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2Toward nanotechnology

"No exponential is forever. Your job is to delay 
forever.", Andrew Gordon Moore Feb. 2003. 

End of Moore’s Law?

Quantum interferences around 2020...
- Current approach: avoid them

- Quantum computing: get benefit of them!

 Feynman’81: “Can quantum systems be probabistically simulated by a 
clasical computer? [...] the answer is certainly, No!”

 Deutsch’85: Universal quantum Turing machine



Cryptography
- Secrete Key Distribution Protocol [Bennett, Brassard’84]

  Implementation: ~100 km

Information Theory
- EPR Paradox [Einstein, Podolsky, Rosen’35]

 Realization: 1982 [Orsay]

- Teleportation [Bennett, Brassard, Crépeau, Jozsa, Peres, Wootters’93]

 Realization: 1997 [Innsbruck]

Algorithms
- Polynomial algorithm for Period Finding [Simon, Shor’94]  

 ⇒   Factorization, Discrete Logarithm

- Quadratic speedup for Database Search [Grover’96]

- Quantum computer?

 1995: 2-qubit [ENS], 2000: 5-qubit [IBM], 2006: 12-qubit [Waterloo]

3The superiority of Quantum Computing

Quantum proofs for classical theorems
- http://arxiv.org/abs/0910.3376 [Drucker, de Wolf’09]

Computing?

Formal concepts
- Model of computation

 What is a machine, a program? 

 Mathematical model of a computer?

- Hardness of a problem

 Calculable / Non-calculable

 Easy / Hard

- [Turing 1936]: Turing machine, calculability, universality 

Church-Turing theses
- Weak version

 Any reasonable model of computation can be simulated on a Turing machine

  reasonable: physically realizable

  Turing machine ≈ today computer

- Strong version

 Any reasonable model of computation can be efficiently simulated on a 
probabilistic Turing machine

  efficiently: using same amount of ressources (time and space)
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Computers?

Classical computing
- Turing machine, calculability, universality [Turing 1936]

- Proposition: EDVAC (Electronic Discrete VAriable Computer) [von Neumann 1945] 

- First computer: Mark I [Robinson-Tootill-Williams 1949]

Quantum computing
- Idea: simulation of quantum systems [Feynman 1982]

- Turing machine, calculability, universality [Deutsch 1985,1989][Bernstein-Vazirani 
1993], circuits [Yao 1993], cellular automata, finite automata...

- Technology: 2-qubit [1995], 5-qubit [2000], 12-qubit [2006]

Validity of Church-Turing theses
- Weak version is still valid

 Calculability: quantum and classical computation have same power

- Strong version could be violated

 Complexity: evidences that quantum computers can be exponentially faster 
than classical computers
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In this talk

1 qubit
- Definition

- Quantum key distribution

2 qubit
- Definition

- EPR Paradox and applications 

Algorithms
- Toward factorization

 Quantum Fourier transform

 Applications

- Generalization

Conclusion
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Logical bit
- Deterministic element: 

Probabilistic bit
- Probabilistic distribution:

Quantum bit (qubit)
- State: 2-dimensional unit vector

 general case (complex amplitudes):

- Measure: randomized orthogonal projection

7Qubit state

| i =

✓
↵
�

◆
= ↵|0i + �|1i, |↵|2 + |�|2 = 1

|�|2
↵|0i + �|1i Measure

|0i

|1i

|↵|2

b 2 {0, 1}
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q

◆
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p
q

✓

| i = cos ✓|0i + sin ✓|1i |0i

|1i

Logical bit
- Function: 

Probabilistic bit
- Stochastic matrix:

Quantum bit
- Evolution: unitary transformation                     (⇒ reversible)

  Definition:                     s.t.

