

The superiority of Quantum Computing

Cryptography

 Secrete Key Distribution Protocol [Bennett, Brassard'84] Implementation: ~100 km

Information Theory

- EPR Paradox [Einstein, Podolsky, Rosen'35] Realization: 1982 [Orsay]
- Teleportation [Bennett, Brassard, Crépeau, Jozsa, Peres, Wootters'93] Realization: 1997 [Innsbruck]

Algorithms

- Polynomial algorithm for Period Finding [Simon, Shor'94]
 ⇒ Factorization, Discrete Logarithm
- Quadratic speedup for Database Search [Grover'96]
- Quantum computer? 1995: 2-qubit [ENS], 2000: 5-qubit [IBM], 2006: 12-qubit [Waterloo]

Quantum proofs for classical theorems

- http://arxiv.org/abs/0910.3376 [Drucker, de Wolf'09]

Computing?

Formal concepts

- Model of computation
 - What is a machine, a program?
 - Mathematical model of a computer?
- Hardness of a problem
 Calculable / Non-calculable
 Easy / Hard
- [Turing 1936]: Turing machine, calculability, universality

Church-Turing theses

- Weak version
 - Any *reasonable* model of computation can be simulated on a Turing machine reasonable: physically realizable
 - Turing machine \approx today computer
- Strong version

Any reasonable model of computation can be *efficiently* simulated on a *probabilistic* Turing machine

efficiently: using same amount of ressources (time and space)

4

Computers?

Classical computing

- Turing machine, calculability, universality [Turing 1936]
- Proposition: EDVAC (Electronic Discrete VAriable Computer) [von Neumann]
- First computer: Mark I [Robinson-Tootill-Williams 1949]

Quantum computing

- Idea: simulation of quantum systems [Feynman 1982]
- Turing machine, calculability, universality [Deutsch 1985,1989][Bernstein-Vazirani 1993], circuits [Yao 1993], cellular automata, finite automata...
- Technology: 2-qubit [1995], 5-qubit [2000], 12-qubit [2006]

Validity of Church-Turing theses

- Weak version is still valid

Calculability: quantum and classical computation have same power

Strong version could be violated

Complexity: evidences that quantum computers can be exponentially faster than classical computers

In this talk

I qubit

- Definition
- Quantum key distribution

2 qubit

- Definition
- EPR Paradox and applications

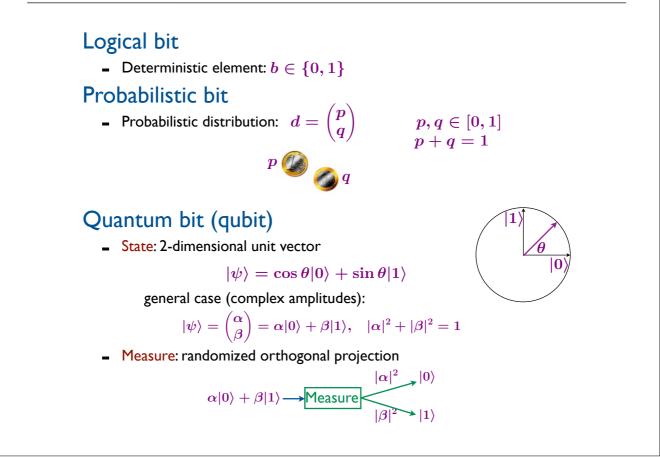
Algorithms

- Toward factorization
 - Quantum Fourier transform Applications
- Generalization

