
Recent Progress on
Distributed CONGEST Algorithms
for Specific Graph Classes

Taisuke Izumi(NITECH, Japan)

Model

 CONGEST model

 Round-based synchrony

 Network is a graph 𝐺 = 𝑉 𝐺 , 𝑉 𝐸 of 𝑛 nodes

 Each link transmits 𝑂(log𝑛) bits / round

◼ Reliable

 Coping with low bandwidth is a primary difficulty

 Many hardness results: MST, Diameter, Min-cut, etc.

Warm-up : MST

 Classical GHS algorithm (= Distributed Boruvka)

 Growing the fragments of MST

◼ Each fragment finds its minimum outgoing edge (MOE)

Warm-up : MST

 Classical GHS algorithm (= Distributed Boruvka)

 Growing the fragments of MST

◼ Each fragment finds its minimum outgoing edge (MOE)

Warm-up : MST

 Classical GHS algorithm (= Distributed Boruvka)

 Growing the fragments of MST

◼ Each fragment finds its minimum outgoing edge (MOE)

Warm-up : MST

 Classical GHS algorithm (= Distributed Boruvka)

 Growing the fragments of MST

◼ Each fragment finds its minimum outgoing edge (MOE)

Warm-up : MST

 Finding MOEs is not necessarily fast

 Even if the diameter of graph 𝐺 is 𝐷 ≪ 𝑛,
a fragment can have an Ω(n) diameter

Naive in-fragment aggregation is slow !

Warm-up : MST

 Finding MOEs is not necessarily fast

 Even if the diameter of graph 𝐺 is 𝐷 ≪ 𝑛,
a fragment can have an Ω(n) diameter

Naive in-fragment aggregation is slow !

Ω 𝑛 hops

A Hard-Core Instance for MST

 ... and many other problems

・・・

・・・

・・・

・
・
・

・
・
・

・
・
・

・
・
・

・
・
・

・
・
・

・
・
・

・
・
・

・・・

Ω 𝑛 + 𝐷 -round lower bound !

𝑂
𝑛

p
a
th

s

𝑂 𝑛 nodes

Partwise Aggregation(Minimum)

Definition :

 Each node has one value (𝑂(log𝑛) bits)

 Each link can transmit 𝑂(log𝑛) bits / round

 𝑉(𝐺) is partitioned into a number of connected subgraphs
𝑃1, 𝑃2, ⋯ , 𝑃𝑁

 For all 𝑃𝑖 (1 ≤ 𝑖 ≤ 𝑁), find the minimum value in 𝑃𝑖
independently

4

8

3

2

5 4

7
1

6
3 8

9
8

6
7

44

1

2

5

2

5
7

9

7

5

4

7

5 6

3
8

Partwise Aggregation(Minimum)

Definition :

 Each node has one value (𝑂(log𝑛) bits)

 Each link can transmit 𝑂(log𝑛) bits / round

 𝑉(𝐺) is partitioned into a number of connected subgraphs
𝑃1, 𝑃2, ⋯ , 𝑃𝑁

 For all 𝑃𝑖 (1 ≤ 𝑖 ≤ 𝑁), find the minimum value in 𝑃𝑖
independently

4

8

3

2

5 4

7
1

6
3 8

9
8

6
7

44

1

2

5

2

5
7

9

7

5

4

7

5 6

3
8

Motivation

 Partwise aggregation plays an important role for designing
distributed algorithms in CONGEST model

 Meta-Theorem [Folklore + Ghaffari and Haeupler’ 16]

(CONGEST model : Round-based synchrony + 𝑂(log 𝑛)-bit bandwidth)

Efficient partwise aggregation

Efficient distributed algorithm for MST,
min-cut, weighted shortest path, and so on...

Naive Solution(1)

 In-part aggregation

 BFS trees in parts might have a large diameter

◼ The diameter even becomes 𝑂(𝑛), so 𝑂(𝑛) rounds

Naive Solution(1)

 In-part aggregation

 BFS trees in parts might have a large diameter

◼ The diameter even becomes 𝑂(𝑛), so 𝑂(𝑛) rounds

Naive Solution(2)

