
INF561: Using Randomness in algorithms Winter 2013

Cours 4 — January, 30rd

Enseignant : David Xiao Rédacteur : Thierry Deo & Guillaume Wenzek

4.1 Recalls and objectives

Définition 4.1. S = {G1, G2, . . .} is a family of (d, λ)-expanders if ∀G ∈ S :
– G is d-regular
– λ2(G) ≤ λ where λ2(G) = max{|λ|, λ 6= 1 eigenvalue of G}

We saw in last class how to construct algoriths with δ polynomially small, we will now
study how to have δ exponentially small. We will as well study how to construct expander
graphs.

4.2 Exponentially small error reduction

Théorème 4.2. ∃c > 0 such that ∀ algorithm A deciding a language L in time T with
error 1/3 and randomness m, ∀k, ∃ algorithm A′ deciding L in time kT c with error 2−k and
randomness m+O(k).

For the proof, we will need next lemma :

Lemme 4.3. Expander Walk Lemma : If G is a (d, λ)-expander and B ⊆ V , |B||V | = β.
Let v1, v2, . . . , vl denote a random walk of size l in G. Let Xi = 1 if vi ∈ B, 0 else. Then

Pr

(
1
l

l∑
i=1

Xi >
1
2

)
≤ (4

√
β + λ2)l/2

Preuve: of theorem : Assume efficiently computable family of (d, λ)-expanders.

Claim : Without lost of generality, we can assume λ ≤ 1/10, since Gl has degree dl

and λ2(G
l) = λl.

Claim : We can assume as well that the error of A is less then 3/100, since we can use
algorithm from last class.

Let’s say |Gm| = 2m, and x is the input.

Let’s define Algorithm A′ :
1. Take a random walk v1, v2, . . . of length l = O(k) in Gm

2. Run A(x, vi) ∀i ∈ [l] = 1, 2, . . . , l and return the output majority.
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Randomness : m to choose v1, log(d) to compute a neighbour, a total of m+ log(d)∗(l−1) =
m+O(k).

Time : the time to compute a neighbour being poly(log(|Gm|)) = poly(m) <= T c for a
certain c, the total time is in O(lT c) = O(kT c).

Error : let’s have B = {v ∈ Gm, A(x, v) 6= L(x)}. Using the Expander Walk Lemma, we
get :

Pr (A′(x) 6= L(x)) = Pr

(
1

l

l∑
i=1

Xi >
1

2

)

≤

(
4

√
3

100
+

1

10

2
)l/2

≤
(

8

10

)l/2

≤ 2−k for l ≥ 8k

�

Preuve: of EW-Lemma :
Fix G, let n = |V |
Let Mu,v = # edges (u,v)

d

View ~p ∈ Rn, pi ≥ 0,
∑
pi = 1 as a probability distribution over V .

M~p is the probability distribution of a random walk starting with ~p and taking one step
in the graph.

Let B ⊆ V be seen as a matrix Bu,v = 1 if u = v ∈ B, Bu,v = 0 else.
Then, ∀ distribution p over V ,

Prv←p (v ∈ B) =
∑
u∈B

pu

=
∑
u∈[n]

(B~p)u

= (~1|B~p)

Let B1, B2, . . . , Bl ⊆ V , we have :

Prv1...vl random walk (∀i, vi ∈ Bi) = (~1|BlMBl−1M . . . B2MB1~u)
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We then have :

Pr

(
1

l

∑
Xi ≥

1

2

)
= Pr (∃S ⊆ [l], |S| ≥ l/2,∀i ∈ S, vi ∈ B)

≤
∑

S⊆[l],|S|≥l/2

Pr (∀i ∈ S, vi ∈ B)

=
∑

S⊆[l],|S|≥l/2

(
~1|

l∏
i=1

(BS
i M)u

)

≤
∑

S⊆[l],|S|≥l/2

‖~1‖.‖
l∏

i=1

(BS
i M)u‖

We will proove later that :

‖
l∏

i=1

(BS
i M)u‖ ≤ (

√
β + λ2)l/2 ∗ 1/

√
n

Which gives us :

Pr

(
1

l

∑
Xi ≥

1

2

)
≤

∑
S⊆[l],|S|≥l/2

‖~1‖.‖
l∏

i=1

(BS
i M)u‖

≤
∑

S⊆[l],|S|≥l/2

√
n ∗ (

√
β + λ2)l/2 ∗ 1/

√
n

≤ 2l(
√
β + λ2)l/2

≤ (4
√
β + λ2)l/2

�

Recall :
– ‖M‖ = max

~v∈Rn,‖~v‖=1
‖M~v‖

– ‖MM ′‖ ≤ ‖M‖.‖M ′‖
– for real symmetric M , ‖M‖ = max{|λ|, λ ∈ Spect(M)}
– λ2(M) = max

v∈Rn,(~v|~1)=0

‖M~v‖
‖~v‖

Preuve: of the formula used before : We know already that |S| ≥ l/2 and that
‖M‖ = 1, we thus have :

