Distributed Interactive Proofs

Pierre Fraigniaud
Joint work with Pierluigi Crescenzi and Ami Paz

Workshop QuData, Paris, February 20-21, 2019

Decision Problems [NS, 1995]

- Network computing

- Boolean predicate on labeled graphs:
- c is a proper coloring
- T is a (minimum-weiaht) spannina tree

Predicate is satisfied \Leftrightarrow all nodes accept

Examples

- c is a proper coloring $\in \mathrm{LD}$
- G is 3-colorable $\notin \mathrm{LD}$

- G is acyclic $\notin L D$

Locally Checkable Proofs

 [GS, 2016]- Variants:
- Proof-Labeling Schemes [KKP, 2010]
- Non-Deterministic Local Computing [FKP, 2013]
- G is acyclic $\in \Sigma_{1} L D(\log n)$

The class Σ_{1} LD

- Configuration $=(G, x, i d)$ where $x: V(G) \rightarrow\{0,1\}^{*}$
- Distributed language $=$ set of configurations
- $\mathrm{LD}=$ \{locally decidable languages $\}$
- $L \in \Sigma_{1} L D$ if and only if there exists a local algorithm s.t. for every (G,x,id)

$$
(G, x, i d) \in L \Leftrightarrow \exists y: V(G) \rightarrow\{0,1\}^{*}: \text { all nodes accept }
$$

- Application to distributed fault-tolerant algorithms

Size of certificates

- All languages are in $\Sigma_{1} \mathrm{LD}\left(\mathrm{n}^{2}\right)$ - every node is provided with the complete description of the network
- Non 3-colorability requires $\Omega\left(\mathrm{n}^{2}\right)$-bit certificates
- Symmetry requires $\Omega\left(\mathrm{n}^{2}\right)$-bit certificates

Local Hierarchy [FFH, 2016]

- Non 3-colorability $\in \Pi_{2} L D(\log n)$

$$
(\mathrm{G}, \mathrm{x}, \mathrm{id}) \in \neg 3 \mathrm{col}
$$

$\forall \mathrm{y}_{1} \mathrm{~V}(\mathrm{G}) \rightarrow\{0,1\}^{*} \exists \mathrm{y}_{2}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}^{*}:$ all nodes accept

- y_{1} interpreted as a 3-coloring ($\mathrm{O}(1)$ bits)
- y_{2} encodes a spanning tree pointing to an error (O(log n))
- Many optimization problems are in $\Sigma_{3} L D(\log n)$

Randomized Protocols

[FKP, 2013]

- At most one selected (AMOS)

- Decision algorithm (2-sided):
- let $p=(\sqrt{ } 5-1) / 2=0.61 \ldots$
- If not selected then accept
- If selected then accept w/ prob p, and reject w/ prob 1-p
- Issue with boosting! - But OK for 1-sided error

Randomized Proof-Labeling Scheme ${ }_{\text {[fpes, } 2015]}$

- Proof-Labeling scheme (or locally checkable proof) in which the verifier is randomized
- If L has a PLS with certificates of size k then L has a RPLS with certificates of size $O(\Delta k)$ but with communication complexity $\mathrm{O}(\log \mathrm{k})$

Distributed Interactive Protocols

[KOS, 2018]

- Arthur-Merlin Phase (no communication, only interactions)
- Verification Phase (only communications)
- Merlin has infinite communication power
- Arthur is randomized
- $\mathrm{k}=$ \#interactions
- dAM[k] or dMA[k]

Example: AMOS

- In BPLD with success prob $(\sqrt{ } 5-1) / 2=0.61 \ldots$
- $\ln \Sigma_{1} \mathrm{LD}(\mathrm{O}(\log \mathrm{n}))-\operatorname{Not}$ in $\Sigma_{1} \mathrm{LD}(\mathrm{o}(\log \mathrm{n}))$
- Not in dMA(o(log n)) for success prob $>4 / 5$
- In dAM(k) with k random bits, and success prob 1-1/2k
- Arthur independently picks a k-bit index at each node u.a.r.
- Merlin answer \perp if no nodes selected, or the index of the selected node

Sequential setting

- For every $k \geq 2, A M[k]=A M$
- $M A \subseteq A M$ because $M A \subseteq M A M=A M[3]=A M$
- $\mathrm{MA} \in \Sigma_{2} \mathrm{P} \cap \Pi_{2} \mathrm{P}$
- $A M \in \Pi_{2} P$
- $\operatorname{AM}[p o l y(n)]=I P=$ PSPACE

Known results

[KOS 2018, NPY 2018]

- $\operatorname{Sym} \in \mathrm{dAM}(\mathrm{n} \log \mathrm{n})$
- $\operatorname{Sym} \in \mathrm{dMAM}(\log \mathrm{n})$
- Any dAM protocol for Sym requires Ω (loglog n)-bit certificates
- \neg Sym $\in \operatorname{dAMAM}(\log n)$
- Other results on graph non-isomorphism