 Aggregation via a global BFS tree

 Pipelined scheduling achieves 𝑂 𝐷 + 𝑁 rounds

◼ 𝑁 can become 𝑂(𝑛), so 𝑂 𝑛 rounds

The Optimal Solution

 𝑉 𝑃𝑖 ≤ 𝑛 : Naive in-part aggregation

 𝑉 𝑃𝑖 > 𝑛 : Use a BFS tree of the whole network
+ pipelined scheduling

The Optimal Solution

 𝑉 𝑃𝑖 ≤ 𝑛 : Naive in-part aggregation

 𝑉 𝑃𝑖 > 𝑛 : Use a BFS tree of the whole network
+ pipelined scheduling

The Optimal Solution

 𝑉 𝑃𝑖 ≤ 𝑛 : Naive in-part aggregation

 𝑉 𝑃𝑖 > 𝑛 : Use a BFS tree of the whole network
+ pipelined scheduling

෨𝑂 (𝑛 + 𝐷)-round solution

Good Algorithms for Good Graphs

 This is an existential lower bound

 There exists “an instance” exhibiting expensive cost

 We can expect much faster aggregation for many “not-so-bad”
instances

 Universal Lower bound : Ω(𝐷) rounds

Problem

What graphs (classes) allow faster aggregation?

Shortcuts - An alternative view of P.A.

 𝑉 𝑃𝑖 ≤ 𝑛 : Naive in-part aggregation

 𝑉 𝑃𝑖 > 𝑛 : Use a BFS tree of the whole network
+ pipelined scheduling

Augmenting the edges outside of
the part for faster aggregation

But those edges are shared by
many parts... causing congestion !

(d,c)-shortcut

 Given a connected partition 𝑃1, 𝑃2, ⋯ , 𝑃𝑁 of 𝐺

 𝑑, 𝑐 -shortcut is a subgraph 𝐻1, 𝐻2, ⋯ , 𝐻𝑁 s.t.

 For any 𝑖, 𝑃𝑖 + 𝐻𝑖 has diameter at most 𝑑 (dilation)

 Each edge 𝑒 ∈ 𝐸(𝐺) is used as a shortcut edge at most 𝑐 times

 An algorithm constructing (d,c)-shortcut for any partition with

𝑂 𝑓 rounds induces ෨𝑂(𝑑 + 𝑐 + 𝑓)-round algorithms for partwise
aggregation !

For measuring quality, max{𝑑, 𝑐} is usually enough.
We state simply by 𝑘-shortcuts if 𝑘 = max{𝑑, 𝑐}

Shortcuts - An alternative view of P.A.

 𝑉 𝑃𝑖 ≤ 𝑛 : Naive in-part aggregation

 𝑉 𝑃𝑖 > 𝑛 : Use a BFS tree of the whole network
+ pipelined scheduling

dilation : 𝑛

congestion : 𝑛+1

𝑶(𝒏)-shortcut

Shortcut and Graph Classes : Known Results

Graph Family Quality Construction
Lower
Bound

Genus-𝑔
[GH16, HIZ16]

𝑂(𝑔𝐷 log𝐷) 𝑂(𝑔𝐷 log𝐷) Ω
𝑔𝐷

log 𝑔

Treewidth-𝑘
[HIZ16]

𝑂(𝑘𝐷 log 𝑛) 𝑂(𝑘𝐷 log 𝑛) Ω(𝑘𝐷)

Minor-Free
[HLZ18]

෨𝑂(𝐷2) ෨𝑂(𝐷2) Ω(𝐷)(trivial)

Mixing Time 𝜏
[GKS17]

𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) 𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) Ω(𝐷)(trivial)

𝑘-chordal
[KKIO19, in prep.]

𝑂(𝑘𝐷) 𝑂(1) Ω(𝑘𝐷)

Douling
Dimesion-𝛼
[KKIO19, in prep.]

𝑂(𝐷𝛼) 𝑂(1) Ω(𝐷𝛼)

Cliquewidth-𝑐
[KKIO19, in prep.]

𝑂 𝑛 𝑂(𝑛)
Ω(𝑛)

for 𝑐 = 𝑂 1

Small Diameter
[KKI19, in prep.]

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෩Ω(𝑛
1

2
−

1

2𝐷−2)
for any 𝐷

[DHKKPPW13]

Shortcut and Graph Classes : Known Results

Graph Family Quality Construction
Lower
Bound

Genus-𝑔
[GH16, HIZ16]

𝑂(𝑔𝐷 log𝐷) 𝑂(𝑔𝐷 log𝐷) Ω
𝑔𝐷

log 𝑔

Treewidth-𝑘
[HIZ16]

𝑂(𝑘𝐷 log 𝑛) 𝑂(𝑘𝐷 log 𝑛) Ω(𝑘𝐷)

Minor-Free
[HLZ18]

෨𝑂(𝐷2) ෨𝑂(𝐷2) Ω(𝐷)(trivial)

Mixing Time 𝜏
[GKS17]

𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) 𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) Ω(𝐷)(trivial)

𝑘-chordal
[KKIO19, in prep.]