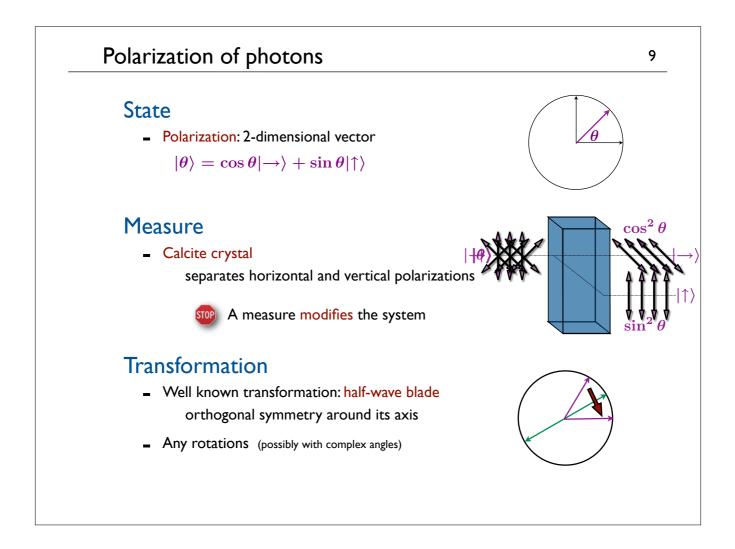
Conclusion

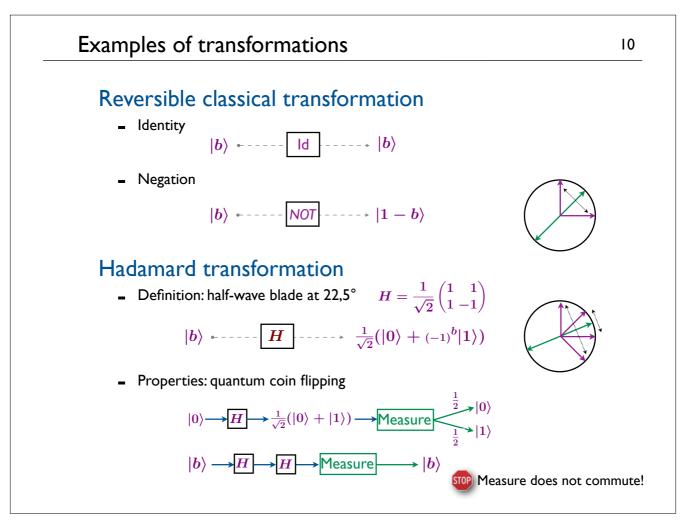
[Bernstein-Vazirani

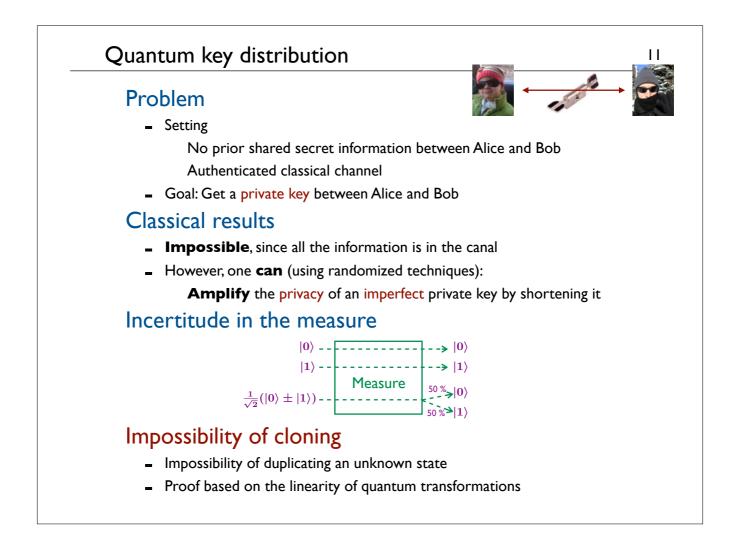
Qubit state

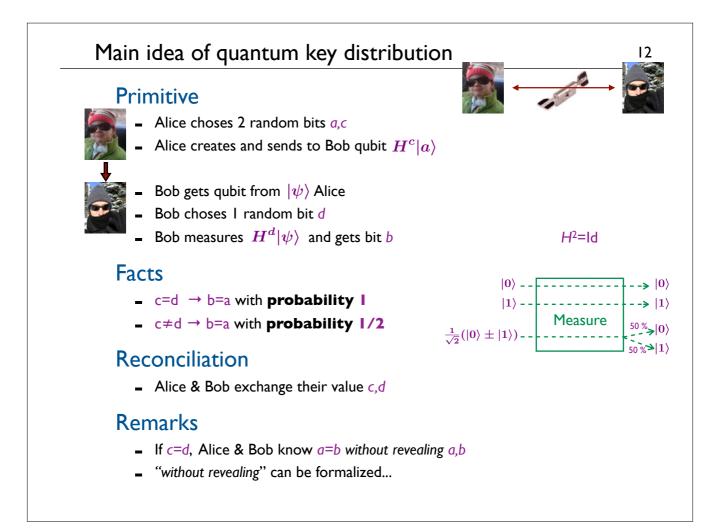


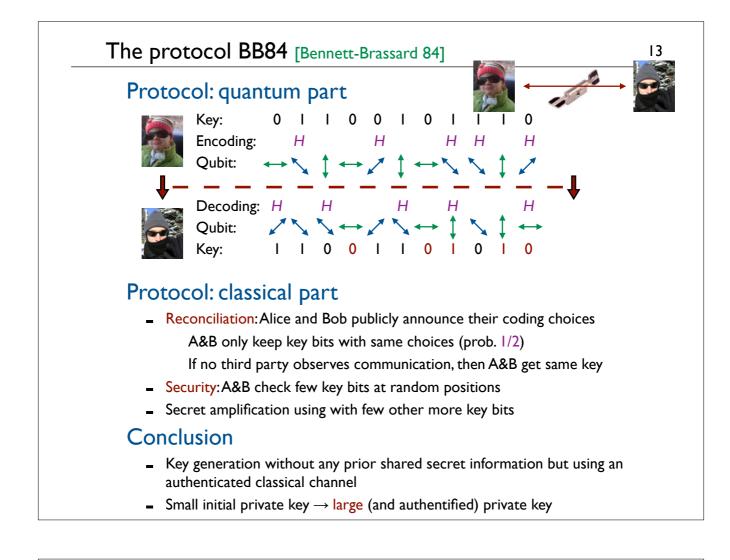
Qubit evolution $\begin{aligned}
& \text{Logical bit} \\
& \text{e. Function: } f: \{0,1\} \rightarrow \{0,1\}, \quad b \mapsto f(b) \\
& \text{Probabilistic bit} \\
& \text{e. Stochastic matrix:} \\
& P = \begin{pmatrix} p & p' \\ q & q' \end{pmatrix}, \quad d \mapsto d' = Pd \\
& \text{Quantum bit} \\
& \text{e. Evolution: unitary transformation } G \in \mathcal{U}(2) \text{ ($$$$$$$$$ reversible$)} \\
& \text{Definition: } G \in \mathbb{C}^{2 \times 2} \text{ s.t. } G^*G = \text{Id} \\
& |\psi\rangle \leftarrow \dots \quad G \quad \dots \quad |\psi'\rangle = G|\psi\rangle \\
& |\psi'\rangle = G|\psi\rangle \leftarrow \dots \quad G^* \quad \dots \quad |\psi\rangle
\end{aligned}$