Parameters

- Number of interactions between
- Size of $\underset{=}{\square}$
- Size of

- Number of random
- Shared vs distributed

Tradeoffs

[CFP, 2019]

- Theorem 1 For every c, there exists a Merlin-Arthur (dMA) protocol for triangle-freeness, using $\mathrm{O}(\log \mathrm{n})$ bits of shared randomness, with Õ(n/c)-bit certificates and Õ(c)-bit messages between nodes.
- Theorem 2 There exists a graph property admitting a proof-labeling scheme with certificates and messages on $\mathrm{O}(\mathrm{n})$ bits, that cannot be solved by an Arthur-Merlin (dAM) protocol with certificates on o(n) bits, for any fixed number $\mathrm{k} \geq 0$ of interactions between Arthur and Merlin, even using shared randomness, and even with messages of unbounded size.

Proof of Theorem 1

Every node solves set-disjointness with each of its neighbors

We use a protocol by Aaronson-Wigderson (2009), recently revisited by Abboud, Rubinstein \& Williams (2017)

Assume IDs in $\{1, \ldots, n\}=\{1, \ldots, n / c\} \times\{1, \ldots, c\}=[n / c] \times[c]$
Let $\mathrm{q}=\Theta(\mathrm{nc})$ prime.
Node u represents $\mathrm{N}(\mathrm{u})$ as c functions $\mathrm{F}_{\mathrm{u}, \mathrm{t}}:[\mathrm{n} / \mathrm{c}] \rightarrow\{0,1\}$ s.t.

$$
F_{u,(\mathrm{i}}(\mathrm{i})=1 \Leftrightarrow(\mathrm{i}, \mathrm{t}) \in \mathrm{N}(\mathrm{u})
$$

Interpolation by c polynomials $\mathrm{P}_{\mathrm{u}, \mathrm{t}}: \mathbb{F}_{\mathrm{q}} \rightarrow \mathbb{F}_{\mathrm{q}}$ of degree $\mathrm{n} / \mathrm{c}-1$.
$N(u) \cap N(v)=\varnothing \Leftrightarrow P_{u, t}(\mathrm{i}) P_{\mathrm{v}, \mathrm{t}}(\mathrm{i})=0$ for every $\mathrm{i} \in[\mathrm{n} / \mathrm{c}]$ and $\mathrm{t} \in[\mathrm{c}]$

Let $P_{u, v, t}=P_{u, t} P_{v, t}$ for every $v \in N(u)$ and $t \in[c]$
Let $\mathrm{P}_{\mathrm{u}}=\Sigma_{\mathrm{t} \in[\mathrm{cc}]} \Sigma_{\mathrm{v} \in \mathrm{N}(\mathrm{u})} \mathrm{P}_{\mathrm{u}, \mathrm{v}, \mathrm{t}}$ of degree $\leq 2(\mathrm{n} / \mathrm{c}-1)$
Rmk: u is not part of a triangle $\Leftrightarrow P_{u}(i)=0$ for every $i \in[n / c]$
Merlin assigns Q_{u} to node u using $O(n / c \log q)$ bits.
Arthur at node u checks that:
(1) $Q_{u}(i)=0$ for every $i \in[n / c]$
(2) $Q_{u}=P_{u}$

For (2), node u picks i^{*} u.a.r. in \mathbb{F}_{q} and sends $\left\{P_{u, t}\left(i^{*}\right), t \in[c]\right\}$ to all its neighbors, consuming bandwidth O(c log q) bits.

Node u then computes $\mathrm{P}_{\mathrm{u}}\left(\mathrm{i}^{*}\right)=\Sigma_{\mathrm{t} \in[\mathrm{c}]} \Sigma_{\mathrm{v} \in \mathrm{N}(\mathrm{u})} \mathrm{P}_{\mathrm{u},\left(\mathrm{i}\left(\mathrm{i}^{*}\right)\right.} \mathrm{P}_{\mathrm{v},\left(\mathrm{t}^{*} \mathrm{i}^{*}\right)}$
Node u accepts if $Q_{u}\left(i^{*}\right)=P_{u}\left(i^{*}\right)$, and rejects otherwise.
The probability that two non-equal polynomials on \mathbb{F}_{q} of degree at most $2(\mathrm{n} / \mathrm{c}-1)$ are equal at a random point i^{*} is at most $2(n / c-1) / q<1 / 3$ as $q=\Theta(n c)$.

Diameter

(unweighted graphs)

- diam 2 vs. 3 requires $\Omega(\mathrm{n})$ rounds in CONGEST
- diam 3 vs. 4 requires certificates on $\Omega(n)$ bits for $\Sigma_{1} L D$
- Õ(n) bits suffices for $\Sigma_{1} L D$, even for weighted graphs
- diam 5 vs. 6 requires certificates on $\Omega(\mathrm{n})$ bits for dMA [FMORT, 2019]

Open problem for QuData