𝑂(𝑘𝐷) 𝑂(1) Ω(𝑘𝐷)

Douling
Dimesion-𝛼
[KKIO19, in prep.]

𝑂(𝐷𝛼) 𝑂(1) Ω(𝐷𝛼)

Cliquewidth-𝑐
[KKIO19, in prep.]

𝑂 𝑛 𝑂(𝑛)
Ω(𝑛)

for 𝑐 = 𝑂 1

Small Diameter
[KKI19, in prep.]

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෩Ω(𝑛
1

2
−

1

2𝐷−2)
for any 𝐷

[DHKKPPW13]

S
p
a
n
n
in

g
 T

re
e
-b

a
s
e
d
 a

p
p
ro

a
c
h

Shortcut and Graph Classes : Known Results

Graph Family Quality Construction
Lower
Bound

Genus-𝑔
[GH16, HIZ16]

𝑂(𝑔𝐷 log𝐷) 𝑂(𝑔𝐷 log𝐷) Ω
𝑔𝐷

log 𝑔

Treewidth-𝑘
[HIZ16]

𝑂(𝑘𝐷 log 𝑛) 𝑂(𝑘𝐷 log 𝑛) Ω(𝑘𝐷)

Minor-Free
[HLZ18]

෨𝑂(𝐷2) ෨𝑂(𝐷2) Ω(𝐷)(trivial)

Mixing Time 𝜏
[GKS17]

𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) 𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) Ω(𝐷)(trivial)

𝑘-chordal
[KKIO19, in prep.]

𝑂(𝑘𝐷) 𝑂(1) Ω(𝑘𝐷)

Douling
Dimesion-𝛼
[KKIO19, in prep.]

𝑂(𝐷𝛼) 𝑂(1) Ω(𝐷𝛼)

Cliquewidth-𝑐
[KKIO19, in prep.]

𝑂 𝑛 𝑂(𝑛)
Ω(𝑛)

for 𝑐 = 𝑂 1

Small Diameter
[KKI19, in prep.]

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෩Ω(𝑛
1

2
−

1

2𝐷−2)
for any 𝐷

[DHKKPPW13]

R
a
n
d
o
m

-W
a
lk

 b
a
se

d
 a

p
p
ro

a
c
h

Shortcut and Graph Classes : Known Results

Graph Family Quality Construction
Lower
Bound

Genus-𝑔
[GH16, HIZ16]

𝑂(𝑔𝐷 log𝐷) 𝑂(𝑔𝐷 log𝐷) Ω
𝑔𝐷

log 𝑔

Treewidth-𝑘
[HIZ16]

𝑂(𝑘𝐷 log 𝑛) 𝑂(𝑘𝐷 log 𝑛) Ω(𝑘𝐷)

Minor-Free
[HLZ18]

෨𝑂(𝐷2) ෨𝑂(𝐷2) Ω(𝐷)(trivial)

Mixing Time 𝜏
[GKS17]

𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) 𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) Ω(𝐷)(trivial)

𝑘-chordal
[KKIO19, in prep.]

𝑂(𝑘𝐷) 𝑂(1) Ω(𝑘𝐷)

Douling
Dimesion-𝛼
[KKIO19, in prep.]

𝑂(𝐷𝛼) 𝑂(1) Ω(𝐷𝛼)

Cliquewidth-𝑐
[KKIO19, in prep.]

𝑂 𝑛 𝑂(𝑛)
Ω(𝑛)

for 𝑐 = 𝑂 1

Small Diameter
[KKI19, in prep.]

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෩Ω(𝑛
1

2
−

1

2𝐷−2)
for any 𝐷

[DHKKPPW13]

1
-h

o
p
 e

x
te

n
s
io

n
 a

p
p
ro

a
c
h

Shortcut and Graph Classes : Known Results

Graph Family Quality Construction
Lower
Bound

Genus-𝑔
[GH16, HIZ16]

𝑂(𝑔𝐷 log𝐷) 𝑂(𝑔𝐷 log𝐷) Ω
𝑔𝐷

log 𝑔

Treewidth-𝑘
[HIZ16]

𝑂(𝑘𝐷 log 𝑛) 𝑂(𝑘𝐷 log 𝑛) Ω(𝑘𝐷)

Minor-Free
[HLZ18]

෨𝑂(𝐷2) ෨𝑂(𝐷2) Ω(𝐷)(trivial)

Mixing Time 𝜏
[GKS17]

𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) 𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) Ω(𝐷)(trivial)

𝑘-chordal
[KKIO19, in prep.]

