Supériorité de l'ordinateur Quantique

Frédéric Magniez

INF 56I - Cours 8 \& 9

End of Moore's Law?

Quantum interferences around 2020...

- Current approach: avoid them
- Quantum computing: get benefit of them!

Feynman'81:"Can quantum systems be probabistically simulated by a clasical computer? [...] the answer is certainly, No!"
Deutsch'85: Universal quantum Turing machine

Cryptography

- Secrete Key Distribution Protocol [Bennett, Brassard'84] Implementation: ~100 km

Information Theory

- EPR Paradox [Einstein, Podolsky, Rosen'35]

Realization: I982 [Orsay]

- Teleportation [Bennett, Brassard, Crépeau, Jozsa, Peres, Wootters'93]

Realization: 1997 [Innsbruck]

Algorithms

- Polynomial algorithm for Period Finding [Simon, Shor'94]
\Rightarrow Factorization, Discrete Logarithm
- Quadratic speedup for Database Search [Grover'96]
- Quantum computer?

1995: 2-qubit [ENS], 2000: 5-qubit [IBM], 2006: I2-qubit [Waterloo]

Quantum proofs for classical theorems

- http://arxiv.org/abs/0910.3376 [Drucker, de Wolf'09]

Computing?

Formal concepts

- Model of computation

What is a machine, a program?
Mathematical model of a computer?

- Hardness of a problem

Calculable / Non-calculable
Easy / Hard

- [Turing 1936]:Turing machine, calculability, universality

Church-Turing theses

- Weak version

Any reasonable model of computation can be simulated on a Turing machine reasonable: physically realizable
Turing machine \approx today computer

- Strong version

Any reasonable model of computation can be efficiently simulated on a probabilistic Turing machine
efficiently: using same amount of ressources (time and space)

Classical computing

- Turing machine, calculability, universality [Turing 1936]
- Proposition: EDVAC (Electronic Discrete VAriable Computer) [von Neumann
- First computer: Mark I [Robinson-Tootill-Williams 1949]

Quantum computing

- Idea: simulation of quantum systems [Feynman 1982]
- Turing machine, calculability, universality [Deutsch I985, I989][Bernstein-Vazirani 1993], circuits [Yao 1993], cellular automata, finite automata..
- Technology: 2-qubit [1995], 5-qubit [2000], I2-qubit [2006]

Validity of Church-Turing theses

- Weak version is still valid

Calculability: quantum and classical computation have same power

- Strong version could be violated

Complexity: evidences that quantum computers can be exponentially faster than classical computers

In this talk

qubit

- Definition
- Quantum key distribution

2 qubit

- Definition
- EPR Paradox and applications

Algorithms

- Toward factorization

Quantum Fourier transform
Applications

- Generalization

Conclusion

Logical bit

- Deterministic element: $b \in\{0,1\}$

Probabilistic bit

- Probabilistic distribution: $d=\binom{p}{q}$

$$
\begin{aligned}
& p, q \in[0,1] \\
& p+q=1
\end{aligned}
$$

Quantum bit (qubit)

- State: 2-dimensional unit vector

$$
|\psi\rangle=\cos \theta|0\rangle+\sin \theta|1\rangle
$$

general case (complex amplitudes):

$$
|\psi\rangle=\binom{\alpha}{\beta}=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

- Measure: randomized orthogonal projection

Qubit evolution

Logical bit

- Function: $f:\{0,1\} \rightarrow\{0,1\}, \quad b \mapsto f(b)$

Probabilistic bit

- Stochastic matrix:

$$
P=\left(\begin{array}{cc}
p & p^{\prime} \\
q & q^{\prime}
\end{array}\right), \quad d \mapsto d^{\prime}=P d
$$

Quantum bit

- Evolution: unitary transformation $G \in \mathcal{U}(2)$ (\Rightarrow reversible)

Definition: $G \in \mathbb{C}^{2 \times 2}$ s.t. $G^{*} G=\mathrm{Id}$

$$
\begin{array}{r}
|\psi\rangle \cdots \psi^{G} \cdots \cdots\left|\psi^{\prime}\right\rangle=G|\psi\rangle \\
\left|\psi^{\prime}\right\rangle=G|\psi\rangle
\end{array}
$$

State

- Polarization: 2-dimensional vector

$$
|\theta\rangle=\cos \theta|\rightarrow\rangle+\sin \theta|\uparrow\rangle
$$

Measure

- Calcite crystal
separates horizontal and vertical polarizations
sT0P A measure modifies the system

