Recent Progress on Distributed CONGEST Algorithms for Specific Graph Classes

Taisuke Izumi(NITECH, Japan)

Model

CONGEST model

- Round-based synchrony
- Network is a graph $G=(V(G), V(E))$ of n nodes
- Each link transmits $O(\log n)$ bits / round
- Reliable
\square Coping with low bandwidth is a primary difficulty
- Many hardness results: MST, Diameter, Min-cut, etc.

Warm-up : MST

- Classical GHS algorithm (= Distributed Boruvka)
- Growing the fragments of MST
- Each fragment finds its minimum outgoing edge (MOE)

Warm-up : MST

- Classical GHS algorithm (= Distributed Boruvka)
- Growing the fragments of MST
- Each fragment finds its minimum outgoing edge (MOE)

Warm-up : MST

- Classical GHS algorithm (= Distributed Boruvka)
- Growing the fragments of MST
- Each fragment finds its minimum outgoing edge (MOE)

Warm-up : MST

- Classical GHS algorithm (= Distributed Boruvka)
- Growing the fragments of MST
- Each fragment finds its minimum outgoing edge (MOE)

Warm-up : MST

Finding MOEs is not necessarily fast

- Even if the diameter of graph G is $D \ll n$, a fragment can have an $\Omega(\mathrm{n})$ diameter

Naive in-fragment aggregation is slow!

Warm-up : MST

Finding MOEs is not necessarily fast

- Even if the diameter of graph G is $D \ll n$, a fragment can have an $\Omega(\mathrm{n})$ diameter

Naive in-fragment aggregation is slow!

A Hard-Core Instance for MST

- ... and many other problems

Partwise Aggregation(Minimum)

Definition :

- Each node has one value ($O(\log n)$ bits)
- Each link can transmit $O(\log n)$ bits / round
- $V(G)$ is partitioned into a number of connected subgraphs $P_{1}, P_{2}, \cdots, P_{N}$
- For all $P_{i}(1 \leq i \leq N)$, find the minimum value in P_{i} independently

Partwise Aggregation(Minimum)

Definition :

- Each node has one value ($O(\log n)$ bits)
- Each link can transmit $O(\log n)$ bits / round
- $V(G)$ is partitioned into a number of connected subgraphs $P_{1}, P_{2}, \cdots, P_{N}$
- For all $P_{i}(1 \leq i \leq N)$, find the minimum value in P_{i} independently

Motivation

- Partwise aggregation plays an important role for designing distributed algorithms in CONGEST model
(CONGEST model : Round-based synchrony $+O(\log n)$-bit bandwidth)
\square Meta-Theorem [Folklore + Ghaffari and Haeupler' 16]
Efficient partwise aggregation

Efficient distributed algorithm for MST, min-cut, weighted shortest path, and so on...

Naive Solution(1)

- In-part aggregation
- BFS trees in parts might have a large diameter
- The diameter even becomes $O(n)$, so $O(n)$ rounds

Naive Solution(1)

- In-part aggregation
- BFS trees in parts might have a large diameter
- The diameter even becomes $O(n)$, so $O(n)$ rounds

Naive Solution(2)

- Aggregation via a global BFS tree
- Pipelined scheduling achieves $O(D+N)$ rounds
- N can become $O(n)$, so $O(n)$ rounds

The Optimal Solution

- $\left|V\left(P_{i}\right)\right| \leq \sqrt{n}$: Naive in-part aggregation
- $\left|V\left(P_{i}\right)\right|>\sqrt{n}$: Use a BFS tree of the whole network + pipelined scheduling

The Optimal Solution

$\left|V\left(P_{i}\right)\right| \leq \sqrt{n}:$ Naive in-part aggregation

- $\left|V\left(P_{i}\right)\right|>\sqrt{n}$: Use a BFS tree of the whole network + pipelined scheduling

The Optimal Solution

$\left|\left|\left(P_{i}\right)\right| \leq \sqrt{n}\right.$: Naive in-part aggregation

- $\left|V\left(P_{i}\right)\right|>\sqrt{n}$: Use a BFS tree of the whole network + pipelined scheduling

$$
\tilde{O}(\sqrt{n}+D) \text {-round solution }
$$

Good Algorithms for Good Graphs

\square This is an existential lower bound

- There exists "an instance" exhibiting expensive cost
- We can expect much faster aggregation for many "not-so-bad" instances
- Universal Lower bound : $\Omega(D)$ rounds

Problem

What graphs (classes) allow faster aggregation?

