INF561: Using Randomness in algorithms Winter 2013

Cours 4 — January, 30"
Enseignant : David Xiao Rédacteur : Thierry DEO & Guillaume WENZEK

4.1 Recalls and objectives

Définition 4.1. S = {G, G, ...} is a family of (d, \)-expanders if VG € S :
— @ is d-regular
— Xo(G) < X\ where A\y(G) = max{|A|, A # 1 eigenvalue of G}

We saw in last class how to construct algoriths with § polynomially small, we will now
study how to have ¢ exponentially small. We will as well study how to construct expander
graphs.

4.2 Exponentially small error reduction

Théoréme 4.2. 3¢ > 0 such that V algorithm A deciding a language L in time T with
error 1/3 and randomness m, Vk, 3 algorithm A’ deciding L in time kT¢ with error 2=% and
randomness m + O(k).

For the proof, we will need next lemma :

Lemme 4.3. Expander Walk Lemma : If G is a (d, \)-expander and B C V, % = .

Let vy, vs,...,v; denote a random walk of size | in G. Let X; = 1 if v; € B, 0 else. Then
l

I s

Preuve: of theorem : Assume efficiently computable family of (d, A)-expanders.

Claim : Without lost of generality, we can assume A < 1/10, since G' has degree d'
and \o(G') = A

Claim : We can assume as well that the error of A is less then 3/100, since we can use
algorithm from last class.

Let’s say |G,,| = 2™, and x is the input.
Let’s define Algorithm A’ :

1. Take a random walk vy, vs, ... of length | = O(k) in G,,
2. Run A(z,v;) Vi € [I] =1,2,...,1 and return the output majority.
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Randomness : m to choose vy, log(d) to compute a neighbour, a total of m+log(d)*(l—1) =

m + O(k).

Time : the time to compute a neighbour being poly(log(|G,,|)) = poly(m) <= T° for a
certain ¢, the total time is in O(IT°¢) = O(kT°).

Error : let’s have B = {v € G, A(z,v) # L(x)}. Using the Expander Walk Lemma, we
get :

, 1 ¢ 1
Pr(A(z) # L(z)) = Pr (72& > 5)

VAN
VR
—
S| o
~_
<
[\]

< 2% for | > 8k

Preuve: of EW-Lemma :

Fix G, let n = |V|

Let M, , = # edges (uv) edg‘;s (u0)

View p'e R, p; > 0,> p; = 1 as a probability distribution over V.

My is the probability distribution of a random walk starting with p"and taking one step
in the graph.

Let B CV be seen as a matrix B, , =1ifu=v € B, B,, =0 else.
Then, V distribution p over V,

Pry.,(ve B) = Zpu

ueB

= > (B,

u€[n]
= (1|Bp)
Let By, Bs,...,B; CV, we have :

Prvl...vl random walk (VZ, v; € Bz) - (T|BZMBZ—1M cee BQMBlﬁ)
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We then have :
1 1 .
P’I"(i E XzZ§) - PT<EISQ[l]7|S|ZZ/27VZ€S7U2€B)

< Z Pr(Yie S, v; € B)

SClISI21/2
l

> (HBSM)

SCli],|S|>1/2 i=1

< > ||f||-||H(BfM)u||

SC[i,1s[=t/2 i=1

We will proove later that :

l

ITIB M)l < (VB +X32)72+1/v/n

i=1
Which gives us :

Yo LB M)

RS

=
VRS
o~ =

s

vV

| =
N———

IN

SC),|S|>1/2 i=1
< Z Vs (VB+ M) x1//n
SClI),|S|>1/2
< (/B + N2)?
< 4B+ M)
OJ
Recall :
~ M| =  max [|[Md|

gernigl=1
— [[MM]| < [| M| M7
— for real symmetric M, || M| = max{|\|,\ € Spect(M)}

f
~ X(M) = max II“ﬁ”‘L‘)I\
veR™,(7]1)=0

Preuve: of the formula used before : We know already that |S| > [/2 and that
|M|| = 1, we thus have :

! !
ITIB Ml < 1B Ml
=1 =1
12 1
< [[BM|""—

NG

The only thing left to do know if to proove that [|[BM|| < /8 + A2
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Let’s fix v € R", ||0]| =1

— — — —

Since M is real symmetric, M has orthonormal basis of eigenvectors : =1 = X, Xo,..., X,
vn

associated with 1 =X A > X=Xy > ... > \,.

Let’s write ¢ = vl + v with vl = (_’|fl)ﬁf, we have || Muv| < Mot since (-1 =0
and thanks to last recall.