Transformation

- Well known transformation: half-wave blade orthogonal symmetry around its axis
- Any rotations (possibly with complex angles)

Examples of transformations

Reversible classical transformation

- Identity
$|b\rangle$
Id
$|b\rangle$
- Negation
$|b\rangle$
NOT
$|1-b\rangle$

Hadamard transformation

- Definition: half-wave blade at $22,5^{\circ} \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$
$|b\rangle$
H $\rightarrow \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)$

- Properties: quantum coin flipping

$$
|0\rangle \longrightarrow H \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \longrightarrow \text { Measure }<_{\frac{1}{2}}^{\frac{1}{2}}|1\rangle
$$

$|b\rangle \longrightarrow H \longrightarrow H$ Measure $\longrightarrow|b\rangle$

Quantum key distribution

Problem

- Setting

No prior shared secret information between Alice and Bob
Authenticated classical channel

- Goal: Get a private key between Alice and Bob

Classical results

- Impossible, since all the information is in the canal
- However, one can (using randomized techniques):

Amplify the privacy of an imperfect private key by shortening it
Incertitude in the measure

Impossibility of cloning

- Impossibility of duplicating an unknown state
- Proof based on the linearity of quantum transformations

Primitive

- Alice choses 2 random bits a, c
- Alice creates and sends to Bob qubit $H^{c}|a\rangle$
- Bob gets qubit from $|\psi\rangle$ Alice
- Bob choses I random bit d
- Bob measures $H^{d}|\psi\rangle$ and gets bit b
$H^{2}=\mathrm{Id}$

Facts

- $c=d \rightarrow b=a$ with probability
- $c \neq d \rightarrow b=a$ with probability I/2

Reconciliation

- Alice \& Bob exchange their value c, d

Remarks

- If $c=d$, Alice \& Bob know $a=b$ without revealing a, b
- "without revealing" can be formalized...

The protocol BB84 [Bennett-Brassard 84]

Protocol: quantum part

Encoding: H H H H H
Qubit:

Decoding:
Qubit: Key:

Protocol: classical part

- Reconciliation:Alice and Bob publicly announce their coding choices

A\&B only keep key bits with same choices (prob. I/2)
If no third party observes communication, then A\&B get same key

- Security:A\&B check few key bits at random positions
- Secret amplification using with few other more key bits

Conclusion

- Key generation without any prior shared secret information but using an authenticated classical channel
- Small initial private key \rightarrow large (and authentified) private key

Preliminaries:Tensor product

Vector spaces

- V, W : vector spaces
- $V \otimes W$ is the free vector space $\operatorname{Span}(v \otimes w: v \in V, w \in W)$
with equivalence relations

$$
\begin{aligned}
& \left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w \\
& v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2} \\
& (c \cdot v) \otimes w=v \otimes(c \cdot w)=c \cdot(v \otimes w)
\end{aligned}
$$

Linear maps

- $S: V \rightarrow X, T: W \rightarrow Y$: linear maps
- $S \otimes T: V \otimes W \rightarrow X \otimes Y$ is the linear map satisfying
$S \otimes T(v \otimes w)=S(v) \otimes T(w)$
(and extended by linearity)

Applications

- Joint probability distributions on spaces V, W
$\mathcal{D}(V \times W)=\mathcal{D}(V) \otimes \mathcal{D}(W) \neq \mathcal{D}(V) \times \mathcal{D}(W)$ (: product distributions)

Definition

- $|\psi\rangle \in \mathbb{C}^{\{0,1\}^{n}}$ such that $\||\psi\rangle \|=1$

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \quad \text { with } \sum_{x \in\{0,1\}^{n}}\left|\alpha_{x}\right|^{2}=1
$$

SOP) $\mathbb{C}^{\{0,1\}^{2}}=\mathbb{C}^{\{0,1\}} \otimes \mathbb{C}^{\{0,1\}} \neq \mathbb{C}^{\{0,1\}} \times \mathbb{C}^{\{0,1\}}$
Examples: $\frac{|00\rangle+|01\rangle}{\sqrt{2}}=|0\rangle \otimes \frac{|0\rangle+|1\rangle}{\sqrt{2}}$

$$
\frac{|00\rangle+|11\rangle}{\sqrt{2}} \neq\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle
$$

