INF561: Using Randomness in algorithms	Winter 2013	
Enseignant : David Xiao	Cours $4-$ January, 30rd	
Rédacteur : Thierry Deo \& Guillaume Wenzek		

4.1 Recalls and objectives

Définition 4.1. $S=\left\{G_{1}, G_{2}, \ldots\right\}$ is a family of (d, λ)-expanders if $\forall G \in S$:

- G is d-regular
$-\lambda_{2}(G) \leq \lambda$ where $\lambda_{2}(G)=\max \{|\lambda|, \lambda \neq 1$ eigenvalue of $G\}$
We saw in last class how to construct algoriths with δ polynomially small, we will now study how to have δ exponentially small. We will as well study how to construct expander graphs.

4.2 Exponentially small error reduction

Théorème 4.2. $\exists c>0$ such that \forall algorithm A deciding a language L in time T with error $1 / 3$ and randomness $m, \forall k, \exists$ algorithm A^{\prime} deciding L in time $k T^{c}$ with error 2^{-k} and randomness $m+O(k)$.

For the proof, we will need next lemma:
Lemme 4.3. Expander Walk Lemma : If G is a (d, λ)-expander and $B \subseteq V, \frac{|B|}{|V|}=\beta$. Let $v_{1}, v_{2}, \ldots, v_{l}$ denote a random walk of size l in G. Let $X_{i}=1$ if $v_{i} \in B, 0$ else. Then $\operatorname{Pr}\left(\frac{1}{l} \sum_{i=1}^{l} X_{i}>\frac{1}{2}\right) \leq\left(4 \sqrt{\beta+\lambda^{2}}\right)^{l / 2}$

Preuve: of theorem : Assume efficiently computable family of (d, λ)-expanders.
Claim : Without lost of generality, we can assume $\lambda \leq 1 / 10$, since G^{l} has degree d^{l} and $\lambda_{2}\left(G^{l}\right)=\lambda^{l}$.

Claim : We can assume as well that the error of A is less then $3 / 100$, since we can use algorithm from last class.

Let's say $\left|G_{m}\right|=2^{m}$, and x is the input.
Let's define Algorithm A^{\prime} :

1. Take a random walk v_{1}, v_{2}, \ldots of length $l=O(k)$ in G_{m}
2. Run $A\left(x, v_{i}\right) \forall i \in[l]=1,2, \ldots, l$ and return the output majority.

Randomness : m to choose $v_{1}, \log (d)$ to compute a neighbour, a total of $m+\log (d) *(l-1)=$ $m+O(k)$.

Time : the time to compute a neighbour being $\operatorname{poly}\left(\log \left(\left|G_{m}\right|\right)\right)=\operatorname{poly}(m)<=T^{c}$ for a certain c, the total time is in $O\left(l T^{c}\right)=O\left(k T^{c}\right)$.

Error : let's have $B=\left\{v \in G_{m}, A(x, v) \neq L(x)\right\}$. Using the Expander Walk Lemma, we get :

$$
\begin{aligned}
\operatorname{Pr}\left(A^{\prime}(x) \neq L(x)\right) & =\operatorname{Pr}\left(\frac{1}{l} \sum_{i=1}^{l} X_{i}>\frac{1}{2}\right) \\
& \leq\left(4 \sqrt{\frac{3}{100}+\frac{1^{2}}{10}}\right)^{l / 2} \\
& \leq\left(\frac{8}{10}\right)^{l / 2} \\
& \leq 2^{-k} \text { for } l \geq 8 k
\end{aligned}
$$

Preuve: of EW-Lemma :

Fix G, let $n=|V|$
Let $M_{u, v}=\frac{\text { \#edges }(u, v)}{d}$
View $\vec{p} \in \mathbb{R}^{n}, p_{i} \geq 0, \sum p_{i}=1$ as a probability distribution over V.
$M \vec{p}$ is the probability distribution of a random walk starting with \vec{p} and taking one step in the graph.