Shortcuts - An alternative view of P.A.

$\left|V\left(P_{i}\right)\right| \leq \sqrt{n}$: Naive in-part aggregation
$\left|V\left(P_{i}\right)\right|>\sqrt{n}$: Use a BFS tree of the whole network + pipelined scheduling

Augmenting the edges outside of the part for faster aggregation

But those edges are shared by many parts... causing congestion!

(d,c)-shortcut

Given a connected partition $P_{1}, P_{2}, \cdots, P_{N}$ of G

- (d, c)-shortcut is a subgraph $H_{1}, H_{2}, \cdots, H_{N}$ s.t.
- For any $i, P_{i}+H_{i}$ has diameter at most d (dilation)
- Each edge $e \in E(G)$ is used as a shortcut edge at most c times

An algorithm constructing (d,c)-shortcut for any partition with $O(f)$ rounds induces $\tilde{O}(d+c+f)$-round algorithms for partwise aggregation!

\square
For measuring quality, $\max \{d, c\}$ is usually enough.
We state simply by k-shortcuts if $k=\max \{d, c\}$

Shortcuts - An alternative view of P.A.

$\left|V\left(P_{i}\right)\right| \leq \sqrt{n}:$ Naive in-part aggregation dilation : \sqrt{n}
$\left|V\left(P_{i}\right)\right|>\sqrt{n}$: Use a BFS tree of the whole network + pipelined scheduling congestion : $\sqrt{n}+1$
$O(\sqrt{n})$-shortcut

Shortcut and Graph Classes : Known Results

Graph Family	Quality	Construction	Lower Bound
Genus-g [GH16, HIZ16]	$O(\sqrt{g} D \log D)$	$O(\sqrt{g} D \log D)$	$\Omega\left(\frac{\sqrt{g} D}{\log g}\right)$
$\begin{aligned} & \text { Treewidth- } k \\ & \text { [HIZ16] } \end{aligned}$	$O(k D \log n)$	$O(k D \log n)$	$\Omega(k D)$
$\begin{aligned} & \text { Minor-Free } \\ & \text { [HLZ } 28] \end{aligned}$	$\tilde{O}\left(D^{2}\right)$	$\widetilde{O}\left(D^{2}\right)$	$\Omega(D)$ (trivial)
Mixing Time τ [GKS17]	$O(\tau 2 \sqrt{\log n \log \log n} D)$	$O\left(\tau 2^{\sqrt{\log n \log \log n}} D\right)$	$\Omega(D)$ (trivial)
k-chordal [kKiO19, in prep.]	$O(k D)$	O(1)	$\Omega(k D)$
Douling Dimesion- α [kKIO19, in prep.]	$O\left(D^{\alpha}\right)$	$O(1)$	$\Omega\left(D^{\alpha}\right)$
Cliquewidth-c [KKIO19, in prep.]	$O(\sqrt{n})$	$O(\sqrt{n})$	$\begin{gathered} \Omega(\sqrt{n}) \\ \text { for } c=0(1) \end{gathered}$
Small Diameter [KKI19, in prep.]	$\begin{aligned} & \tilde{o}\left(n^{\left.\frac{1}{2}-\frac{1}{2 D-2}\right)}\right. \\ & \text { for } D=3,4 \end{aligned}$	$\begin{aligned} & \tilde{O}\left(n^{\left.\frac{1}{2}-\frac{1}{2 D-2}\right)}\right. \\ & \text { for } D=3,4 \end{aligned}$	$\begin{gathered} \widetilde{\Omega}\left(n^{\frac{1}{2}-\frac{1}{2 D-2}}\right) \\ \text { for any } D \\ {[D H K K P P W 13]} \end{gathered}$