Unitary transformations: $\quad G \in \mathcal{U}\left(2^{n}\right)$

$$
G \in \mathbb{C}^{2^{n} \times 2^{n}} \text { s.t. } G^{*} G=\mathrm{Id}
$$

$|\psi\rangle \ldots-\psi^{G} \cdots \cdots\left|\psi^{\prime}\right\rangle=G|\psi\rangle$

Measure

$$
\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \cdots \text { Measure }\left|\alpha_{x}\right|^{2},|x\rangle
$$

Transformation c-NOT

Definition

$$
\begin{aligned}
\mathrm{c}-\mathrm{NOT}|0 b\rangle & =|0 b\rangle \\
\mathrm{c}-\mathrm{NOT}|1 b\rangle & =|1\rangle|(1-b)\rangle \\
\mathrm{c}-\mathrm{NOT}|a b\rangle & =|a\rangle|a \oplus b\rangle
\end{aligned} \quad \mathrm{c}-\mathrm{NOT}=\left(\begin{array}{l}
1000 \\
0100 \\
0001 \\
0010
\end{array}\right)
$$

Representation

Bell basis change

Measure of first qubit

- Projectors $\quad P_{0}=|00\rangle\langle 00|+|01\rangle\langle 01|=|0\rangle\langle 0| \otimes I_{2}$

$$
P_{1}=|10\rangle\langle 10|+|11\rangle\langle 11|=|1\rangle\langle 1| \otimes \mathbf{I}_{2}
$$

$$
P_{0} \oplus P_{1}=I d
$$

- Measure of first qubit

$$
\begin{aligned}
& \| P_{0}|\psi\rangle \|^{2} \\
& =a^{2}+b^{2} \\
\text { Measure 1. } & \cdots-\cdots\rangle=-\cdots P_{0}|\psi\rangle \| \\
& P_{0}|\psi\rangle=|0\rangle \frac{a|0\rangle+b|1\rangle}{\sqrt{a^{2}+b^{2}}} \\
& \| P_{1}|\psi\rangle \|^{22^{2}} \frac{1}{\| P_{1}|\psi\rangle \|} P_{1}|\psi\rangle=|1\rangle \frac{c|0\rangle+d|1\rangle}{\sqrt{c^{2}+d^{2}}} \\
& =c^{2}+d^{2}
\end{aligned}
$$

Interpretation

- Partial measure project to a subspace compatible with the observation

Probability = square norm of the projection
Outcome $=$ renormalization of the projection

EPR paradox

Protocol

- Assume Alice \& Bob shares an EPR state: $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Alice has the first qubit, and Bob the second one

- Alice \& Bob observe their qubit and respectively get bit a, b

Fact

- $a=b$ with probability I
- $a($ resp. $b)$ is a uniform random bit

Classical analogue?

- Shared randomness model:

Alice and Bob has access to shared random bits \rightarrow Non product distribution:

00 with prob. I/2 and II with prob. I/2

- Can we simulate quantum physic using shared randomness?

Game

- Alain and Bob share some initial information but cannot communicate
- Alain receives a random bit x, Bob y
- Alain returns a bit a, Bob b

- Goal: maximize $p=\underset{x, y}{\operatorname{Pr}}(a \oplus b=x \wedge y)$

\wedge	0	1
0	0	0
I	0	1

\oplus	0	I
0	0	I
I	I	0

Classically: CHSH inequality [1969]

- Best deterministic strategy: $a=b=0 \Longrightarrow p=\frac{3}{4}$
- Theorem: the best probabilistic strategy is not better than the best deterministic strategy

Reminder

- Goal: maximize $p=\underset{x, y}{\operatorname{Pr}}(a \oplus b=x \wedge y)$

Quantumly

- Alain and Bob share an EPR state

- Bob performs a rotation of angle $\frac{\pi}{8}$
- If $x=1$, Alain performs a rotation of angle $\frac{\pi}{4}$
- If $y=1$, Bob performs a rotation of angle $-\frac{\pi}{4}$
- Alain et Bob observe their qubit and send their respective outcomes
- Theorem: $\quad p=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85$

Problem

- Alice \& Bob share an EPR state: $\quad\left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- Alice wants to send two bits $x y$ to Bob
- But Alice can only send one qubit to Bob

Bell basis change

$$
\begin{aligned}
\left|\boldsymbol{\beta}_{00}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
\left|\boldsymbol{\beta}_{01}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
\left|\boldsymbol{\beta}_{10}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
\left|\boldsymbol{\beta}_{11}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

Protocol

- Alice applies to its qubit NOT, if $y=1$; and FLIP, if $x=1$
$F L I P=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- Alice sends its qubit to Bob
- Bob performs the inverse of the Bell basis change, and observes $x y$

Quantum teleportation

Problem

- Alice wants to transmet a qubit $|\psi\rangle$ to Bob
- Bob: far and unknown position to Alice

Realization

The quantum communication does not reveal anything on $|\psi\rangle$!