Preliminaries: Tensor product

14

Vector spaces

- V,W: vector spaces
- $V \otimes W$ is the free vector space Span ($v \otimes w : v \in V, w \in W$)
 - with equivalence relations

```
(v_1+v_2)\otimes w = v_1\otimes w + v_2\otimes w
```

```
v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2
```

```
(c \cdot v) \otimes w = v \otimes (c \cdot w) = c \cdot (v \otimes w)
```

Linear maps

- = $S: V \rightarrow X$, $T: W \rightarrow Y$: linear maps
- $S \otimes T$: $V \otimes W \rightarrow X \otimes Y$ is the linear map satisfying

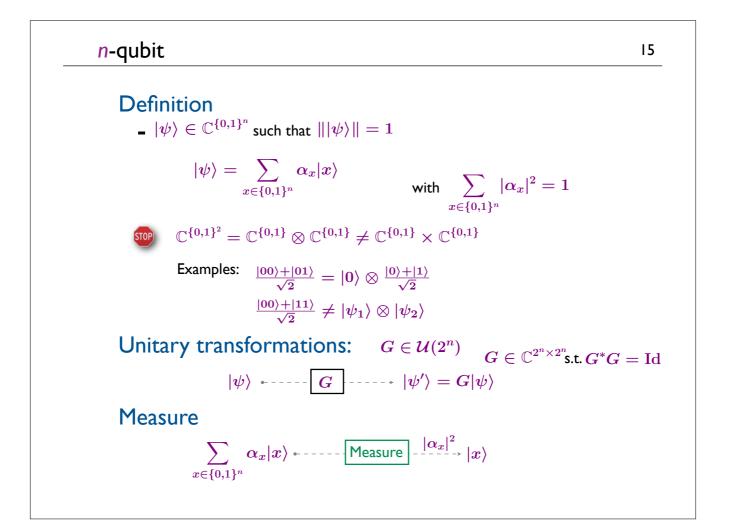
 $S \otimes T(v \otimes w) = S(v) \otimes T(w)$

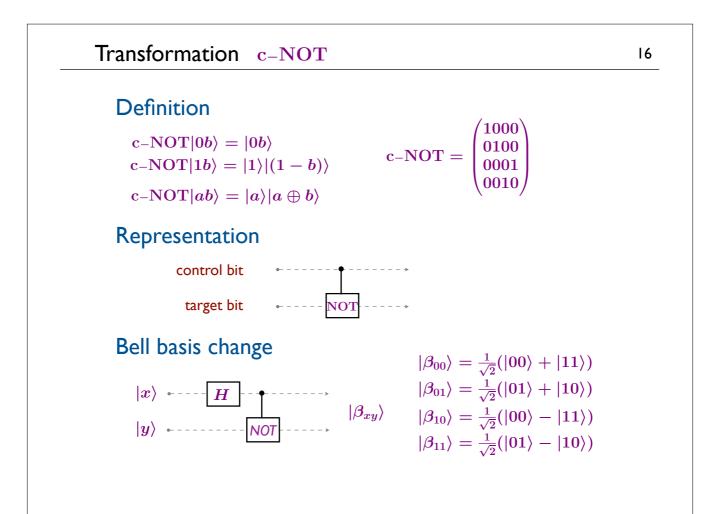
(and extended by linearity)