Let $B \subseteq V$ be seen as a matrix $B_{u, v}=1$ if $u=v \in B, B_{u, v}=0$ else.
Then, \forall distribution p over V,

$$
\begin{aligned}
\operatorname{Pr}_{v \leftarrow p}(v \in B) & =\sum_{u \in B} p_{u} \\
& =\sum_{u \in[n]}(B \vec{p})_{u} \\
& =(\overrightarrow{1} \mid B \vec{p})
\end{aligned}
$$

Let $B_{1}, B_{2}, \ldots, B_{l} \subseteq V$, we have :

$$
\operatorname{Pr}_{v_{1} \ldots v_{l} \text { random walk }}\left(\forall i, v_{i} \in B_{i}\right)=\left(\overrightarrow{1} \mid B_{l} M B_{l-1} M \ldots B_{2} M B_{1} \vec{u}\right)
$$

We then have :

$$
\begin{aligned}
\operatorname{Pr}\left(\frac{1}{l} \sum X_{i} \geq \frac{1}{2}\right) & =\operatorname{Pr}\left(\exists S \subseteq[l],|S| \geq l / 2, \forall i \in S, v_{i} \in B\right) \\
& \leq \sum_{S \subseteq[l],|S| \geq l / 2} \operatorname{Pr}\left(\forall i \in S, v_{i} \in B\right) \\
& =\sum_{S \subseteq[l],|S| \geq l / 2}\left(\overrightarrow{1} \mid \prod_{i=1}^{l}\left(B_{i}^{S} M\right) u\right) \\
& \leq \sum_{S \subseteq[l],|S| \geq l / 2}\|\overrightarrow{1}\| \cdot\left\|\prod_{i=1}^{l}\left(B_{i}^{S} M\right) u\right\|
\end{aligned}
$$

We will proove later that :

$$
\left\|\prod_{i=1}^{l}\left(B_{i}^{S} M\right) u\right\| \leq\left(\sqrt{\beta+\lambda^{2}}\right)^{l / 2} * 1 / \sqrt{n}
$$

Which gives us :

$$
\begin{aligned}
\operatorname{Pr}\left(\frac{1}{l} \sum X_{i} \geq \frac{1}{2}\right) & \leq \sum_{S \subseteq[l],|S| \geq l / 2}\|\overrightarrow{1}\| \cdot\left\|\prod_{i=1}^{l}\left(B_{i}^{S} M\right) u\right\| \\
& \leq \sum_{S \subseteq[l],|S| \geq l / 2} \sqrt{n} *\left(\sqrt{\beta+\lambda^{2}}\right)^{l / 2} * 1 / \sqrt{n} \\
& \leq 2^{l}\left(\sqrt{\beta+\lambda^{2}}\right)^{l / 2} \\
& \leq\left(4 \sqrt{\beta+\lambda^{2}}\right)^{l / 2}
\end{aligned}
$$

Recall :

$-\|M\|=\max _{\vec{v} \in \mathbb{R}^{n},\|\vec{v}\|=1}\|M \vec{v}\|$

- $\left\|M M^{\prime}\right\| \leq\|M\| \cdot\left\|M^{\prime}\right\|$
- for real symmetric $M,\|M\|=\max \{|\lambda|, \lambda \in \operatorname{Spect}(M)\}$
$-\lambda_{2}(M)=\max _{v \in \mathbb{R}^{n},(\vec{v} \mid \overrightarrow{1})=0} \frac{\|M \overrightarrow{\vec{v}}\|}{\|\vec{v}\|}$
Preuve: of the formula used before : We know already that $|S| \geq l / 2$ and that $\|M\|=1$, we thus have :

$$
\begin{aligned}
\left\|\prod_{i=1}^{l}\left(B_{i}^{S} M\right) u\right\| & \leq \prod_{i=1}^{l}\left\|B_{i}^{S} M\right\|\|\vec{u}\| \\
& \leq\|B M\|^{l / 2} \frac{1}{\sqrt{n}}
\end{aligned}
$$

The only thing left to do know if to proove that $\|B M\| \leq \sqrt{\beta+\lambda^{2}}$

Let's fix $\vec{v} \in \mathbb{R}^{n},\|\vec{v}\|=1$
Since M is real symmetric, M has orthonormal basis of eigenvectors : $\frac{1}{\sqrt{n}} \overrightarrow{1}=\vec{X}_{1}, \vec{X}_{2}, \ldots, \overrightarrow{X_{n}}$ associated with $1=\lambda_{1} \geq \lambda=\lambda_{2} \geq \ldots \geq \lambda_{n}$.

Let's write $\vec{v}=v^{\|}+v^{\perp}$ with $v^{\|}=\left(\vec{v} \left\lvert\, \frac{1}{\sqrt{n}} \overrightarrow{1}\right.\right) \frac{1}{\sqrt{n}} \overrightarrow{1}$, we have $\left\|M v^{\perp}\right\| \leq \lambda\left\|v^{\perp}\right\|$ since $\left(v^{\perp} \mid \overrightarrow{1}=0\right.$ and thanks to last recall.