Circuit

Exercise

- Compute the state of the system before the measure
- Write the qubit state $\left|\psi_{x y}\right\rangle$ as a function of observed values x, y
- Explain the end of the protocol

Realizations

- I photon [Zeilinger et al : Innsbruck'97]
- I photon, 6 km [Gisin et al : Genève'02]
- I atome [Blatt et al : Innsbruck'04]
- Today: over 100 km

Logical computing

Gates

- A gate C is a function on at most $\mathbf{3}$ qubits

Example: AND, OR, NOT, ...

Circuit

- A circuit is a sequence of gates $C=C_{L} \ldots C_{2} C_{1}$
- The size of C is its number L of gates
- C computes a function f if for all input $x: C\left(x, 0^{k}\right)=(f(x), z)$

Theorem

- Any function can be computed by a circuit using only NOT, OR,AND gates

Gates $\quad U \in \mathcal{U}\left(2^{k}\right), \quad k=1,2,3$

- A quantum gate is a unitary map that acts upon at most $\mathbf{3}$ qubits

Tensor product of gates

Circuit

- A quantum circuit is a sequence of gates (extended by $\otimes I d$)

Theorem

- Any unitary can be realized exactly by a circuit
and approximated using only gates c-NOT and $\sqrt{ } \mathrm{H}$

On the query operator S_{f}

Normal form

- Function: $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- Circuit: $\quad U_{f}:|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle$

$$
|x\rangle|y\rangle \mapsto|x\rangle|y \oplus f(x)\rangle
$$

Circuit for S_{f}

- Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Ancilla:
$|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$
- Circuit:
$|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$
- Conclusion:

$$
\begin{aligned}
&|x\rangle\left\{\begin{array}{l}
\text { I- } \\
\text { En } \\
U_{f},
\end{array}\right\}|x\rangle \\
&-|1\rangle)- \\
&=\frac{1}{\sqrt{2}}(|f(x)\rangle-|1 \oplus f(x)\rangle) \\
&=\frac{(-1)^{f(x)}}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

$$
U_{f}(|x\rangle \otimes|\psi\rangle)=S_{f}(|x\rangle) \otimes|\psi\rangle
$$

Deutsch-Jozsa problem

- Oracle input: $f:\{0, I\}^{n} \rightarrow\{0, I\}$ a black-box function

such that f is either constant or balanced
- Output: 0 iff f is constant

Query complexity

- Deterministic: $2^{n-1}+1$
- Quantum: |

Special case $n=1$

- No restriction on f
- Deterministic vs quantum: 2 queries vs I query

Quantum solution ($n=1$)

STop $\quad x \mapsto f(x)$ can be nonreversible!
Reversible implementation of f

$$
\left.\alpha|0\rangle+\beta|b\rangle \ldots S_{f} \cdots \cdots(-\cdots)^{f(b)}|b\rangle 0\right\rangle+(-1)^{f(1)} \beta|1\rangle
$$

Hadamard gate: half-wave blade at 22,5

$$
|b\rangle \ldots H \quad \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)
$$

Quantum circuit

$$
|0\rangle \cdots H \quad S_{f} \quad H \quad \text { Measure } \cdots ?
$$

$|0\rangle$

f constant ${ }_{-r}|0\rangle$
f balanced $|1\rangle$

Initialization: $|0\rangle$

Parallelization: $\quad \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
Query to f:

$$
\frac{1}{\sqrt{2}}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)
$$

Interferences:
$\frac{1}{2}\left((-1)^{f(0)}(|0\rangle+|1\rangle)+(-1)^{f(1)}(|0\rangle-|1\rangle)\right)$
Final state:
$\frac{1}{2}\left(\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle+\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle\right)$

General solution for Deutsh-Jozsa

Reversible implementation of f

$$
\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \cdots \cdots S_{f} \cdots \sum_{x \in\{0,1\}^{n}}^{f^{f}(x) \mid x y^{f} f(x)} \alpha_{x}|x\rangle
$$