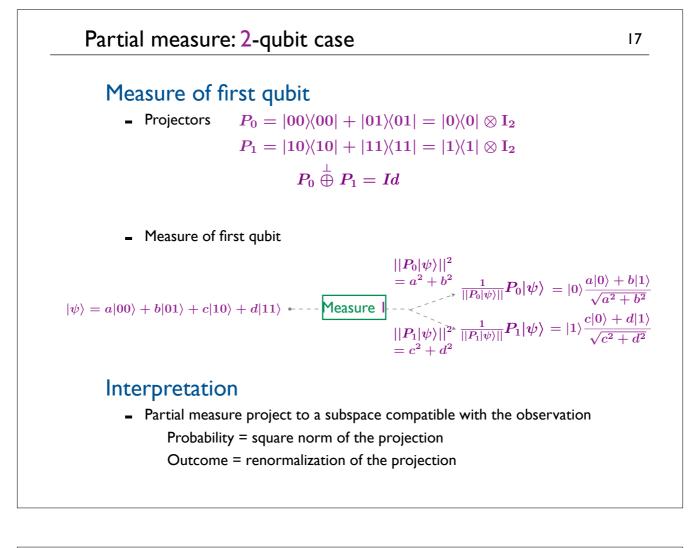
Applications

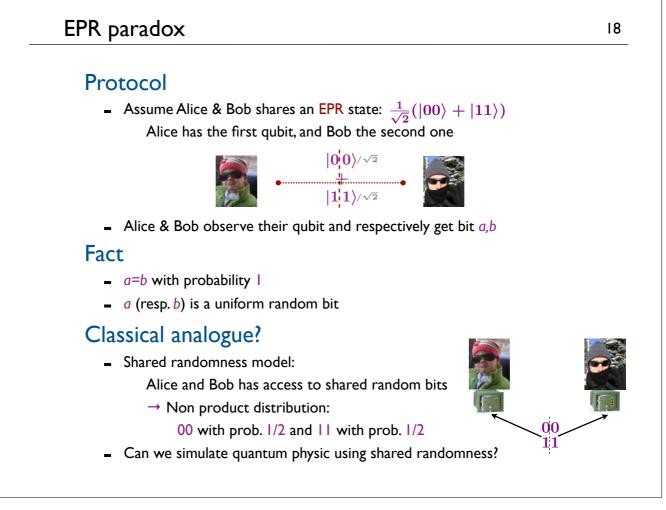
- Joint probability distributions on spaces V, W

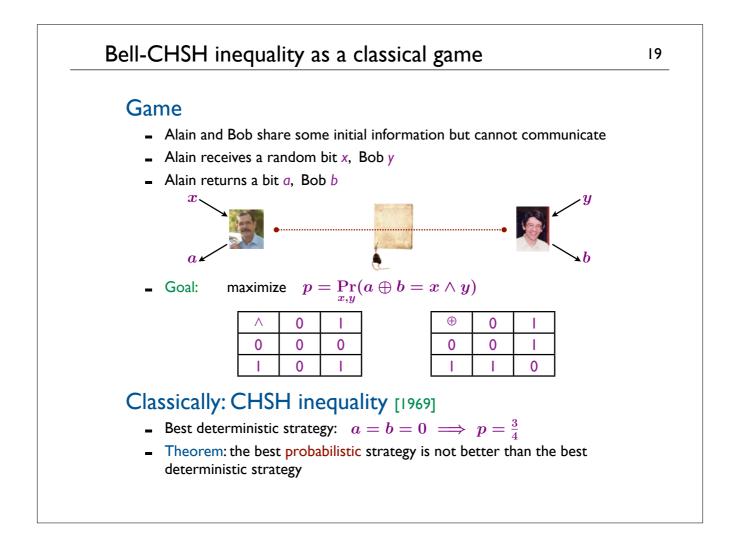
 $\mathcal{D}(\mathsf{V}\mathsf{x}\mathsf{W}) = \mathcal{D}(\mathsf{V}) \otimes \mathcal{D}(\mathsf{W}) \neq \mathcal{D}(\mathsf{V})\mathsf{x}\mathcal{D}(\mathsf{W}) \quad \text{(: product distributions)}$

