Recent Progress on Distributed CONGEST Algorithms for Specific Graph Classes

Taisuke Izumi(NITECH, Japan)

Model

CONGEST model

- Round-based synchrony
- Network is a graph G = (V(G), V(E)) of n nodes
- Each link transmits $O(\log n)$ bits / round
 - Reliable

- Coping with low bandwidth is a primary difficulty
 - Many hardness results: MST, Diameter, Min-cut, etc.

- Classical GHS algorithm (= Distributed Boruvka)
 - Growing the fragments of MST
 - Each fragment finds its minimum outgoing edge (MOE)

- Classical GHS algorithm (= Distributed Boruvka)
 - Growing the fragments of MST
 - Each fragment finds its minimum outgoing edge (MOE)

- Classical GHS algorithm (= Distributed Boruvka)
 - Growing the fragments of MST
 - Each fragment finds its minimum outgoing edge (MOE)

- Classical GHS algorithm (= Distributed Boruvka)
 - Growing the fragments of MST
 - Each fragment finds its minimum outgoing edge (MOE)

- Finding MOEs is not necessarily fast
 - Even if the diameter of graph G is $D \ll n$, a fragment can have an $\Omega(n)$ diameter

Naive in-fragment aggregation is slow !

- Finding MOEs is not necessarily fast
 - Even if the diameter of graph G is $D \ll n$, a fragment can have an $\Omega(n)$ diameter

Naive in-fragment aggregation is slow !

A Hard-Core Instance for MST

□ ... and many other problems

Partwise Aggregation(Minimum)

Definition :

- Each node has one value $(O(\log n) \text{ bits})$
- Each link can transmit $O(\log n)$ bits / round
- V(G) is partitioned into a number of connected subgraphs P_1, P_2, \dots, P_N
- For all P_i ($1 \le i \le N$), find the minimum value in P_i independently

Partwise Aggregation(Minimum)

Definition :

- Each node has one value $(O(\log n) \text{ bits})$
- Each link can transmit $O(\log n)$ bits / round
- V(G) is partitioned into a number of connected subgraphs P_1, P_2, \dots, P_N
- For all P_i ($1 \le i \le N$), find the minimum value in P_i independently

Motivation

 Partwise aggregation plays an important role for designing distributed algorithms in CONGEST model

(CONGEST model : Round-based synchrony + $O(\log n)$ -bit bandwidth)

Meta-Theorem [Folklore + Ghaffari and Haeupler' 16]

Efficient partwise aggregation

Efficient distributed algorithm for MST, min-cut, weighted shortest path, and so on...

Naive Solution(1)

- In-part aggregation
 - **BFS** trees in parts might have a large diameter
 - The diameter even becomes O(n), so O(n) rounds

Naive Solution(1)

- In-part aggregation
 - **BFS** trees in parts might have a large diameter
 - The diameter even becomes O(n), so O(n) rounds

Naive Solution(2)

- Aggregation via a global BFS tree
 - **D** Pipelined scheduling achieves O(D + N) rounds
 - N can become O(n), so O(n) rounds

The Optimal Solution

The Optimal Solution

The Optimal Solution

 $|V(P_i)| > \sqrt{n}$: Use a BFS tree of the whole network + pipelined scheduling

$\tilde{O}(\sqrt{n} + D)$ -round solution

Good Algorithms for Good Graphs

- This is an existential lower bound
 - There exists "an instance" exhibiting expensive cost
- We can expect much faster aggregation for many "not-so-bad" instances
 - Universal Lower bound : $\Omega(D)$ rounds

Problem

What graphs (classes) allow faster aggregation?

Shortcuts - An alternative view of P.A.

(d,c)-shortcut

- Given a connected partition P_1, P_2, \dots, P_N of G
- □ (d,c)-shortcut is a subgraph H_1, H_2, \cdots, H_N s.t.
 - For any *i*, $P_i + H_i$ has diameter at most *d* (dilation)
 - Each edge $e \in E(G)$ is used as a shortcut edge at most c times

- An algorithm constructing (d,c)-shortcut for any partition with O(f) rounds induces $\tilde{O}(d + c + f)$ -round algorithms for partwise aggregation !
 - For measuring quality, $max\{d, c\}$ is usually enough. We state simply by k-shortcuts if $k = max\{d, c\}$

Shortcuts - An alternative view of P.A.

