)-spanner
- With $\tilde{O}\left(n^{4 / 3}\right)$ edges
- $\ln \tilde{O}\left(n^{2 / 3}+D\right)$ rounds

Stretch

Stretch

+6 streatch

Distributed Spanner Construction

Theorem (New)

It is possible to construct:

- A (+6)-spanner
- With $\tilde{O}\left(n^{4 / 3}\right)$ edges
- $\ln \tilde{O}\left(n^{2 / 3}+D\right)$ rounds

Clustering

- Choose nodes as centers at random Locally
- Add edges to their neighbors

Talk to neighbors

- Add all edges of un-clustered nodes

Talk to neighbors

Path Buying

- For $k=1,2,4,8, \ldots, n^{2 / 3}$ do:
- Build a set S_{k} of $\sim 1 / k$ of the clusters Join locally to S_{k}
- For each center c_{i} and a cluster $C_{j} \in S_{k}$
- Add a shortest path from c_{i} to some $v \in C_{j}$
- But only if it misses at most $2 k$ edges

For each $\left(c_{i}, C_{j}\right)$, for each $v \in C_{j}$, need to find the shortest $\left(c_{i}, v\right)$-path that misses minimal num. of edges
Note: Graph and spanner are unweighted
Only use weights for the alg.

Weight edges: missing $=1$, others $=0$
Run wBFS from each c_{i}

Distributed Spanner Construction

Theorem (New)

It is possible to construct:

- A (+6)-spanner
- With $\tilde{O}\left(n^{4 / 3}\right)$ edges
- $\ln \tilde{O}\left(n^{2 / 3}+D\right)$ rounds

Conclusion

- New sequential algorithm for (+6)-spanners
- New distributed implementation
- Gives an almost-optimal (+6)-spanner
- New distributed algorithm: weighted-BFS
- Open: lower bounds for distributed construction time
Thaək You!