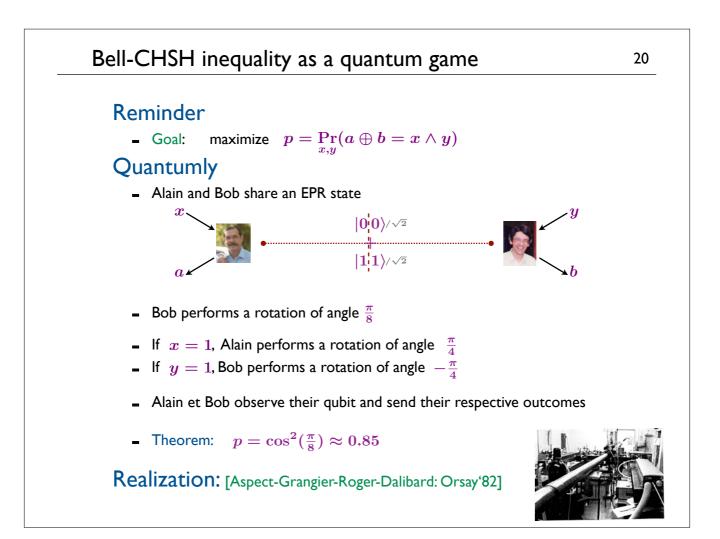






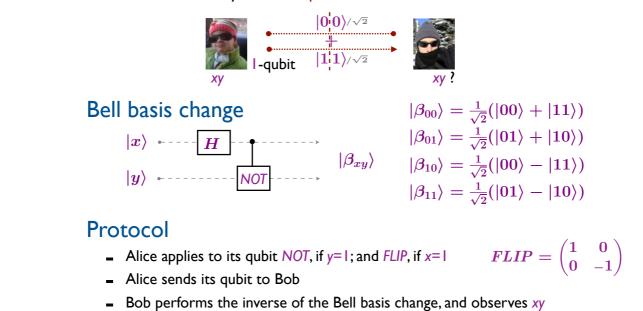


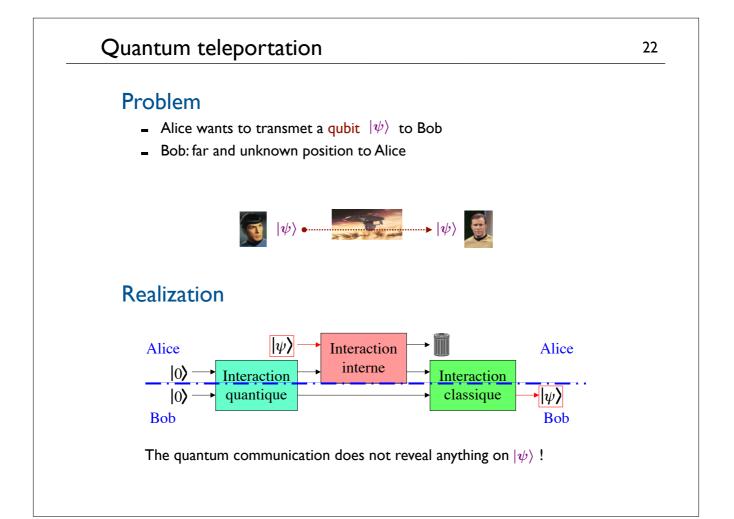




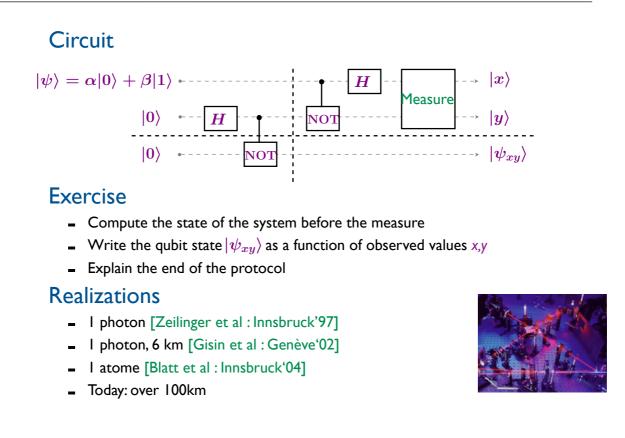
Problem

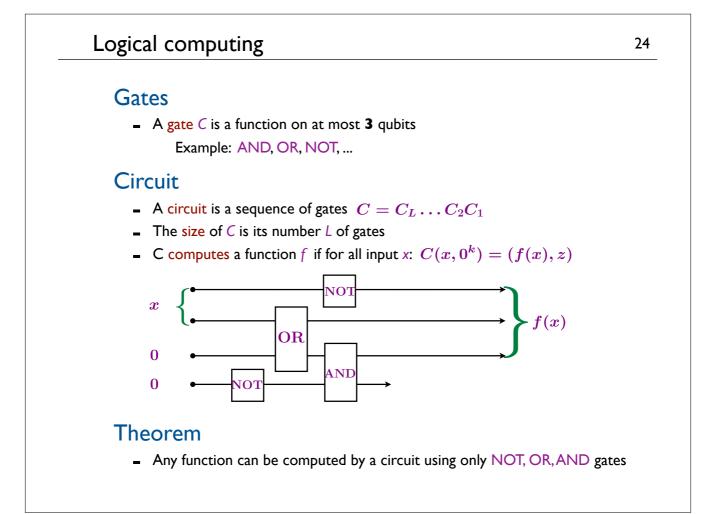
- Alice & Bob share an EPR state: $|\beta_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
- Alice wants to send two bits xy to Bob
- But Alice can only send one qubit to Bob