 $O(\sqrt{n})$ -shortcut

Graph Family	Quality	Construction	Lower Bound
Genus- <i>g</i> [GH16, H <mark>I</mark> Z16]	$O(\sqrt{g}D\log D)$	$O(\sqrt{g}D\log D)$	$\Omega\left(\frac{\sqrt{g}D}{\log g}\right)$
Treewidth-k [HIZ16]	$O(kD\log n)$	$O(kD\log n)$	$\Omega(kD)$
Minor-Free [HLZ18]	$\tilde{O}(D^2)$	$\tilde{O}(D^2)$	$\Omega(D)$ (trivial)
Mixing Time $ au$ [GKS17]	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$\Omega(D)$ (trivial)
<i>k</i> -chordal [KKI019, in prep.]	O(kD)	0(1)	$\Omega(kD)$
Douling Dimesion-α [κκι019, in prep.]	$O(D^{\alpha})$	0(1)	$\Omega(D^{lpha})$
Cliquewidth-c [KKI019, in prep.]	$O(\sqrt{n})$	$O(\sqrt{n})$	$\Omega(\sqrt{n})$ for $c = O(1)$
Small Diameter [KKI19, in prep.]	$\tilde{O}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for $D = 3,4$	$\tilde{O}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for $D = 3,4$	$\widetilde{\Omega}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for any <i>D</i>

Graph Family	Quality	Construction	Lower Bound
Genus- <i>g</i> [GH16, H <mark>I</mark> Z16]	$O(\sqrt{g}D\log D)$	$O(\sqrt{g}D\log D)$	$\Omega\left(\frac{\sqrt{g}D}{\log g}\right)$
Treewidth-k [HIZ16]	$O(kD\log n)$	$O(kD\log n)$	$\Omega(kD)$
Minor-Free [HLZ18]	$\tilde{O}(D^2)$	$\tilde{O}(D^2)$	$\Omega(D)$ (trivial)
Mixing Time τ [GKS17]	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$\Omega(D)$ (trivial)
<i>k</i> -chordal [KKI019, in prep.]	O(kD)	0(1)	$\Omega(kD)$
Douling Dimesion-α [KKIO19, in prep.]	$O(D^{\alpha})$	0(1)	$\Omega(D^{\alpha})$
Cliquewidth-c [KKI019, in prep.]	$O(\sqrt{n})$	$O(\sqrt{n})$	$\Omega(\sqrt{n})$ for $c = O(1)$
Small Diameter [KKI19, in prep.]	$ ilde{O}(n^{rac{1}{2}-rac{1}{2D-2}})$ for $D = 3,4$	$ ilde{O}(n^{rac{1}{2}-rac{1}{2D-2}})$ for $D=3,4$	$\widetilde{\Omega}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for any <i>D</i> [DHKKPPW13]

Graph Family	Quality	Construction	Lower Bound
Genus- <i>g</i> [GH16, H <mark>I</mark> Z16]	$O(\sqrt{g}D\log D)$	$O(\sqrt{g}D\log D)$	$\Omega\left(\frac{\sqrt{g}D}{\log g}\right)$
Treewidth-k [HIZ16]	$O(kD\log n)$	$O(kD\log n)$	$\Omega(kD)$
Minor-Free [HLZ18]	$\tilde{O}(D^2)$	$\tilde{O}(D^2)$	$\Omega(D)$ (trivial)
Mixing Time τ [GKS17]	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$\Omega(D)$ (trivial)
<i>k</i> -chordal [KKI019, in prep.]	O(kD)	0(1)	$\Omega(kD)$
Douling Dimesion-α [κκιο19, in prep.]	$O(D^{\alpha})$	0(1)	$\Omega(D^{\alpha})$
Cliquewidth-c [KKI019, in prep.]	$O(\sqrt{n})$	$O(\sqrt{n})$	$\Omega(\sqrt{n})$ for $c = O(1)$
Small Diameter [KKI19, in prep.]	$\tilde{O}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for $D = 3,4$	$ ilde{O}(n^{rac{1}{2}-rac{1}{2D-2}})$ for $D=3,4$	$\widetilde{\Omega}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for any <i>D</i> [DHKKPPW13]