Shortcut and Graph Classes : Known Results

	Graph Family	Quality	Construction	Lower Bound
$\frac{0}{0}$$\frac{1}{2}$$\frac{3}{3}$0	Genus-g [GH16, HIZ16]	$O(\sqrt{g} D \log D)$	$O(\sqrt{g} D \log D)$	$\Omega\left(\frac{\sqrt{g} D}{\log g}\right)$
	$\begin{aligned} & \text { Treewidth- } k \\ & \text { [HIZ16] } \end{aligned}$	$O(k D \log n)$	$O(k D \log n)$	$\Omega(k D)$
$\stackrel{\bar{\nabla}}{\stackrel{\rightharpoonup}{D}}$	Minor-Free [HLZ18]	$\tilde{O}\left(D^{2}\right)$	$\widetilde{O}\left(D^{2}\right)$	$\Omega(D)$ (trivial)
	Mixing Time τ [GKS17]	$O\left(\tau 2^{\sqrt{\log n \log \log n}} D\right)$	$O\left(\tau 2^{\sqrt{\log n \log \log n}} D\right)$	$\Omega(D)$ (trivial)
	k-chordal [KkiO19, in prep.]	$O(k D)$	O(1)	$\Omega(k D)$
	Douling Dimesion- α [kKIO19, in prep.]	$O\left(D^{\alpha}\right)$	$O(1)$	$\Omega\left(D^{\alpha}\right)$
	Cliquewidth-c [kkiO19, in prep.]	$O(\sqrt{n})$	$O(\sqrt{n})$	$\begin{gathered} \quad \Omega(\sqrt{n}) \\ \text { for } c=O(1) \end{gathered}$
	Small Diameter [KKı19, in prep.]	$\begin{aligned} & \tilde{O}\left(n^{\left.\frac{1}{2}-\frac{1}{2 D-2}\right)}\right. \\ & \text { for } D=3,4 \end{aligned}$	$\begin{aligned} & \tilde{O}\left(n^{\left.\frac{1}{2}-\frac{1}{2 D-2}\right)}\right. \\ & \text { for } D=3,4 \end{aligned}$	$\begin{aligned} & \widetilde{\Omega}\left(n^{\frac{1}{2}-\frac{1}{2 D-2}}\right) \\ & \text { for any } D \\ & {[D H K K P P W 13]} \end{aligned}$

Shortcut and Graph Classes : Known Results

Shortcut and Graph Classes : Known Results

	Graph Family	Quality	Construction	Lower Bound
	Genus-g [GH16, HIZ16]	$O(\sqrt{g} D \log D)$	$O(\sqrt{g} D \log D)$	$\Omega\left(\frac{\sqrt{g} D}{\log g}\right)$
	$\begin{aligned} & \text { Treewidth- } k \\ & \text { [HIZ16] } \end{aligned}$	$O(k D \log n)$	$O(k D \log n)$	$\Omega(k D)$
	Minor-Free [HLZ18]	$\tilde{O}\left(D^{2}\right)$	$\tilde{O}\left(D^{2}\right)$	$\Omega(D)$ (trivial)
$\begin{aligned} & \frac{1}{0} \\ & \frac{0}{0} \end{aligned}$	Mixing Time τ [GKS17]	$O\left(\tau 2^{\sqrt{\log n \log \log n}} \mathrm{D}\right)$	$O\left(\tau 2^{\sqrt{\log n \log \log n}} D\right)$	$\Omega(D)$ (trivial)
$\underset{\underset{\sim}{\infty}}{\underset{\sim}{㐅}}$	$\left[\begin{array}{l} k \text {-chordal } \\ \text { [KKIO19, in prep. }] \end{array}\right.$	$O(k D)$	O(1)	$\Omega(k D)$
$\begin{aligned} & \frac{10}{2} \\ & \frac{0}{0} \\ & \frac{0}{3} \end{aligned}$	Douling Dimesion- α [KKIO19, in prep.]	$O\left(D^{\alpha}\right)$	$O(1)$	$\Omega\left(D^{\alpha}\right)$
$\frac{0}{0}$	Cliquewidth-c [KKIO19, in prep.]	$O(\sqrt{n})$	$O(\sqrt{n})$	$\begin{gathered} \Omega(\sqrt{n}) \\ \text { for } c=0(1) \end{gathered}$
$\begin{aligned} & \text { O} \\ & \stackrel{\sim}{\mathrm{O}} \end{aligned}$	Small Diameter [KKI19, in prep.]	$\begin{aligned} & \tilde{O}\left(n^{\left.\frac{1}{2}-\frac{1}{2 D-2}\right)}\right. \\ & \text { for } D=3,4 \end{aligned}$	$\begin{aligned} & \tilde{O}\left(n^{\left.\frac{1}{2}-\frac{1}{2 D-2}\right)}\right. \\ & \text { for } D=3,4 \end{aligned}$	$\begin{gathered} \widetilde{\Omega}\left(n^{\frac{1}{2}-\frac{1}{2 D-2}}\right) \\ \text { for any } D \\ {[D H K K P P W 13]} \end{gathered}$