8Qubit evolution

G 2 U(2)

G 2 C2⇥2 G⇤G = Id

| i | 0i = G| iG

| i| 0i = G| i G⇤

f : {0, 1} ! {0, 1}, b 7! f(b)

P =
✓

p p0

q q0

◆
, d 7! d0 = Pd
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9Polarization of photons

State
- Polarization: 2-dimensional vector

Measure
- Calcite crystal

 separates horizontal and vertical polarizations

Transformation
- Well known transformation: half-wave blade

 orthogonal symmetry around its axis

- Any rotations  (possibly with complex angles)

A measure modifies the system

|✓i = cos ✓|!i + sin ✓|"i
✓

cos2 �

sin2 �

|�� |�⇥

|�⇥

10Examples of transformations

Reversible classical transformation
- Identity   

- Negation

Hadamard transformation
- Definition: half-wave blade at 22,5°

- Properties: quantum coin flipping

|bi 1p
2
(|0i + (�1)

b|1i)H

Id|bi |bi

NOT|bi |1 � bi

H =
1

p
2

✓
1 1
1 �1

◆

|0i H
1p
2
(|0i + |1i)

|0i
Measure

|1i

1
2

1
2

H MeasureH|bi |bi
Measure does not commute!



Problem
- Setting

 No prior shared secret information between Alice and Bob

 Authenticated classical channel

- Goal: Get a private key between Alice and Bob

Classical results
- Impossible, since all the information is in the canal

- However, one can (using randomized techniques):

 Amplify the privacy of an imperfect private key by shortening it

Incertitude in the measure

Impossibility of cloning
- Impossibility of duplicating an unknown state

- Proof based on the linearity of quantum transformations

11Quantum key distribution

Measure 50 %

50 %

|0i
|1i

1p
2
(|0i ± |1i)

|0i
|1i

|1i
|0i

Primitive
- Alice choses 2 random bits a,c

- Alice creates and sends to Bob qubit 

- Bob gets qubit from        Alice

- Bob choses 1 random bit d

- Bob measures               and gets bit b  

Facts
- c=d  → b=a with probability 1

- c≠d → b=a with probability 1/2

Reconciliation
- Alice & Bob exchange their value c,d

Remarks
- If c=d,  Alice & Bob know a=b without revealing a,b

- “without revealing” can be formalized...

12Main idea of quantum key distribution

| i

Hd| i

Measure 50 %

50 %

|0i
|1i

1p
2
(|0i ± |1i)

|0i
|1i

|1i
|0i

H2=Id

Hc|ai



Protocol: classical part
- Reconciliation: Alice and Bob publicly announce their coding choices

 A&B only keep key bits with same choices (prob. 1/2)

 If no third party observes communication, then A&B get same key

- Security: A&B check few key bits at random positions

- Secret amplification using with few other more key bits

Conclusion
- Key generation without any prior shared secret information but using an 

authenticated classical channel

- Small initial private key → large (and authentified) private key 

13The protocol BB84 [Bennett-Brassard 84]

Key:            0    1    1    0    0    1    0    1    1    1    0
Encoding:         H                H              H    H         H
Qubit:

Protocol: quantum part

Decoding:   H         H               H         H               H
Qubit:
Key:            1    1    0    0    1    1    0    1    0    1    0

Preliminaries: Tensor product

Vector spaces
- V, W: vector spaces

- V⊗W is the free vector space Span ( v⊗w : v∈V, w∈W )

 with equivalence relations

  (v1+v2)⊗w = v1⊗w + v2⊗w

  v⊗ (w1+w2) = v⊗w1 + v⊗w2

  (c∙v)⊗w = v⊗(c∙w) = c∙(v⊗w)

Linear maps
- S: V→X,   T: W→Y    : linear maps

- S⊗T :  V⊗W→X⊗Y    is the linear map satisfying

 S⊗T (v⊗w) =  S(v)⊗T(w)

  (and extended by linearity)

Applications
- Joint probability distributions on spaces V, W

 D( VxW) = D(V)⊗D(W) ≠ D(V)xD(W)  (: product distributions) 
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15n-qubit

Definition
-                       such that

Unitary transformations:

Measure

k| ik = 1

with

Examples:

C{0,1}2

= C{0,1} ⌦ C{0,1} 6= C{0,1} ⇥ C{0,1}

| i | 0i = G| iG

Measure |xi|↵
x

|2X

x2{0,1}n

↵

x

|xi

| i 2 C{0,1}n

| i =
X

x2{0,1}n

↵

x

|xi X

x2{0,1}n

|↵
x

|2 = 1

G 2 U(2n)
G⇤G = Ids.t.G 2 C2n⇥2n

|00i+|11ip
2

6= | 1i ⌦ | 2i

|00i+|01ip
2

= |0i ⌦ |0i+|1ip
2

16Transformation 

Definition

Representation

Bell basis change

c�NOT

c�NOT|0bi = |0bi
c�NOT =

0

BB@

1000
0100
0001
0010

1

CCA

NOT

control bit

target bit

c�NOT|1bi = |1i|(1 � b)i

c�NOT|abi = |ai|a � bi

NOT

H|xi

|yi
|�

xy

i

|�00i = 1p
2
(|00i + |11i)

|�01i = 1p
2
(|01i + |10i)

|�10i = 1p
2
(|00i � |11i)

|�11i = 1p
2
(|01i � |10i)



Measure of first qubit
- Projectors

- Measure of first qubit 

Interpretation 
- Partial measure project to a subspace compatible with the observation

 Probability = square norm of the projection

 Outcome = renormalization of the projection

17Partial measure: 2-qubit case

P0

?
� P1 = Id

P0 = |00⇤⇥00| + |01⇤⇥01| = |0⇤⇥0| � I2
P1 = |10⇤⇥10| + |11⇤⇥11| = |1⇤⇥1| � I2

Measure 1

||P1| i||2

||P0| i||2
1

||P0| i||P0| i

1
||P1| i||P1| i

|�� = a|00� + b|01� + c|10� + d|11�

= c2 + d2

= a2 + b2

= |0�
a|0� + b|1�
⇤

a2 + b2

= |1�
c|0� + d|1�
⇤

c2 + d2

EPR paradox

Protocol
- Assume Alice & Bob shares an EPR state:

 Alice has the first qubit, and Bob the second one

- Alice & Bob observe their qubit and respectively get bit a,b

Fact
- a=b with probability 1

- a (resp. b) is a uniform random bit

Classical analogue?
- Shared randomness model:

 Alice and Bob has access to shared random bits

 → Non product distribution: 

  00 with prob. 1/2 and 11 with prob. 1/2

- Can we simulate quantum physic using shared randomness?

18
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19Bell-CHSH inequality as a classical game

Game
- Alain and Bob share some initial information but cannot communicate

- Alain receives a random bit x,  Bob y    

- Alain returns a bit a,  Bob b  

- Goal:       maximize

Classically: CHSH inequality [1969]

- Best deterministic strategy: 

- Theorem: the best probabilistic strategy is not better than the best 
deterministic strategy

p = Pr
x,y

(a � b = x ^ y)

a = b = 0 =) p = 3
4

⊕ 0 1
0 0 1
1 1 0

⋀ 0 1
0 0 0
1 0 1

x y

a b

20Bell-CHSH inequality as a quantum game

Reminder
- Goal:      maximize

Quantumly
- Alain and Bob share an EPR state

- Bob performs a rotation of angle

- If            ,  Alain performs a rotation of angle

- If            , Bob performs a rotation of angle

- Alain et Bob observe their qubit and send their respective outcomes

- Theorem:

Realization: [Aspect-Grangier-Roger-Dalibard: Orsay‘82]

p = Pr
x,y

(a � b = x ^ y)

x = 1

y = 1

⇡
4

�⇡
4

⇡
8

p = cos2(�
8
) � 0.85

x y

a b
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+

|1 1�

/
�

2

/
�
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Problem
- Alice & Bob share an EPR state:

- Alice wants to send two bits xy to Bob

- But Alice can only send one qubit to Bob 

Bell basis change

Protocol 
- Alice applies to its qubit NOT, if y=1; and FLIP, if x=1

- Alice sends its qubit to Bob

- Bob performs the inverse of the Bell basis change, and observes xy

21Superdense coding [1992]

xy xy ?
1-qubit

|�00i = 1p
2
(|00i + |11i)

NOT

H|xi

|yi
|�

xy

i
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2
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2
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2
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2

FLIP =
�
1 0
0 �1

⇥

Problem
- Alice wants to transmet a qubit         to Bob

- Bob: far and unknown position to Alice

Realization

The quantum communication does not reveal anything on       ! 

22Quantum teleportation

0
0

ψ

Interaction
quantique

Interaction
interne Interaction

classique ψ

Alice

Bob

Alice

Bob

| i

| i | i

| i



23Realization of teleportation

Circuit

Exercise
- Compute the state of the system before the measure

- Write the qubit state          as a function of observed values x,y

- Explain the end of the protocol

Realizations
- 1 photon [Zeilinger et al : Innsbruck’97]

- 1 photon, 6 km [Gisin et al : Genève‘02]

- 1 atome [Blatt et al : Innsbruck‘04]

- Today: over 100km

NOT

H NOT

H

|0i

|0i

Measure
|xi

|yi

| 
xy

i

| i = ↵|0i + �|1i

| 
xy

i

Gates
- A gate C is a function on at most 3 qubits

 Example:  AND, OR, NOT, ...

Circuit
- A circuit is a sequence of gates

- The size of C is its number L of gates

- C computes a function f  if for all input x:

Theorem
- Any function can be computed by a circuit using only NOT, OR, AND gates

24Logical computing

C = CL . . . C2C1

NOT{x

0
}

0 NOT
AND

OR
f(x)

C(x, 0k) = (f(x), z)



Gates
- A quantum gate is a unitary map that acts upon at most 3 qubits

Tensor product of gates 

Circuit
- A quantum circuit is a sequence of gates (extended by ⊗ Id)

Theorem
- Any unitary can be realized exactly by a circuit 

 and approximated using only gates c-NOT and √H

25Quantum gates and circuits

G

H

R⇡
4

NOT NOT

U 2 U(2k), k = 1, 2, 3

G1

G2

| 1i| 2i (G1 ⌦ G2)| 1i| 2i = (G1| 1i)(G2| 2i)

On the query operator Sf

Normal form
- Function: 

- Circuit:

Circuit for Sf

- Boolean function:    

- Ancilla: 

- Circuit:

- Conclusion:

26

f : {0, 1}n ! {0, 1}m

Uf : |xi|0i 7! |xi|f(x)i
|xi|yi 7! |xi|y � f(x)i

|xi
Uf

8
<

:

1p
2
(|f(x)i � |1 � f(x)i)

= (�1)f(x)

p
2

(|0i � |1i)

8
<

:
|xi

f : {0, 1}n ! {0, 1}

Uf(|xi ⌦ | i) = Sf(|xi) ⌦ | i

| i = 1p
2
(|0i � |1i)

| i = 1p
2
(|0i � |1i)



Deutsch-Jozsa problem
- Oracle input:  f : {0, 1}n → {0, 1}  a black-box function

 such that  f  is either constant or balanced

- Output:  0  iff  f  is constant

Query complexity
- Deterministic:  2n-1+1          

- Quantum:        1 

Special case n=1
- No restriction on f

- Deterministic vs quantum: 2 queries vs 1 query

27A first quantum algorithm [1992]

f(3) = ?
f(3) = 1

Quantum solution   ( n=1 ) 28

Reversible implementation of f

x 7! f(x) can be nonreversible!

↵|0i + �|1i (�1)
f(0)↵|0i + (�1)

f(1)�|1i(�1)
f(b)|bi|bi

Quantum circuit

|0i H HSf Measure ?