𝑂(𝑘𝐷) 𝑂(1) Ω(𝑘𝐷)

Douling
Dimesion-𝛼
[KKIO19, in prep.]

𝑂(𝐷𝛼) 𝑂(1) Ω(𝐷𝛼)

Cliquewidth-𝑐
[KKIO19, in prep.]

𝑂 𝑛 𝑂(𝑛)
Ω(𝑛)

for 𝑐 = 𝑂 1

Small Diameter
[KKI19, in prep.]

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෩Ω(𝑛
1

2
−

1

2𝐷−2)
for any 𝐷

[DHKKPPW13]

L
o
w

e
r B

o
u
n
d

Shortcut and Graph Classes : Known Results

Graph Family Quality Construction
Lower
Bound

Genus-𝑔
[GH16, HIZ16]

𝑂(𝑔𝐷 log𝐷) 𝑂(𝑔𝐷 log𝐷) Ω
𝑔𝐷

log 𝑔

Treewidth-𝑘
[HIZ16]

𝑂(𝑘𝐷 log 𝑛) 𝑂(𝑘𝐷 log 𝑛) Ω(𝑘𝐷)

Minor-Free
[HLZ18]

෨𝑂(𝐷2) ෨𝑂(𝐷2) Ω(𝐷)(trivial)

Mixing Time 𝜏
[GKS17]

𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) 𝑂(𝜏2 log 𝑛 log log 𝑛𝐷) Ω(𝐷)(trivial)

𝑘-chordal
[KKIO19, in prep.]

𝑂(𝑘𝐷) 𝑂(1) Ω(𝑘𝐷)

Douling
Dimesion-𝛼
[KKIO19, in prep.]

𝑂(𝐷𝛼) 𝑂(1) Ω(𝐷𝛼)

Cliquewidth-𝑐
[KKIO19, in prep.]

𝑂 𝑛 𝑂(𝑛)
Ω(𝑛)

for 𝑐 = 𝑂 1

Small Diameter
[KKI19, in prep.]

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෨𝑂(𝑛
1

2
−

1

2𝐷−2)
for 𝐷 = 3,4

෩Ω(𝑛
1

2
−

1

2𝐷−2)
for any 𝐷

[DHKKPPW13]

1
-h

o
p
 e

x
te

n
s
io

n
 +

 𝛼

ST-approach : 𝑶(𝑫𝟐) quality for Planar Graphs

1. Construct a spanning tree

Planar Graph : 𝑶(𝑫𝟐) quality construction

1. Construct a spanning tree

ST-approach : 𝑶(𝑫𝟐) quality for Planar Graphs

1. Construct a spanning tree

2. Each part takes upward path of the tree,
except for the leftmost and rightmost paths

root (arbitrarily chosen)

ST-approach : 𝑶(𝑫𝟐) quality for Planar Graphs

1. Construct a spanning tree

2. Each part takes upward path of the tree,
except for the leftmost and rightmost paths

root (arbitrarily chosen)

Planar Graph : 𝑶(𝑫𝟐) quality construction

1. Construct a spanning tree

2. Each part takes upward path of the tree,
except for the leftmost and rightmost paths

root (arbitrarily chosen)

Proving the Quality

 Taking a BFS tree, this construction achieves

 𝑂(𝐷2) dilation

 𝑂(𝐷) congestion

Part

H
e
ig

h
t O

(𝐷
)

Proving the Quality

 Taking a BFS tree, this construction achieves

 𝑂(𝐷2) dilation

 𝑂(𝐷) congestion

Part

H
e
ig

h
t O

(𝐷
)

Proving the Quality

 Taking a BFS tree, this construction achieves

 𝑂(𝐷2) dilation

 𝑂(𝐷) congestion

Part

H
e
ig

h
t 𝑂

(𝐷
)

𝑂(𝐷) fragments of
Height-O(𝐷) tree

𝑂 𝐷2 dilation

Proving the Quality

 Taking a BFS tree, this construction achieves

 𝑂(𝐷2) dilation

 𝑂(𝐷) congestion

Part

H
e
ig

h
t O

(𝐷
)

𝑒

Proving the Quality

 Taking a BFS tree, this construction achieves

 𝑂(𝐷2) dilation

 𝑂(𝐷) congestion

Part

H
e
ig

h
t O

(𝐷
)

Part

𝑒

does not use 𝑒

Proving the Quality

 Taking a BFS tree, this construction achieves

 𝑂(𝐷2) dilation

 𝑂(𝐷) congestion

Part

H
e
ig

h
t O

(𝐷
)