Let’s compute :

IBMT| = [[BM (vl + )]
< [|BM| + || BMvt|

5 (%) + 1Bl A

<

uehb

Bn o 1 - n
< [ —(O—=1)2+ A
< n<v|ﬁ>+||v||
< VB|@—=1)| + Alle|

\/_

< VBI + Al
< B+ A /|vll]| + ||vt|| by Cauchy-Schwartz
< VB+ X7

4.3 Constructing expander graphs

Combinatorial approach : compose small expanders to get bigger ones.

operation ‘ size ‘ degree ‘ expansion ‘ efficiency

squaring = —(d?) +(A\?) (d+1)t)
tensor | ++ (|V4|Va|) | —(di.d2) = ty + ta + dids
zig-zag | +([Vild:) +(d}) ~ te+(d+ 1ty

4.3.1 Graph tensor product :

Given Gy = (Vi, E1) and Gy = (Va, Es), G1®Gy = (Vi xVy, E') where E' = {((u, a), (v,b))|(u,

Elv (CL, b) S EQ}

M(G1 @ Gg) = M(Gh) @ M(Gs)
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where
A1 B | A oB Ay, B
A ® B— AQJB AQQB AQVHB (41)
A,1B | A, 2B A .B
and
mw
TeR @R 7w = | 2 (4.2)
v W
Facts :

- (A® B)(7® W) = AV ® BW
— Spec(A® B) = {Au, A € Spec(A), i € Spec(B)}
~ (w7 ©y) = (0]7)(w]y))

Fact : if G, is a (dy, A)-expander and Gy is a (da, p)-expander, G; ® G is a

(dyds, max(\, p))-expander of size |V;||V3|

4.3.2 Zig-zag product

Let G = (V,E) be a (D, \)-expander with n vertices, H be a (d, u)-expander with D

vertices.

G@H = (V x[D],E)

We need to imagine an arbitrary labeling with [D] on the edges at each vertex of G, and we

can define the rotation map of GG, the bijective function :

ROtG VX [D]
(u, 1)

— V x [D]
— (v,])

where v is the " neighbour of u and u is the 7 neighbour of v.

E = {((u,i), (v, 7)) |3k, 1 € [D), (i, k) € H, Rotg(u, k) = (v,1), (v,1) € H}

That zig-zag product is of size D x n and degree d?.

Théoréme 4.4. G@ H is a (d*, X\ + u + p?)-expander
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Preuve: Let’s denote X = M(H) and M = M(G), then M(G @ H) can be written XMX
with X = I'd, ® X and M) ;) = 1 if Rotg(u,i) = (v, j), 0 else.

We know that \y(M(G@H)) = max (7] XMX70)

(@0)=1,]|5]|=1
Let’s write Jp = (1)1<i;<p € Mp(R) and vl = (Idn ® JFD) v

(W XMX7) = (ol + o XMX (4 0t))
(W X M X0l + 20| X MXvt) + (v X M Xt
Let’s denote (1), (2) and (3) the three terms of this sum.

About (1), since Xoll = ol :

(Wl Al) = ((M@%D)v'uz\zud@ %))v”)

= (lIde %)M(Id@ %)U”)

We can see that (Id ® ‘%D)M(Id ® 22) = M ® 22 because during the multiplication on
the left, cach block in M is multiplied by ‘%D on the right and on the left, hence the blocks
of the result are uniforms.

We can now compute :

(UH\XMXUH) = (v”\(M@—)v”)

IN
>
=
S
-

IN

Aol
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Let’s now calculate a bound on (2) :

WIXMXvh) < Pl XM X

< o)Xt

< Rl @ X)ot|

< [ @ X) Y ew ®uy || where (eu)i = b

u€(n|

< MY ew Xy

u€ln]

< 1N Z leu ® Xvl||? by orthogonality

u€[n]

< ol Y IXv)?

u€ln]

< ol [ wellod|?

u€ln]

<l Y7 llod )2

u€(n|

<l o]

And finally, on (3) :

(VHXMXvt) = (Xot|MXot)
< IXvt|lf M Xt
< [IXot|?
< ot

If we notice that 2||v/l|||v*] < ||ol||? + ||v+]|? < 1, we finally have, combining those three
bounds :

M(GOH) < max (7)1) = 0, [|]] = N[0!} + 2pl|o [0~ ]| + 1?0

A+ o+ p?

IA A
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4.4 Construction of family of (d, 1/5)-expanders

Take any H = (d, 1/10)-expander on d® vertices, we define :

G, = H?
Gy, = H®H
Gi = (Gricyn ® Gliiap))’ @H

For all i, G; is of size d*, degree d* and \y(G;) <
Running time to compute neighbours in G; : t; <1
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