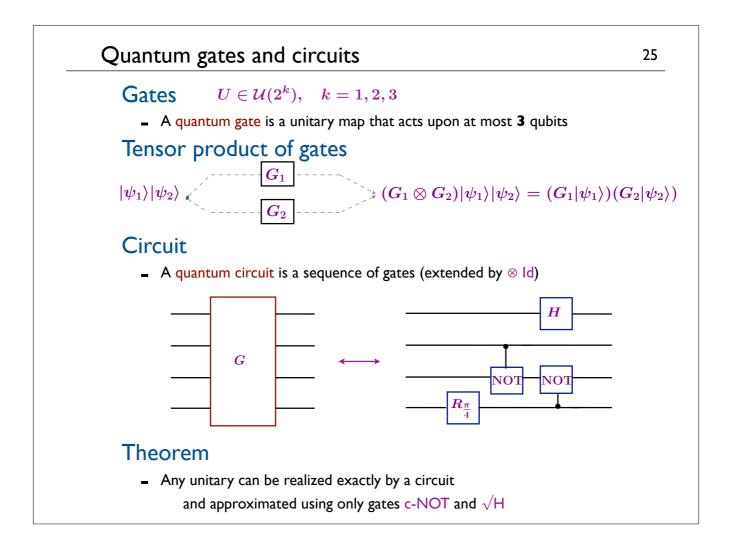


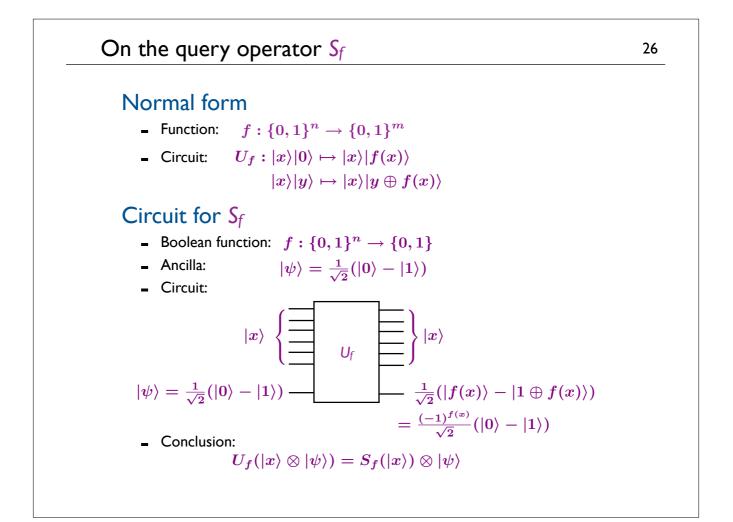


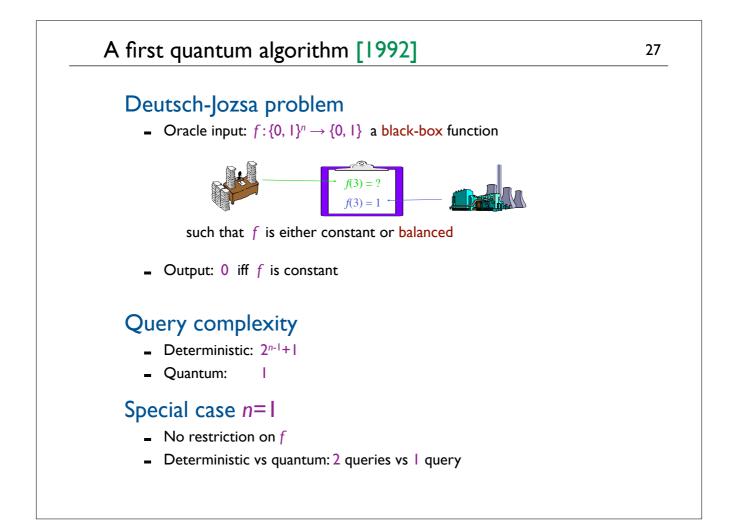
Realization of teleportation

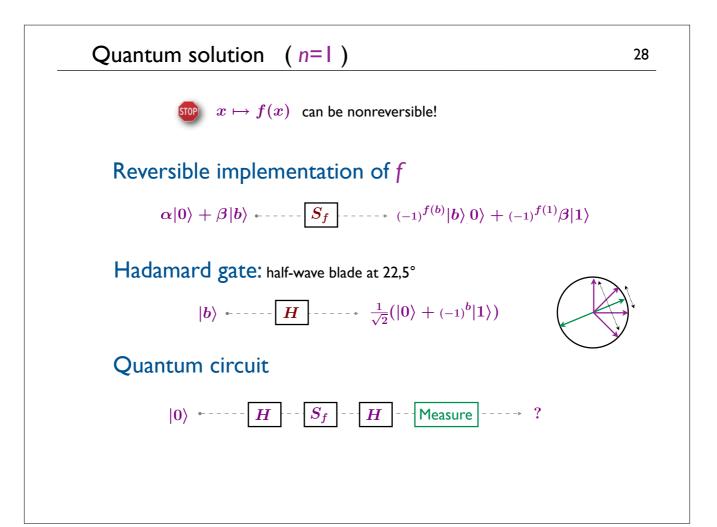


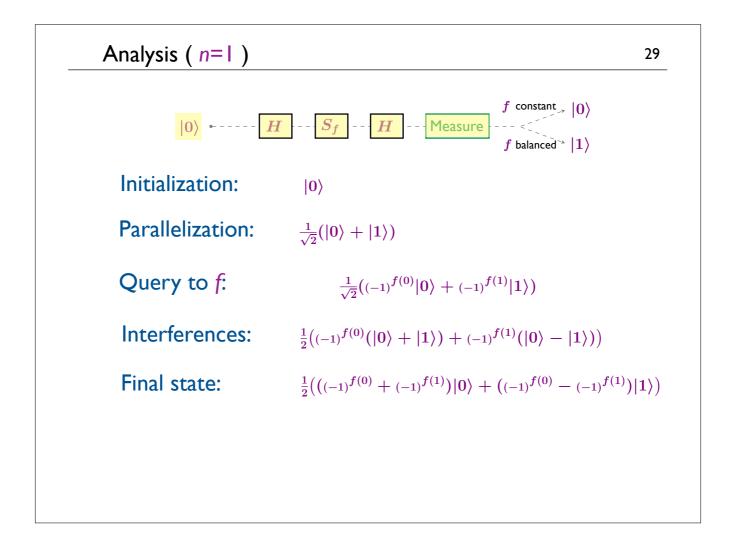


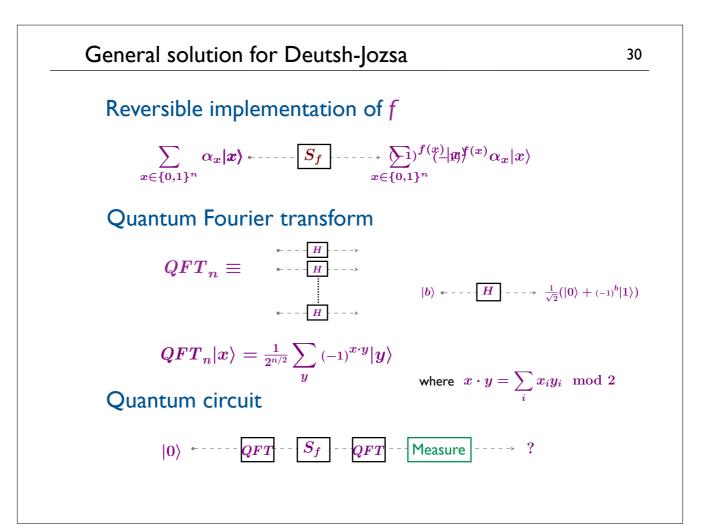


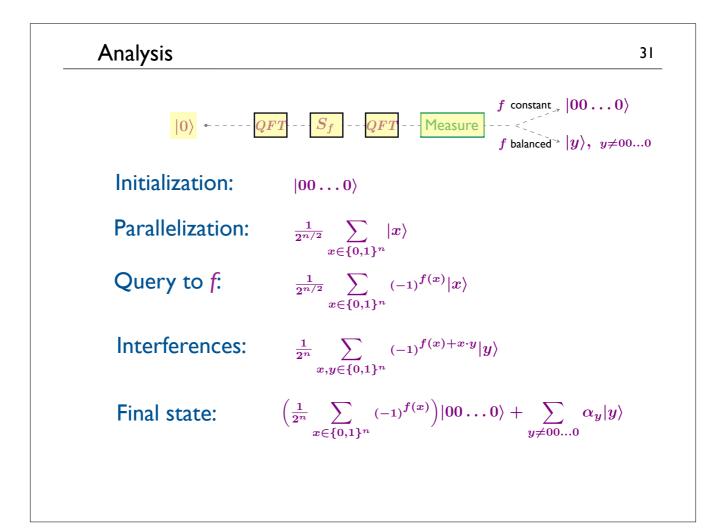




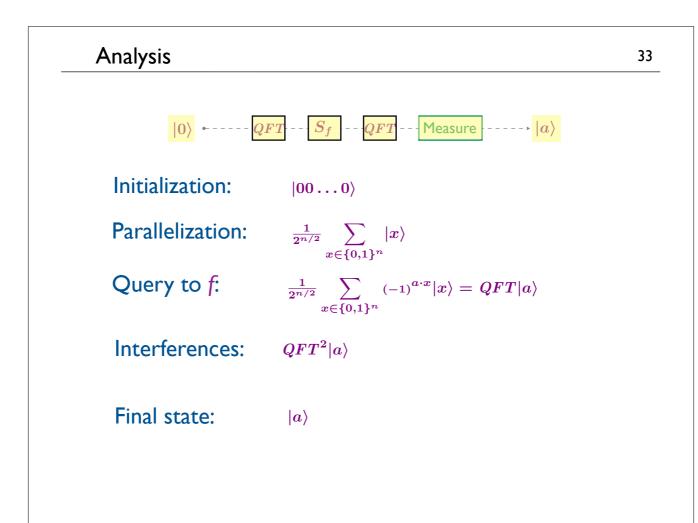








Bernstein-Vazirani	32
Problem	
- Oracle input: $f:\{0, 1\}^n \rightarrow \{0, 1\}$ a black-box function such that $f(x) = a \cdot x$	
for some fixed $a \in \{0,1\}^n$ = Output: a	
Query complexity - Randomized: n Query $f(0^{i-1} 0^{n-i})=a_i$, for $i=1,2,,n$ - Quantum: 1	
Quatum circuit	
$ 0 angle \hspace{0.1 cm} \bullet \hspace{0.1 cm} \cdots \hspace{0.1 cm} QFT \hspace{0.1 cm} \cdots \hspace{0.1 cm} QFT \hspace{0.1 cm} \cdots \hspace{0.1 cm} QFT \hspace{0.1 cm} \cdots \hspace{0.1 cm} \bullet \hspace{0.1 cm} QFT \hspace{0.1 cm} \cdots \hspace{0.1 cm} \bullet \hspace{0.1 cm} a angle$	



RSA Challenge	2.5			
 <u>http://www.rsa</u> 		<u>/rsalabs</u>		