Random-Walk based approach

Graph Family	Quality	Construction	Lower Bound
Genus-g [GH16, HIZ16]	$O(\sqrt{g}D\log D)$	$O(\sqrt{g}D\log D)$	$\Omega\left(\frac{\sqrt{g}D}{\log g}\right)$
Treewidth-k [HIZ16]	$O(kD\log n)$	$O(kD\log n)$	$\Omega(kD)$
Minor-Free [HLZ18]	$\tilde{O}(D^2)$	$\tilde{O}(D^2)$	$\Omega(D)$ (trivial)
Mixing Time τ [GKS17]	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$\Omega(D)$ (trivial)
<i>k</i> -chordal [KK <mark>I</mark> O19, in prep.]	O(kD)	0(1)	$\Omega(kD)$
Douling Dimesion- α [KK <mark>I</mark> O19, in prep.]	$O(D^{\alpha})$	0(1)	$\Omega(D^{\alpha})$
Cliquewidth-c [KKIO19, in prep.]	$O(\sqrt{n})$	$O(\sqrt{n})$	$\Omega(\sqrt{n})$ for $c = O(1)$
Small Diameter [KKI19, in prep.]	$\tilde{O}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for $D = 3,4$	$ ilde{O}(n^{rac{1}{2}-rac{1}{2D-2}})$ for $D=3,4$	$\widetilde{\Omega}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for any <i>D</i> [DHKKPPW13]

1-hop extension approach

Graph Family	Quality	Construction	Lower Bound
Genus- <i>g</i> [GH16, H <mark>I</mark> Z16]	$O(\sqrt{g}D\log D)$	$O(\sqrt{g}D\log D)$	$\Omega\left(\frac{\sqrt{g}D}{\log g}\right)$
Treewidth-k [HIZ16]	$O(kD\log n)$	$O(kD\log n)$	$\Omega(kD)$
Minor-Free [HLZ18]	$\tilde{O}(D^2)$	$\tilde{O}(D^2)$	$\Omega(D)$ (trivial)
Mixing Time τ [GKS17]	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$\Omega(D)$ (trivial)
<i>k</i> -chordal [KK <mark>I</mark> O19, in prep.]	O(kD)	0(1)	$\Omega(kD)$
Douling Dimesion-α [κκ <mark>ι</mark> 019, in prep.]	$O(D^{\alpha})$	0(1)	$\Omega(D^{lpha})$
Cliquewidth-c [KKIO19, in prep.]	$O(\sqrt{n})$	$O(\sqrt{n})$	$\Omega(\sqrt{n})$ for $c = O(1)$
Small Diameter [KKI19, in prep.]	$ ilde{O}(n^{rac{1}{2}-rac{1}{2D-2}})$ for $D=3,4$	$\tilde{O}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for $D = 3,4$	$\widetilde{\Omega}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for any <i>D</i> [DHKKPPW13]

I Lower Bound

Graph Family	Quality	Construction	Lower Bound
Genus- <i>g</i> [GH16, H <mark>I</mark> Z16]	$O(\sqrt{g}D\log D)$	$O(\sqrt{g}D\log D)$	$\Omega\left(\frac{\sqrt{g}D}{\log g}\right)$
Treewidth-k [HIZ16]	$O(kD\log n)$	$O(kD\log n)$	$\Omega(kD)$
Minor-Free [HLZ18]	$\tilde{O}(D^2)$	$\tilde{O}(D^2)$	$\Omega(D)$ (trivial)
Mixing Time τ [GKS17]	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$O(\tau 2^{\sqrt{\log n \log \log n}}D)$	$\Omega(D)$ (trivial)
<i>k</i> -chordal [KKI019, in prep.]	O(kD)	0(1)	$\Omega(kD)$
Douling Dimesion-α [KKIO19, in prep.]	$O(D^{\alpha})$	0(1)	$\Omega(D^{lpha})$
Cliquewidth-c [KK <mark>I</mark> O19, in prep.]	$O(\sqrt{n})$	$O(\sqrt{n})$	$\Omega(\sqrt{n})$ for $c = O(1)$
Small Diameter [KKI19, in prep.]	$\tilde{O}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for $D = 3,4$	$\tilde{O}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for $D = 3,4$	$\widetilde{\Omega}(n^{\frac{1}{2}-\frac{1}{2D-2}})$ for any <i>D</i> [DHKKPPW13]

