# Distributed Interactive Proofs

#### **Pierre Fraigniaud**

Joint work with Pierluigi Crescenzi and Ami Paz

Workshop QuData, Paris, February 20-21, 2019

# **Decision Problems**

#### [NS, 1995]

Network computing



- Boolean predicate on labeled graphs:
  - c is a proper coloring
  - T is a (minimum-weight) spanning tree

Predicate is satisfied  $\Leftrightarrow$  all nodes accept

# Examples

- c is a proper coloring  $\in LD$
- G is 3-colorable  $\notin$  LD
- G is acyclic  $\notin$  LD





### Locally Checkable Proofs [GS, 2016]

- Variants:
  - Proof-Labeling Schemes [KKP, 2010]
  - Non-Deterministic Local Computing [FKP, 2013]
- G is acyclic  $\in \Sigma_1 LD(log n)$





# The class $\Sigma_1 LD$

- Configuration = (G,x,id) where x:  $V(G) \rightarrow \{0,1\}^*$
- Distributed language = set of configurations
- LD = {locally decidable languages}
- L ∈ Σ<sub>1</sub>LD if and only if there exists a local algorithm s.t. for every (G,x,id)

 $(G,x,id) \in L \iff \exists y: V(G) \rightarrow \{0,1\}^*$ : all nodes accept

Application to distributed fault-tolerant algorithms

# Size of certificates

- All languages are in  $\Sigma_1 LD(n^2)$  every node is provided with the complete description of the network
- Non 3-colorability requires Ω(n<sup>2</sup>)-bit certificates
- Symmetry requires Ω(n<sup>2</sup>)-bit certificates



### Local Hierarchy [FFH, 2016]

• Non 3-colorability  $\in \Pi_2 LD(\log n)$ 

- y<sub>1</sub> interpreted as a 3-coloring (O(1) bits)
- y<sub>2</sub> encodes a spanning tree pointing to an error (O(log n))
- Many optimization problems are in  $\Sigma_3 LD(\log n)$

# **Randomized Protocols**

#### [FKP, 2013]

• At most one selected (AMOS)



- Decision algorithm (2-sided):
  - let  $p = (\sqrt{5}-1)/2 = 0.61...$
  - If not selected then accept
  - If selected then accept w/ prob p, and reject w/ prob 1-p
- Issue with boosting! But OK for 1-sided error

## Randomized Proof-Labeling Scheme [BFPS, 2015]

- Proof-Labeling scheme (or locally checkable proof) in which the verifier is randomized
- If L has a PLS with certificates of size k then L has a RPLS with certificates of size O(Δk) but with communication complexity O(log k)



### **Distributed Interactive Protocols**



- Arthur-Merlin Phase (no communication, only interactions)
- Verification Phase (only communications)
- Merlin has infinite communication power
- Arthur is randomized
- k = #interactions
- dAM[k] or dMA[k]



- In BPLD with success prob  $(\sqrt{5}-1)/2 = 0.61...$
- In  $\Sigma_1 LD(O(\log n))$  Not in  $\Sigma_1 LD(o(\log n))$
- Not in dMA(o(log n)) for success prob > 4/5
- In dAM(k) with k random bits, and success prob 1-1/2<sup>k</sup>
  - Arthur independently picks a k-bit index at each node u.a.r.
  - Merlin answer  $\perp$  if no nodes selected, or the index of the selected node

# Sequential setting

- For every  $k \ge 2$ , AM[k] = AM
- $MA \subseteq AM$  because  $MA \subseteq MAM = AM[3] = AM$
- $MA \in \Sigma_2 P \cap \Pi_2 P$
- $AM \in \Pi_2 P$
- AM[po/y(n)] = IP = PSPACE

### **Known results**

[KOS 2018, NPY 2018]

- Sym  $\in$  dAM(n log n)
- Sym  $\in$  dMAM(log n)
- Any dAM protocol for Sym requires Ω(loglog n)-bit certificates
- $\neg$ Sym  $\in$  dAMAM(log n)
- Other results on graph non-isomorphism

## **Parameters**

Number of interactions between







- Number of random
- Shared vs distributed



### Tradeoffs [CFP, 2019]

- Theorem 1 For every c, there exists a Merlin-Arthur (dMA) protocol for *triangle-freeness*, using O(log n) bits of shared randomness, with Õ(n/c)-bit certificates and Õ(c)-bit messages between nodes.
- Theorem 2 There exists a graph property admitting a proof-labeling scheme with certificates and messages on O(n) bits, that cannot be solved by an Arthur-Merlin (dAM) protocol with certificates on O(n) bits, for any fixed number k ≥ 0 of interactions between Arthur and Merlin, even using shared randomness, and even with messages of unbounded size.

# **Proof of Theorem 1**

Every node solves set-disjointness with each of its neighbors

We use a protocol by Aaronson-Wigderson (2009), recently revisited by Abboud, Rubinstein & Williams (2017)

Assume IDs in  $\{1,...,n\} = \{1,...,n/c\} \times \{1,...,c\} = [n/c] \times [c]$ 

Let  $q = \Theta(nc)$  prime.

Node u represents N(u) as c functions  $F_{u,t} : [n/c] \rightarrow \{0,1\}$  s.t.  $F_{u,t}(i) = 1 \iff (i,t) \in N(u)$ 

Interpolation by c polynomials  $P_{u,t} \colon \mathbb{F}_q \to \mathbb{F}_q$  of degree n/c-1. N(u)  $\cap$  N(v) =  $\emptyset \Leftrightarrow P_{u,t}(i) P_{v,t}(i) = 0$  for every  $i \in [n/c]$  and  $t \in [c]$  Let  $P_{u,v,t} = P_{u,t} P_{v,t}$  for every  $v \in N(u)$  and  $t \in [c]$ 

Let  $P_u = \sum_{t \in [c]} \sum_{v \in N(u)} P_{u,v,t}$  of degree  $\leq 2(n/c-1)$ 

<u>Rmk:</u> u is not part of a triangle  $\Leftrightarrow P_u(i) = 0$  for every  $i \in [n/c]$ 

Merlin assigns  $Q_u$  to node u using O(n/c log q) bits.

Arthur at node u checks that:

(1)  $Q_u(i) = 0$  for every  $i \in [n/c]$ 

(2)  $Q_u = P_u$ 

For (2), node u picks i<sup>\*</sup> u.a.r. in  $\mathbb{F}_q$  and sends {  $P_{u,t}(i^*), t \in [c]$  } to all its neighbors, consuming bandwidth  $O(c \log q)$  bits.

Node u then computes  $P_u(i^*) = \sum_{t \in [c]} \sum_{v \in N(u)} P_{u,t}(i^*) P_{v,t}(i^*)$ 

Node u accepts if  $Q_u(i^*) = P_u(i^*)$ , and rejects otherwise.

The probability that two non-equal polynomials on  $\mathbb{F}_q$  of degree at most 2(n/c-1) are equal at a random point i\* is at most 2(n/c-1)/q < 1/3 as  $q = \Theta(nc)$ .

## Diameter (unweighted graphs)

- diam 2 vs. 3 requires  $\Omega(n)$  rounds in CONGEST
- diam 3 vs. 4 requires certificates on  $\Omega(n)$  bits for  $\Sigma_1 LD$
- $\tilde{O}(n)$  bits suffices for  $\Sigma_1 LD$ , even for weighted graphs
- diam 5 vs. 6 requires certificates on Ω(n) bits for dMA [FMORT, 2019]

## **Open problem for QuData**