Sf

|bi

Hadamard gate: half-wave blade at 22,5°

1p
2
(|0i + (�1)

b|1i)H
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29Analysis ( n=1 )

|0i H HSf Measure

|0iInitialization:

Parallelization: 1p
2
(|0i + |1i)

Query to f: 1p
2
((�1)

f(0)|0i + (�1)
f(1)|1i)

Interferences: 1
2

�
(�1)

f(0)(|0i + |1i) + (�1)
f(1)(|0i � |1i)

�

1
2

�
((�1)

f(0) + (�1)
f(1))|0i + ((�1)

f(0) � (�1)
f(1))|1i

�Final state:

|0i

|1i

f constant

balancedf

General solution for Deutsh-Jozsa 30

Reversible implementation of f

Sf|xi (�1)
f(x)|xi

X

x2{0,1}n

(�1)
f(x)

↵

x

|xi
X

x2{0,1}n

↵

x

|xi

Quantum Fourier transform

H

H

H

QFTn �
|bi 1p

2
(|0i + (�1)

b|1i)H

QFT
n

|xi = 1
2n/2

X

y

(�1)
x·y|yi

x · y =

X

i

x

i

y

i

mod 2where

Quantum circuit

|0i Measure ?QFT QFTSf
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31Analysis

|0i Sf Measure

|00 . . . 0iInitialization:

1
2n/2

X

x2{0,1}n

(�1)
f(x)|xiQuery to f:

QFT QFT

Parallelization: 1
2n/2

X

x2{0,1}n

|xi

|yi, y 6=00...0

f constant

balancedf

|00 . . . 0i

1
2n

X

x,y2{0,1}n

(�1)
f(x)+x·y|yiInterferences:

⇣
1
2n

X

x2{0,1}n

(�1)
f(x)

⌘
|00 . . . 0i +

X

y 6=00...0

↵
y

|yiFinal state:

Problem
- Oracle input:  f : {0, 1}n → {0, 1}  a black-box function

 such that 

  for some fixed 

- Output:  a

Query complexity
- Randomized:  n    

 Query   f(0i-110n-i)=ai,   for i=1,2,...,n     

- Quantum:      1 

Quatum circuit

32Bernstein-Vazirani

f(x) = a · x

a 2 {0, 1}n

|ai|0i MeasureQFT QFTSf



|ai

33Analysis

|0i Sf Measure

|00 . . . 0iInitialization:

1
2n/2

X

x2{0,1}n

(�1)
a·x|xi = QFT |aiQuery to f:

QFT QFT

Parallelization: 1
2n/2

X

x2{0,1}n

|xi

QFT2|aiInterferences:

Final state: |ai

34On the difficulty of fatorizing

RSA Challenges
- http://www.rsasecurity.com/rsalabs

- RSA-640 (193 digits) : 
 3107418240490043721350750035888567930037346022842727545720161948823206440518081504556346829671723286782437916272838

033415471073108501919548529007337724822783525742386454014691736602477652346609

 =

 1634733645809253848443133883865090859841783670033092312181110852389333100104508151212118167511579

 x

 1900871281664822113126851573935413975471896789968515493666638539088027103802104498957191261465571

- RSA Algorithm (allows private communication)

 security based on the difficulty of factorizing



35From period finding to factorization

Theorem [Simon-Shor’94]

- Finding the period of any function on an abelian group can be done in 
quantum time  poly (log |G|)

Order finding
- Input: integers  n and a  such that  gcd(a,n)=1

- Output: the smallest integer  q ≠ 0  such that  aq = 1  mod n

- Reduction to period finding: the period of  x → ax  mod n  is  q

Factorization
- Input: integer n

- Output: a nontrivial divisor of  n

Reduction : Factorization  ≤R Order finding

- Check that  gcd(a,n)=1

- Compute the order  q  of   a  mod n

- Restart if q  is odd  or   aq/2 ≠ -1  mod n

- Otherwise  (aq/2 - 1) (aq/2 + 1) = 0  mod n

- Return    gcd(aq/2 ± 1, n)