Challenge Number	Prize (\$US)	Status	Submission Date	Submitter(s)
<u>RSA-576</u>	\$10,000	Factored	December 3, 2003	J. Franke et al
<u>RSA-640</u>	\$20,000	Factored	November 2, 2005	F. Bahr et al.
RSA-704	\$30,000	Not Factored		
RSA-768	\$50,000	Not Factored		
<u>RSA-896</u>	\$75,000	Not Factored		
RSA-1024	\$100,000	Not Factored		
RSA-1536	\$150,000	Not Factored		
RSA-2048	\$200,000	Not Factored		
0334154710731085019 =	35075003588856793003 19548529007337724822	783525742386454014	2016194882320644051808150455 1691736602477652346609 3111085238933310010450815121	
x		100/7000/05/5/5/00/	5663853908802710380210449895	

From period finding to factorization

Theorem [Simon-Shor'94]

 Finding the period of *any* function on an abelian group can be done in quantum time poly (log |G|)

Order finding

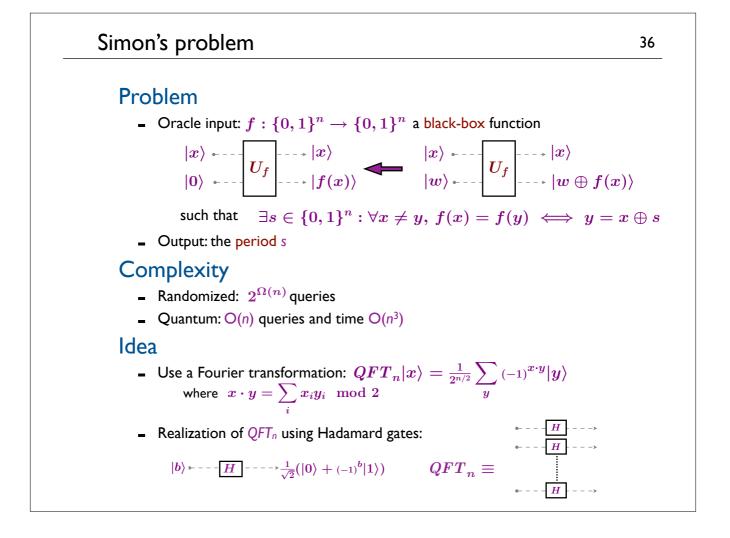
- Input: integers n and a such that gcd(a,n)=1
- Output: the smallest integer $q \neq 0$ such that $a^q \equiv 1 \mod n$
- Reduction to period finding: the period of $x \rightarrow a^x \mod n$ is q