Quantum Fourier transform

$$
\begin{aligned}
& \qquad Q F T_{n} \equiv \\
& \qquad Q F T_{n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y}(-1)^{x \cdot y}|y\rangle \\
& \text { Quantum circuit }
\end{aligned}
$$

$$
|0\rangle \cdots-Q^{Q F T}-S_{f}-Q^{Q F T}-\text { Measure } \cdots ?
$$

$|0\rangle$
(0) $\cdots-Q^{2 F T}$ $S_{f}-Q F T$ Measure f constant $|00 \ldots 0\rangle$ f balanced $|y\rangle, y \neq 00 \ldots 0$

Initialization: $|00 \ldots 0\rangle$
Parallelization: $\quad \frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}|x\rangle$
Query to f: $\quad \frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle$
Interferences: $\quad \frac{1}{2^{n}} \sum_{x, y \in\{0,1\}^{n}}(-1)^{f(x)+x \cdot y}|y\rangle$
Final state:

$$
\left(\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}\right)|00 \ldots 0\rangle+\sum_{y \neq 00 \ldots 0} \alpha_{y}|y\rangle
$$

Problem

- Oracle input: $f:\{0, I\}^{n} \rightarrow\{0, I\}$ a black-box function
such that $f(x)=a \cdot x$
for some fixed $a \in\{0,1\}^{n}$
- Output: a

Query complexity

- Randomized: n

Query $f\left(0^{i-1} \mid 0^{n-1}\right)=a_{i}$, for $i=1,2, \ldots, n$

- Quantum: I

Quatum circuit

$|0\rangle$ 。
QFT
S_{f}
$Q F T$
Measure $-\cdots|a\rangle$
$|0\rangle \ldots-Q F T-S_{f}-Q F T-$ Measure $^{-\cdots}|a\rangle$

Initialization: $|00 \ldots 0\rangle$

Parallelization: $\quad \frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}|x\rangle$
Query to $f: \quad \frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}(-1)^{a \cdot x}|x\rangle=Q F T|a\rangle$
Interferences: $\quad Q F T^{2}|a\rangle$

Final state: $\quad|a\rangle$

On the difficulty of fatorizing

RSA Challenges

- http://www.rsasecurity.com/rsalabs

Challenge Number	Prize (\$US)	Status	Submission Date	Submitter(s)
RSA-576	\$10,000	Factored	$\begin{aligned} & \text { December } 3, \\ & 2003 \end{aligned}$	J. Franke et al.
RSA-640	\$20,000	Factored	November 2. 2005	F. Bahretal.
RSA-704	\$30,000	Not Factored		
RSA-768	\$50,000	Not Factored		
RSA-896	\$75,000	Not Factored		
RSA-1024	\$100,000	Not Factored		
RSA-1536	\$150,000	Not Factored		
RSA-2048	\$200,000	Not Factored		

- RSA-640 (193 digits) :

3107418240490043721350750035888567930037346022842727545720161948823206440518081504556346829671723286782437916272838 033415471073108501919548529007337724822783525742386454014691736602477652346609
$1634733645809253848443|338838650908598417836700330923| 2|8| 110852389333|00| 04508|5| 2|2| 18|675| 1579$
\times
|90087|28|664822||3|2685|5739354|397547|8967899685|5493666638539088027|03802|04498957|9|26|46557|

- RSA Algorithm (allows private communication)
security based on the difficulty of factorizing

Theorem [simon-Shor'94]

- Finding the period of any function on an abelian group can be done in quantum time poly ($\log |G|$)

Order finding

- Input:integers n and a such that $\operatorname{gcd}(a, n)=1$
- Output: the smallest integer $q \neq 0$ such that $a^{q}=1 \bmod n$
- Reduction to period finding: the period of $x \rightarrow a^{x} \bmod n$ is q

Factorization

- Input: integer n
- Output: a nontrivial divisor of n

Reduction: Factorization \leq_{R} Order finding

- Check that $\operatorname{gcd}(a, n)=$ I
- Compute the order q of $a \bmod n$
- Restart if q is odd or $a^{9 / 2} \neq-1 \bmod n$
- Otherwise $\left(a^{9 / 2}-1\right)\left(a^{9 / 2}+1\right)=0 \bmod n$
- Return $\operatorname{gcd}\left(a^{q / 2} \pm 1, n\right)$

Simon's problem

Problem

- Oracle input: $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ a black-box function

such that $\quad \exists s \in\{0,1\}^{n}: \forall x \neq y, f(x)=f(y) \Longleftrightarrow y=x \oplus s$
- Output: the periods