36Simon’s problem

Problem
- Oracle input:                                        a black-box function 

 such that

- Output: the period s

Complexity
- Randomized:            queries

- Quantum: O(n) queries and time O(n3)

Idea
- Use a Fourier transformation:

- Realization of QFTn using Hadamard gates:

f : {0, 1}n ! {0, 1}n

9s 2 {0, 1}n : 8x 6= y, f(x) = f(y) () y = x � s

QFT
n

|xi = 1
2n/2

X

y

(�1)
x·y|yi

x · y =

X

i

x

i

y

i

mod 2where

H

H

H

|bi 1p
2
(|0i + (�1)

b|1i)H QFTn �

2�(n)

Uf

|xi
|wi |w � f(x)i

|xi

|0〉 |f(x)〉
Uf

|xi |xi



37Quantum solution

1
2(n+1)/2

X

y

(�1)
x·y(1 + (�1)

s·y)|yi|f(x)i

Uf

QFTn QFTn|0ni

|0ni Measure

Initialization: |0ni|0ni

Parallelization: 1
2n/2

X

x

|xi|0ni

1
2(n+1)/2

X

y

((�1)
x·y + (�1)

(x�s)·y)|yi|f(x)iInterferences:

Measure

1
2(n�1)/2

X

y:s·y=0

|yi|f(x)i

Query to  :f 1
2n/2

X

x

|xi|f(x)i

Filter: 1p
2
(|xi + |x � si)|f(x)i

|f(x)i

|yi : y 2 s?

Partial measure: project to a subspace compatible with the observation

 Probability = square norm of the projection

 Outcome = renormalization of the projection

38Finding the period

Construction of a linear system
- After              iterations:

- s is solution of the linear system in t: 

- If  s=0n  the  yi  are of rank  n  with proba  ≥ 1-1/2k

- If  s≠0n  the  yi   are of rank  n-1  with proba  ≥ 1-1/2k+1

- System solutions: 0n and s

Complexity
- Constructing the system: O(n) queries, time O(n)

- Solving the system: no query, time O(n3)

n + k y1, y2, . . . , yn+k � s�

�
⌅⌅⌅⇤

⌅⌅⌅⇥

y1 · t = 0
y2 · t = 0

...
yn+k · t = 0

�
⌅⌅⌅⇤

⌅⌅⌅⇥

y1
1t1 + y1

2t2 + . . . + y1
ntn = 0

y2
1t1 + y2

2t2 + . . . + y2
ntn = 0

...
yn+k
1 t1 + yn+k

2 t2 + . . . + yn+k
n tn = 0

�



Period Finding(G)
- Oracle input: function f on G such that

 f is strictly periodic for some unknown H≤G:

- Output: generator set for H

Examples
- Simon Problem:

- Factorization :

- Discrete logarithm: 

- Pell’s equations:

- Graph Isomorphism:

Quantum polynomial time algorithms (in log|G|)

- Abelian groups G: QFT-based algorithm [1995]

- Normal period groups H: QFT-based algorithm [2000]

- Solvable groups G of constant exponent and constant length [2003]

- ...

More difficult... 39

H

a1H

atH

G f

G = (Z2)
n, H = {0, s}

G = Z, H = rZ
G = Z2, H = {(rx, x) : x 2 Z}
G = R
G = Sn

f(x) = f(y) () y 2 xH

An Introduction to Quantum Computing
- Authors: Phillip Kaye, Raymond Laflamme, Michele Mosca

- Editor: Oxford University Press

Quantum Computation and Quantum Information
- Authors: Michael A. Nielsen, Isaac L. Chuang

- Editor: Cambridge University Press

Classical and Quantum Computation
- Authors: A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi

- Editor: American Mathematical Society

- Collection: Graduate Studies in Mathematics

Lecture Notes for Quantum Computation
- Author: John Preskill
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Quantum proofs for classical theorems
- Author: Andrew Drucker, Ronald de Wolf
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To continue... 40