𝑒

Part

Proving the Quality

 Taking a BFS tree, this construction achieves

 𝑂(𝐷2) dilation

 𝑂(𝐷) congestion

Part

H
e
ig

h
t O

(𝐷
)

𝑒

Part
Part
Part
Part

𝜔 𝐷 crossing parts create
a forbidden minor !
𝑂(𝐷) congestion

Distributed Construction

 The construction requires a planar embedding

 It is possible (in distributed mannar)
[Ghaffari and Haeupler, PODC‘16]

 There also exists an algorithm without embedding
[Haeupler, I, Zuzic, ‘16]

 A versatile algorithm (not only for planar graphs)

 Find any spanning-tree based shortcuts (efficiently)

→ Only existential proofs suffice!

1-hop Extension Approach

 Take all the edges touching each part

1-hop Extension Approach

 Take all the edges touching each part

 Congestion is obviously 𝑂(1)

Application :𝒌-chordal graphs

 𝑘-chordal graphs = any induced cycle has length at most 𝑘

𝑣0
𝑣1

𝑣4
𝑣2

𝑣3

𝑣5

𝑣0
𝑣1

𝑣4
𝑣2

𝑣3

𝑣5

4-chordal

𝑣0
𝑣1

𝑣4
𝑣2

𝑣3

𝑣5

5-chordal3-chordal
(chordal)

 1-hop extension shrinks the diameter of any subgraph of 𝑘-
chordal graphs!

1-hop extension for 𝒌-chordal graphs

𝑃𝑖

1-hop extension for 𝒌-chordal graphs

 Take two nodes far apart in the part

 Shortest path in the part is long

 They have a (shortest) path ≤ diameter 𝐷

length ≤ 𝐷

long in-part shortest path

Assume their disjointness
for simplicity

1-hop extension for 𝒌-chordal graphs

 Take two nodes far apart in the part

 Shortest path in the part is long

 They have a (shortest) path ≤ diameter 𝐷

length ≤ 𝐷

long in-part shortest path

Assume their disjointness
for simplicity

1-hop extension for 𝒌-chordal graphs

 What happens taking 1-hop extension edges

length ≤ 𝐷

long in-part shortest path

1-hop extension for 𝒌-chordal graphs

 Exploration from the left

 Can find one shortcut edge within distance 𝑂(𝑘) because of
𝑘-chordality

𝑂(𝑘)

1-hop extension for 𝒌-chordal graphs

 Exploration from the left

 Can find one shortcut edge within distance 𝑂(𝑘) because of
𝑘-chordality

𝑂(𝑘)

1-hop extension for 𝒌-chordal graphs

 Go back to the part (by taking the best edge)

𝑂(𝑘)

1-hop extension for 𝒌-chordal graphs

 Do the same thing for the remaining cycle

𝑂(𝑘)

1-hop extension for 𝒌-chordal graphs

 Do the same thing for the remaining cycle

𝑂(𝑘)

𝑂(𝑘)

1-hop extension for 𝒌-chordal graphs

 Do the same thing for the remaining cycle

𝑂(𝑘)

𝑂(𝑘)

1-hop extension for 𝒌-chordal graphs

 Do the same thing for the remaining cycle

𝑂(𝑘)

𝑂(𝑘)

1-hop extension for 𝒌-chordal graphs

 Do the same thing for the remaining cycle

𝑂(𝑘)

𝑂(𝑘) 𝑂(𝑘)

1-hop extension for 𝒌-chordal graphs

 The shortest path length using 1-hop extension edges is 𝑂(𝑘𝐷)

𝑂(𝑘)

𝑂(𝑘) 𝑂(𝑘)

Open Problems

 On graph classes

 Optimal shortcuts for minor-closed family (generalization of
bounded genus/treewidth graphs)

 Everywhere sparse graphs (further generalization ?)

 Highly-connected graphs

 Versatile algorithms

 Automatic transformer from existential results to
constructability results

Open Problems

 How about other problems?

 Known that it does not help the diameter or APSP

Theorem [GH16]]
෨𝑂(𝑓)-round PA → ෨𝑂(𝑓)-round MST

Theorem[GH16]
෨𝑂(𝑓)-round PA → ෨𝑂(𝑓)-round 1 + 𝜖 -approx. min-cut

Theorem[HL18]
෨𝑂(𝑓)-round PA→ For 𝛽 = log𝑛 Ω(1),

෨𝑂(𝛽𝑓)-round 𝑂(𝑛
loglog 𝑛

log𝛽) -approx. SSSP