Shortcut and Graph Classes : Known Results

Graph Family	Quality	Construction	Lower Bound
Genus-g [GH16, HIZ16]	$O(\sqrt{g} D \log D)$	$O(\sqrt{g} D \log D)$	$\Omega\left(\frac{\sqrt{g} D}{\log g}\right)$
Treewidth-k [HIZ16]	$O(k D \log n)$	$O(k D \log n)$	$\Omega(k D)$
Minor-Free [HLZ18]	$\widetilde{O}\left(D^{2}\right)$	$\widetilde{O}\left(D^{2}\right)$	$\Omega(D)$ (trivial)
Mixing Time τ [GKS17]	$O\left(\tau 2^{\sqrt{\log n \log \log n}} D\right)$	$O\left(\tau 2^{\sqrt{\log n \log \log n}} D\right)$	$\Omega(D)$ (trivial)
k-chordal [KKIO19, in prep.]	$O(k D)$	$O(1)$	$\Omega(k D)$

\sum_{i}°	Douling Dimesion- α [KKIO19, in prep.]	$O\left(D^{\alpha}\right)$	$O(1)$	$\Omega\left(D^{\alpha}\right)$
$\begin{aligned} & \frac{D}{1} \\ & \text { סOB } \end{aligned}$	Cliquewidth-c [KKIO19, in prep.]	$O(\sqrt{n})$	$O(\sqrt{n})$	$\begin{gathered} \Omega(\sqrt{n}) \\ \text { for } c=O(1) \end{gathered}$
$\frac{5}{5}$	Small Diameter [KKI19, in prep.]	$\begin{aligned} & \tilde{O}\left(n^{\frac{1}{2}-\frac{1}{2 D-2}}\right) \\ & \text { for } D=3,4 \end{aligned}$	$\begin{aligned} & \tilde{O}\left(n^{\frac{1}{2}-\frac{1}{2 D-2}}\right) \\ & \text { for } D=3,4 \end{aligned}$	$\begin{gathered} \widetilde{\Omega}\left(n^{\frac{1}{2}-\frac{1}{2 D-2}}\right) \\ \text { for any } D \\ {[D H K K P P W 13]} \end{gathered}$

Shortcut and Graph Classes : Known Results

Graph Family	Quality	Construction	Lower Bound
Genus-g [GH16, HIZ16]	$O(\sqrt{g} D \log D)$	$O(\sqrt{g} D \log D)$	$\Omega\left(\frac{\sqrt{g} D}{\log g}\right)$
Treewidth-k [HIZ16]	$O(k D \log n)$	$O(k D \log n)$	$\Omega(k D)$
Minor-Free [HLZ18]	$\widetilde{O}\left(D^{2}\right)$	$\widetilde{O}\left(D^{2}\right)$	$\Omega(D)$ (trivial)
Mixing Time τ [GKS17]	$O\left(\tau 2^{\sqrt{\log n \log \log n}} \mathrm{D}\right)$	$O\left(\tau 2^{\sqrt{\log n \log \log n} D}\right)$	$\Omega(D)$ (trivial)
k-chordal [KKIO19, in prep.]	$O(k D)$	$O(1)$	$\Omega(k D)$

Douling
Dimesion- α [KKIO19, in prep.]

$$
O\left(D^{\alpha}\right)
$$

$$
O(1)
$$

$$
\Omega\left(D^{\alpha}\right)
$$

Cliquewidth-c	$O(\sqrt{n})$	$O(\sqrt{n})$
[KKIO19, in prep.]		 for $c=O(1)$

$+\rightarrow$ Small Diameter
[KKI19, in prep.]

$$
\tilde{O}\left(n^{\frac{1}{2}-\frac{1}{2 D-2}}\right)
$$

$$
\tilde{O}\left(n^{\frac{1}{2}-\frac{1}{2 D-2}}\right)
$$

$$
\text { for } D=3,4
$$

$$
\text { for } D=3,4
$$

$$
\widetilde{\Omega}\left(n^{\frac{1}{2}-\frac{1}{2 D-2}}\right)
$$

for any D
[DHKKPPW13]

ST-approach: $O\left(D^{2}\right)$ quality for Planar Graphs

Construct a spanning tree

Planar Graph : $O\left(D^{2}\right)$ quality construction

Construct a spanning tree

ST-approach: $O\left(D^{2}\right)$ quality for Planar Graphs

Construct a spanning tree
2. Each part takes upward path of the tree, except for the leftmost and rightmost paths
root (arbitrarily chosen)

ST-approach: $O\left(D^{2}\right)$ quality for Planar Graphs

Construct a spanning tree
2. Each part takes upward path of the tree, except for the leftmost and rightmost paths
root (arbitrarily chosen)