Let's compute :

$$
\begin{aligned}
\|B M \vec{v}\| & =\left\|B M\left(v^{\|}+v^{\perp}\right)\right\| \\
& \leq\left\|B M v^{\|}\right\|+\left\|B M v^{\perp}\right\| \\
& \leq \sqrt{\sum_{u \in B}\left(\frac{(\vec{v} \mid \overrightarrow{1})}{n}\right)^{2}}+\|B\| \cdot\left\|M v^{\perp}\right\| \\
& \leq \sqrt{\frac{\beta n}{n}\left(\vec{v} \left\lvert\, \frac{1}{\sqrt{n}} \overrightarrow{1}\right.\right)^{2}}+\lambda\left\|v^{\perp}\right\| \\
& \leq \sqrt{\beta}\left|\left(\vec{v} \left\lvert\, \frac{1}{\sqrt{n}} \overrightarrow{1}\right.\right)\right|+\lambda\left\|v^{\perp}\right\| \\
& \leq \sqrt{\beta}\left\|v^{\|}\right\|+\lambda\left\|v^{\perp}\right\| \\
& \leq \sqrt{\beta+\lambda^{2}} \sqrt{\left\|v^{\|}\right\|+\left\|v^{\perp}\right\|} \text { by Cauchy-Schwartz } \\
& \leq \sqrt{\beta+\lambda^{2}}\|\vec{v}\|
\end{aligned}
$$

4.3 Constructing expander graphs

Combinatorial approach : compose small expanders to get bigger ones.

operation	size	degree	expansion	efficiency
squaring	$=$	$-\left(d^{2}\right)$	$+\left(\lambda^{2}\right)$	$(d+1) t)$
tensor	$++\left(\left\|V_{1}\right\|\left\|V_{2}\right\|\right)$	$-\left(d_{1} \cdot d_{2}\right)$	$=$	$t_{1}+t_{2}+d_{1} d_{2}$
zig-zag	$+\left(\left\|V_{1}\right\| d_{1}\right)$	$+\left(d_{1}^{2}\right)$	\approx	$t_{G}+(d+1) t_{H}$

4.3.1 Graph tensor product :

Given $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right), G_{1} \otimes G_{2}=\left(V_{1} \times V_{2}, E^{\prime}\right)$ where $E^{\prime}=\{((u, a),(v, b)) \mid(u, v) \in$ $\left.E_{1},(a, b) \in E_{2}\right\}$.
$M\left(G_{1} \otimes G_{2}\right)=M\left(G_{1}\right) \otimes M\left(G_{2}\right)$
where

$$
A \otimes B=\left(\begin{array}{c|c|c|c}
A_{1,1} B & A_{1,2} B & \ldots & A_{1, n} B \tag{4.1}\\
\hline A_{2,1} B & A_{2,2} B & \ldots & A_{2, n} B \\
\hline \ldots & \ldots & & \ldots \\
\hline A_{n, 1} B & A_{n, 2} B & \ldots & A_{1, n} B
\end{array}\right)
$$

and

$$
\begin{equation*}
\vec{v} \in \mathbb{R}^{n}, \vec{w} \in \mathbb{R}^{m}, \vec{v} \otimes \vec{w}=\left(\frac{\frac{v_{1} \vec{w}}{v_{2} \vec{w}}}{\frac{v_{n} \vec{w}}{}}\right) \tag{4.2}
\end{equation*}
$$

Facts :

$-(A \otimes B)(\vec{v} \otimes \vec{w})=A \vec{v} \otimes B \vec{w}$
$-\operatorname{Spec}(A \otimes B)=\{\lambda \mu, \lambda \in \operatorname{Spec}(A), \mu \in \operatorname{Spec}(B)\}$
$-(\vec{v} \otimes \vec{w} \mid \vec{x} \otimes \vec{y})=(\vec{v} \mid \vec{x})(\vec{w} \mid \vec{y}))$
Fact : if G_{1} is a $\left(d_{1}, \lambda\right)$-expander and G_{2} is a $\left(d_{2}, \mu\right)$-expander, $G_{1} \otimes G_{2}$ is a $\left(d_{1} d_{2}, \max (\lambda, \mu)\right)$-expander of size $\left|V_{1}\right|\left|V_{2}\right|$