ST-approach : $O(D^2)$ quality for Planar Graphs

1. Construct a spanning tree

Planar Graph : $O(D^2)$ **quality construction**

1. Construct a spanning tree

ST-approach : $O(D^2)$ quality for Planar Graphs

- 1. Construct a spanning tree
- 2. Each part takes upward path of the tree, except for the leftmost and rightmost paths root (arbitrarily chosen)

ST-approach : $O(D^2)$ quality for Planar Graphs

- 1. Construct a spanning tree
- 2. Each part takes upward path of the tree, except for the leftmost and rightmost paths root (arbitrarily chosen)

Planar Graph : $O(D^2)$ **quality construction**

- 1. Construct a spanning tree
- 2. Each part takes upward path of the tree, except for the leftmost and rightmost paths root (arbitrarily chosen)

- Taking a BFS tree, this construction achieves
 - $O(D^2)$ dilation

Height O(D)

• O(D) congestion

- Taking a BFS tree, this construction achieves
 - $O(D^2)$ dilation

Height O(D)

• O(D) congestion

Taking a BFS tree, this construction achieves

- $O(D^2)$ dilation
- O(D) congestion

Taking a BFS tree, this construction achieves

Distributed Construction

- The construction requires a planar embedding
 - It is possible (in distributed mannar) [Ghaffari and Haeupler, PODC'16]

- There also exists an algorithm without embedding [Haeupler, I, Zuzic, '16]
 - A versatile algorithm (not only for planar graphs)
 - Find any spanning-tree based shortcuts (efficiently) \rightarrow Only existential proofs suffice!

1-hop Extension Approach

Take all the edges touching each part

1-hop Extension Approach

Take all the edges touching each part

• Congestion is obviously O(1)

Application :*k*-chordal graphs

 \square k-chordal graphs = any induced cycle has length at most k

1-hop extension shrinks the diameter of any subgraph of kchordal graphs!

1-hop extension for k-chordal graphs Take two nodes far apart in the part Shortest path in the part is long Assume their disjointness for simplicity They have a (shortest) path \leq diameter D length $\leq D$ long in-part shortest path

1-hop extension for k-chordal graphs Take two nodes far apart in the part Shortest path in the part is long Assume their disjointness for simplicity They have a (shortest) path \leq diameter D length $\leq D$ long in-part shortest path

What happens taking 1-hop extension edges

- Exploration from the left
 - Can find one shortcut edge within distance O(k) because of k-chordality

- Exploration from the left
 - Can find one shortcut edge within distance O(k) because of k-chordality

Go back to the part (by taking the best edge)

□ The shortest path length using 1-hop extension edges is O(kD)

Open Problems

On graph classes

- Optimal shortcuts for minor-closed family (generalization of bounded genus/treewidth graphs)
- Everywhere sparse graphs (further generalization ?)
- Highly-connected graphs

- Versatile algorithms
 - Automatic transformer from existential results to constructability results

Open Problems

How about other problems?

Theorem [GH16]] $\tilde{O}(f)$ -round PA $\rightarrow \tilde{O}(f)$ -round MST

Theorem[GH16] $\tilde{O}(f)$ -round PA $\rightarrow \tilde{O}(f)$ -round (1 + ϵ)-approx. min-cut

Theorem[HL18]

$$\tilde{O}(f)$$
-round PA \rightarrow For $\beta = (\log n)^{\Omega(1)}$,
 $\tilde{O}(\beta f)$ -round $O(n^{\frac{\log \log n}{\log \beta}})$ -approx. SSSP

Known that it does not help the diameter or APSP