Planar Graph : $O\left(D^{2}\right)$ quality construction

Construct a spanning tree
2. Each part takes upward path of the tree, except for the leftmost and rightmost paths
root (arbitrarily chosen)

Proving the Quality

Taking a BFS tree, this construction achieves

- $O\left(D^{2}\right)$ dilation
- $O(D)$ congestion

Proving the Quality

Taking a BFS tree, this construction achieves

- $O\left(D^{2}\right)$ dilation
- $O(D)$ congestion

Proving the Quality

Taking a BFS tree, this construction achieves

- $O\left(D^{2}\right)$ dilation
- $O(D)$ congestion

Proving the Quality

Taking a BFS tree, this construction achieves

- $O\left(D^{2}\right)$ dilation
- $O(D)$ congestion (a) 0 子Чб!əН
\uparrow

Proving the Quality

Taking a BFS tree, this construction achieves

- $O\left(D^{2}\right)$ dilation
- $O(D)$ congestion
(a) О ччб!əН

Proving the Quality

\square Taking a BFS tree, this construction achieves

- $O\left(D^{2}\right)$ dilation
- $O(D)$ congestion
(a) 0 ҰЧб!əН

Proving the Quality

\square Taking a BFS tree, this construction achieves

- $O\left(D^{2}\right)$ dilation
- $O(D)$ congestion

Distributed Construction

\square The construction requires a planar embedding

- It is possible (in distributed mannar) [Ghaffari and Haeupler, PODC'16]
- There also exists an algorithm without embedding [Haeupler, I, Zuzic, '16]
- A versatile algorithm (not only for planar graphs)
- Find any spanning-tree based shortcuts (efficiently)
\rightarrow Only existential proofs suffice!

1-hop Extension Approach

Take all the edges touching each part

1-hop Extension Approach

\square Take all the edges touching each part

- Congestion is obviously $O(1)$

Application :k-chordal graphs

- k-chordal graphs $=$ any induced cycle has length at most k

3-chordal (chordal)

4-chordal

5-chordal

1-hop extension for k-chordal graphs

1-hop extension shrinks the diameter of any subgraph of k chordal graphs!

1-hop extension for k-chordal graphs

- Take two nodes far apart in the part
- Shortest path in the part is long
- They have a (shortest) path \leq diameter D]

Assume their disjointness for simplicity

1-hop extension for k-chordal graphs

- Take two nodes far apart in the part
- Shortest path in the part is long
- They have a (shortest) path \leq diameter D]

Assume their disjointness for simplicity

1-hop extension for k-chordal graphs

- What happens taking 1-hop extension edges
length $\leq D$

\longrightarrow L
long in-part shortest path

1-hop extension for k-chordal graphs

- Exploration from the left
- Can find one shortcut edge within distance $O(k)$ because of k-chordality

1-hop extension for k-chordal graphs

Exploration from the left

- Can find one shortcut edge within distance $O(k)$ because of k-chordality

1-hop extension for k-chordal graphs

\square Go back to the part (by taking the best edge)

1-hop extension for k-chordal graphs

Do the same thing for the remaining cycle

1-hop extension for k-chordal graphs

\square Do the same thing for the remaining cycle

1-hop extension for k-chordal graphs

\square Do the same thing for the remaining cycle

1-hop extension for k-chordal graphs

\square Do the same thing for the remaining cycle

1-hop extension for k-chordal graphs

\square Do the same thing for the remaining cycle

1-hop extension for \boldsymbol{k}-chordal graphs

\square The shortest path length using 1-hop extension edges is $O(k D)$

Open Problems

\square On graph classes

- Optimal shortcuts for minor-closed family (generalization of bounded genus/treewidth graphs)
- Everywhere sparse graphs (further generalization ?)
- Highly-connected graphs
- Versatile algorithms
- Automatic transformer from existential results to constructability results

Open Problems

- How about other problems?

Theorem [GH16]]
$\tilde{O}(f)$-round PA $\rightarrow \tilde{O}(f)$-round MST
Theorem[GH16]
$\tilde{O}(f)$-round PA $\rightarrow \tilde{O}(f)$-round $(1+\epsilon)$-approx. min-cut
Theorem[HL18]
$\tilde{O}(f)$-round $\mathrm{PA} \rightarrow$ For $\beta=(\log n)^{\Omega(1)}$,
$\tilde{O}(\beta f)$-round $O\left(n^{\frac{\log \log n}{\log \beta}}\right)$-approx. SSSP
Known that it does not help the diameter or APSP