4.3.2 Zig-zag product

Let $G=(V, E)$ be a (D, λ)-expander with n vertices, H be a (d, μ)-expander with D vertices.

$$
G(2) H=\left(V \times[D], E^{\prime}\right)
$$

We need to imagine an arbitrary labeling with $[D]$ on the edges at each vertex of G, and we can define the rotation map of G, the bijective function :

$$
\begin{aligned}
\operatorname{Rot}_{G}: V \times[D] & \longrightarrow V \times[D] \\
(u, i) & \longrightarrow(v, j)
\end{aligned}
$$

where v is the $i^{\text {th }}$ neighbour of u and u is the $j^{\text {th }}$ neighbour of v.

$$
E^{\prime}=\left\{((u, i),(v, j)) \mid \exists k, l \in[D],(i, k) \in H, \operatorname{Rot}_{G}(u, k)=(v, l),(v, l) \in H\right\}
$$

That zig-zag product is of size $D \times n$ and degree d^{2}.
Théorème 4.4. $G(2) H$ is a $\left(d^{2}, \lambda+\mu+\mu^{2}\right)$-expander

Preuve: Let's denote $X=M(H)$ and $M=M(G)$, then $M(G$ (2) $H)$ can be written $\tilde{X} \tilde{M} \tilde{X}$ with $\tilde{X}=I d_{n} \otimes X$ and $\tilde{M}_{(u, i),(v, j)}=1$ if $\operatorname{Rot}_{G}(u, i)=(v, j), 0$ else.

We know that $\lambda_{2}(M(G(2) H))=\max _{(\vec{v} \mid \overrightarrow{1})=1,\|\vec{v}\|=1}(\vec{v} \mid \tilde{X} \tilde{M} \tilde{X} \vec{v})$
Let's write $J_{D}=(1)_{1 \leq i, j \leq D} \in M_{D}(\mathbb{R})$ and $v^{\|}=\left(I d_{n} \otimes \frac{J_{D}}{D}\right) \vec{v}$

Facts:

$-v^{\|}=\vec{y} \otimes \frac{1_{D}}{D}$ where $y_{u}=\sum_{i=1} v_{u, i}$
$-\forall u \in[n], \sum_{i=1} v_{u, i}^{\perp}=0$

$$
\begin{aligned}
(\vec{v} \mid \tilde{X} \tilde{M} \tilde{X} \vec{v}) & =\left(v^{\|}+v^{\perp} \mid \tilde{X} \tilde{M} \tilde{X}\left(v^{\|}+v^{\perp}\right)\right) \\
& =\left(v^{\|} \mid \tilde{X} \tilde{M} \tilde{X} v^{\|}\right)+2\left(v^{\|} \mid \tilde{X} \tilde{M} \tilde{X} v^{\perp}\right)+\left(v^{\perp} \mid \tilde{X} \tilde{M} \tilde{X} v^{\perp}\right)
\end{aligned}
$$

Let's denote (1), (2) and (3) the three terms of this sum.
About (1), since $\tilde{X} v^{\|}=v^{\|}$:

$$
\begin{aligned}
\left(v^{\|} \mid \tilde{M} v^{\|}\right) & =\left(\left(I d \otimes \frac{J_{D}}{D}\right) v^{\|} \left\lvert\, \tilde{M}\left(I d \otimes \frac{J_{D}}{D}\right) v^{\|}\right.\right) \\
& =\left(v^{\|} \left\lvert\,\left(I d \otimes \frac{J_{D}}{D}\right) \tilde{M}\left(I d \otimes \frac{J_{D}}{D}\right) v^{\|}\right.\right)
\end{aligned}
$$

We can see that $\left(I d \otimes \frac{J_{D}}{D}\right) \tilde{M}\left(I d \otimes \frac{J_{D}}{D}\right)=M \otimes \frac{J_{D}}{D}$ because during the multiplication on the left, each block in \tilde{M} is multiplied by $\frac{J_{D}}{D}$ on the right and on the left, hence the blocks of the result are uniforms.