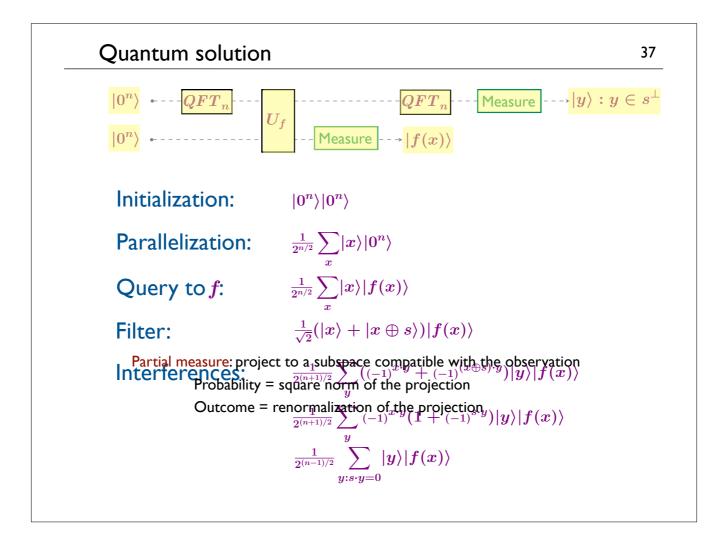
Factorization

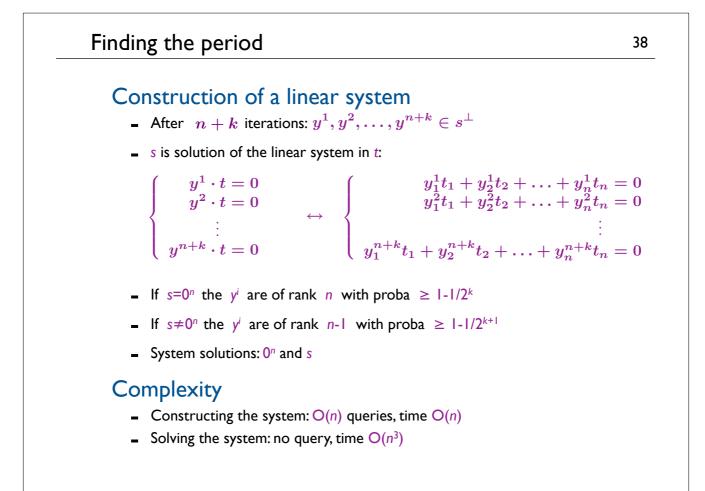
- Input: integer n
- Output: a nontrivial divisor of n

Reduction : Factorization \leq_{R} Order finding

- Check that gcd(a,n)=1
- Compute the order q of $a \mod n$
- Restart if q is odd or $a^{q/2} \neq -1 \mod n$
- Otherwise $(a^{q/2} 1)(a^{q/2} + 1) = 0 \mod n$
- Return $gcd(a^{q/2} \pm 1, n)$







More difficult...

Period Finding(G)

Oracle input: function f on G such that

f is strictly periodic for some unknown $H \le G$: $f(x) = f(y) \iff y \in xH$

- Output: generator set for H

Examples

- Simon Problem: $G = (\mathbb{Z}_2)^n, H = \{0, s\}$
- Factorization : $G=\mathbb{Z},\, H=r\mathbb{Z}$
- Discrete logarithm: $G=\mathbb{Z}^2,\, H=\{(rx,x):x\in\mathbb{Z}\}$
- Pell's equations: $G = \mathbb{R}$
- Graph Isomorphism: $G = \mathcal{S}_n$

Quantum polynomial time algorithms (in log[G])

- Abelian groups G: QFT-based algorithm [1995]
- Normal period groups H: QFT-based algorithm [2000]
- Solvable groups G of constant exponent and constant length [2003]
- ...

To continue... 40 An Introduction to Quantum Computing - Authors: Phillip Kaye, Raymond Laflamme, Michele Mosca Editor: Oxford University Press Quantum Computation and Quantum Information Authors: Michael A. Nielsen, Isaac L. Chuang - Editor: Cambridge University Press Classical and Quantum Computation - Authors: A.Yu. Kitaev, A. H. Shen, M. N.Vyalyi Editor: American Mathematical Society Collection: Graduate Studies in Mathematics Lecture Notes for Quantum Computation - Author: John Preskill Website: <u>http://www.theory.caltech.edu/~preskill/ph229/</u> Quantum proofs for classical theorems Author: Andrew Drucker, Ronald de Wolf Website: <u>http://arxiv.org/abs/0910.3376</u>