Complexity

- Randomized: $2^{\Omega(n)}$ queries
- Quantum: $O(n)$ queries and time $O\left(n^{3}\right)$

Idea

- Use a Fourier transformation: $\boldsymbol{Q F T} \boldsymbol{T}_{n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y}(-1)^{x \cdot y}|y\rangle$
where $x \cdot y=\sum_{i} x_{i} y_{i} \bmod 2$
- Realization of $Q F T_{n}$ using Hadamard gates:

Initialization: $\quad\left|0^{n}\right\rangle\left|0^{n}\right\rangle$
Parallelization: $\quad \frac{1}{2^{n / 2}} \sum_{x}|x\rangle\left|0^{n}\right\rangle$
Query to $f: \quad \frac{1}{2^{n / 2}} \sum_{x}|x\rangle|f(x)\rangle$
Filter:

$$
\frac{1}{\sqrt{2}}(|x\rangle+|x \oplus s\rangle)|f(x)\rangle
$$

Partial measure: project to a_{1} subspace compatible with the ${ }^{2}$ obseryation

$$
\frac{1}{2^{(n-1) / 2}} \sum_{y: s \cdot y=0}|y\rangle|f(x)\rangle
$$

Construction of a linear system

- After $n+k$ iterations: $y^{1}, y^{2}, \ldots, y^{n+k} \in s^{\perp}$
- s is solution of the linear system in t :

$$
\left\{\begin{array} { r }
{ y ^ { 1 } \cdot t = 0 } \\
{ y ^ { 2 } \cdot t = 0 } \\
{ \vdots } \\
{ y ^ { n + k } \cdot t = 0 }
\end{array} \leftrightarrow \left\{\begin{array}{r}
y_{1}^{1} t_{1}+y_{2}^{1} t_{2}+\ldots+y_{n}^{1} t_{n}=0 \\
y_{1}^{2} t_{1}+y_{2}^{2} t_{2}+\ldots+y_{n}^{2} t_{n}=0 \\
\vdots \\
y_{1}^{n+k} t_{1}+y_{2}^{n+k} t_{2}+\ldots+y_{n}^{n+k} t_{n}=0
\end{array}\right.\right.
$$

- If $s=0^{n}$ the y^{i} are of rank n with proba $\geq 1-I / 2^{k}$
- If $s \neq 0^{n}$ the y^{i} are of rank n-I with proba $\geq 1-I / 2^{k+1}$
- System solutions: 0^{n} and s

Complexity

- Constructing the system: $O(n)$ queries, time $O(n)$
- Solving the system: no query, time $O\left(n^{3}\right)$

Period Finding (G)

- Oracle input: function f on G such that
f is strictly periodic for some unknown $H \leq G$:

$$
f(x)=f(y) \Longleftrightarrow y \in x H
$$

- Output: generator set for H

Examples

- Simon Problem: $\quad G=\left(\mathbb{Z}_{2}\right)^{n}, \boldsymbol{H}=\{0, s\}$
- Factorization: $\quad G=\mathbb{Z}, \boldsymbol{H}=r \mathbb{Z}$
- Discrete logarithm: $\quad G=\mathbb{Z}^{2}, \boldsymbol{H}=\{(r x, x): x \in \mathbb{Z}\}$
- Pell's equations: $\quad G=\mathbb{R}$
- Graph Isomorphism: $G=\mathcal{S}_{n}$

Quantum polynomial time algorithms (in log|G|)

- Abelian groups G: QFT-based algorithm [1995]
- Normal period groups H: QFT-based algorithm [2000]
- Solvable groups G of constant exponent and constant length [2003]
- ...

To continue...

An Introduction to Quantum Computing

- Authors: Phillip Kaye, Raymond Laflamme, Michele Mosca
- Editor: Oxford University Press

Quantum Computation and Quantum Information

- Authors: Michael A. Nielsen, Isaac L. Chuang
- Editor: Cambridge University Press

Classical and Quantum Computation

- Authors:A.Yu. Kitaev, A. H. Shen, M. N.Vyalyi
- Editor:American Mathematical Society
- Collection: Graduate Studies in Mathematics

Lecture Notes for Quantum Computation

- Author:John Preskill
- Website: http://www.theory.caltech.edu/~preskill/ph229/

Quantum proofs for classical theorems

- Author:Andrew Drucker, Ronald de Wolf
- Website: http://arxiv.org/abs/0910.3376