We can now compute :

$$
\begin{aligned}
\left(v^{\|} \mid \tilde{X} \tilde{M} \tilde{X} v^{\|}\right) & =\left(v^{\|} \left\lvert\,\left(M \otimes \frac{J_{D}}{D}\right) v^{\|}\right.\right) \\
& =\left(\vec{y} \otimes \frac{\overrightarrow{1}}{D} \left\lvert\,\left(M \otimes \frac{J_{D}}{D}\right)\left(\vec{y} \otimes \frac{\overrightarrow{1}}{D}\right)\right.\right) \\
& =\left(\vec{y} \otimes \frac{\overrightarrow{1}}{D} \left\lvert\, M \vec{y} \otimes \frac{\overrightarrow{1}}{D}\right.\right) \\
& =(\vec{y} \mid M \vec{y})\left(\left.\frac{\overrightarrow{1}}{D} \right\rvert\, \frac{\overrightarrow{1}}{D}\right) \\
& \leq \lambda\|\vec{y}\|^{2} \frac{1}{D} \\
& \leq \lambda\left\|v^{\|}\right\|^{2}
\end{aligned}
$$

Let's now calculate a bound on (2) :

$$
\begin{aligned}
\left(v^{\|} \mid \tilde{X} \tilde{M} \tilde{X} v^{\perp}\right) & \leq\left\|v^{\|}\right\|\| \| \tilde{X} \tilde{M} \tilde{X} v^{\perp} \| \\
& \leq\left\|v^{\|}\right\|\| \| \tilde{X} v^{\perp} \| \\
& \leq\left\|v^{\|}\right\|\| \|(I \otimes X) v^{\perp} \| \\
& \leq\left\|v^{\|}\right\|\| \|(I \otimes X) \sum_{u \in[n]} e_{u} \otimes v_{u}^{\perp} \| \text { where }\left(e_{u}\right)_{i}=\delta_{i u} \\
& \leq\left\|v^{\|}\right\|\left\|\sum_{u \in[n]} e_{u} \otimes X v_{u}^{\perp}\right\| \\
& \leq\left\|v^{\|}\right\| \sqrt{\sum_{u \in[n]}\left\|e u \otimes X v_{u}^{\perp}\right\|^{2}} \text { by orthogonality } \\
& \leq\left\|v^{\|}\right\| \sqrt{\sum_{u \in[n]}\left\|X v_{u}^{\perp}\right\|^{2}} \\
& \leq\left\|v^{\|}\right\| \sqrt{\sum_{u \in[n]} \mu^{2}\left\|v_{u}^{\perp}\right\|^{2}} \\
& \leq \mu\left\|v^{\|}\right\| \sqrt{\sum_{u \in[n]}\left\|v_{u}^{\perp}\right\|^{2}} \\
& \leq \mu\left\|v^{\|}\right\|\left\|v^{\perp}\right\|
\end{aligned}
$$

And finally, on (3) :

$$
\begin{aligned}
\left(v^{\perp} \mid \tilde{X} \tilde{M} \tilde{X} v^{\perp}\right) & =\left(\tilde{X} v^{\perp} \mid \tilde{M} \tilde{X} v^{\perp}\right) \\
& \leq\left\|\tilde{X} v^{\perp}\right\|\left\|\tilde{M} \tilde{X} v^{\perp}\right\| \\
& \leq\left\|\tilde{X} v^{\perp}\right\|^{2} \\
& \leq \mu^{2}\left\|v^{\perp}\right\|^{2}
\end{aligned}
$$

If we notice that $2\left\|v^{\|}\right\| \mid v^{\perp}\|\leq\| v^{\|}\left\|^{2}+\right\| v^{\perp} \|^{2} \leq 1$, we finally have, combining those three bounds :

$$
\begin{aligned}
\lambda_{2}(G(2) H) & \leq \max (\vec{v} \mid \overrightarrow{1})=0,\|\vec{v}\|=1 \lambda\left\|v^{\|}\right\|^{2}+2 \mu\left\|v^{\|}\right\|\left\|v^{\perp}\right\|+\mu^{2}\left\|v^{\perp}\right\|^{2} \\
& \leq \lambda+\mu+\mu^{2}
\end{aligned}
$$

4.4 Construction of family of ($d, 1 / 5$)-expanders

Take any $H=(d, 1 / 10)$-expander on d^{8} vertices, we define :

$$
\begin{aligned}
G_{1} & =H^{2} \\
G_{2} & =H \otimes H \\
G_{i} & =\left(G_{\lceil i-1 / 2\rceil} \otimes G_{\lfloor i-1 / 2\rfloor}\right)^{2} \text { (2) } H
\end{aligned}
$$

For all i, G_{i} is of size $d^{8 i}$, degree d^{2} and $\lambda_{2}\left(G_{i}\right) \leq \frac{1}{5}$
Running time to compute neighbours in $G_{i}: t_{i} \leq i^{c}$