‖
l∏

i=1

(BS
i M)u‖ ≤

l∏
i=1

‖BS
i M‖‖~u‖

≤ ‖BM‖l/2 1√
n

The only thing left to do know if to proove that ‖BM‖ ≤
√
β + λ2
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Let’s fix ~v ∈ Rn, ‖~v‖ = 1

SinceM is real symmetric,M has orthonormal basis of eigenvectors : 1√
n
~1 = ~X1, ~X2, . . . , ~Xn

associated with 1 = λ1 ≥ λ = λ2 ≥ . . . ≥ λn.
Let’s write ~v = v‖+ v⊥ with v‖ = (~v| 1√

n
~1) 1√

n
~1, we have ‖Mv⊥‖ ≤ λ‖v⊥‖ since (v⊥|~1 = 0

and thanks to last recall.
Let’s compute :

‖BM~v‖ = ‖BM(v‖ + v⊥)‖
≤ ‖BMv‖‖+ ‖BMv⊥‖

≤

√√√√∑
u∈B

(
(~v|~1)

n

)2

+ ‖B‖.‖Mv⊥‖

≤

√
βn

n
(~v| 1√

n
~1)2 + λ‖v⊥‖

≤
√
β

∣∣∣∣(~v| 1√
n
~1)

∣∣∣∣+ λ‖v⊥‖

≤
√
β‖v‖‖+ λ‖v⊥‖

≤
√
β + λ2

√
‖v‖‖+ ‖v⊥‖ by Cauchy-Schwartz

≤
√
β + λ2‖~v‖

�

4.3 Constructing expander graphs

Combinatorial approach : compose small expanders to get bigger ones.

operation size degree expansion efficiency

squaring = −(d2) +(λ2) (d+ 1)t)
tensor + + (|V1||V2|) −(d1.d2) = t1 + t2 + d1d2
zig-zag +(|V1|d1) +(d21) ≈ tG + (d+ 1)tH

4.3.1 Graph tensor product :

GivenG1 = (V1, E1) andG2 = (V2, E2),G1⊗G2 = (V1×V2, E ′) whereE ′ = {((u, a), (v, b))|(u, v) ∈
E1, (a, b) ∈ E2}.

M(G1 ⊗G2) = M(G1)⊗M(G2)
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where

A⊗B =


A1,1B A1,2B . . . A1,nB
A2,1B A2,2B . . . A2,nB
. . . . . . . . .

An,1B An,2B . . . A1,nB

 (4.1)

and

~v ∈ Rn, ~w ∈ Rm, ~v ⊗ ~w =


v1 ~w
v2 ~w

vn ~w

 (4.2)

Facts :
– (A⊗B)(~v ⊗ ~w) = A~v ⊗B~w
– Spec(A⊗B) = {λµ, λ ∈ Spec(A), µ ∈ Spec(B)}
– (~v ⊗ ~w|~x⊗ ~y) = (~v|~x)(~w|~y))
Fact : if G1 is a (d1, λ)-expander and G2 is a (d2, µ)-expander, G1 ⊗G2 is a

(d1d2,max(λ, µ))-expander of size |V1||V2|

4.3.2 Zig-zag product

Let G = (V,E) be a (D,λ)-expander with n vertices, H be a (d, µ)-expander with D
vertices.

G©z H = (V × [D], E ′)

We need to imagine an arbitrary labeling with [D] on the edges at each vertex of G, and we
can define the rotation map of G, the bijective function :

RotG : V × [D] −→ V × [D]

(u, i) −→ (v, j)

where v is the ith neighbour of u and u is the jth neighbour of v.

E ′ = {((u, i), (v, j)) |∃k, l ∈ [D], (i, k) ∈ H,RotG(u, k) = (v, l), (v, l) ∈ H}

That zig-zag product is of size D × n and degree d2.

Théorème 4.4. G©z H is a (d2, λ+ µ+ µ2)-expander
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Preuve: Let’s denote X = M(H) and M = M(G), then M(G©z H) can be written X̃M̃X̃
with X̃ = Idn ⊗X and M̃(u,i),(v,j) = 1 if RotG(u, i) = (v, j), 0 else.

We know that λ2(M(G©z H)) = max
(~v|~1)=1,‖~v‖=1

(~v|X̃M̃X̃~v)

Let’s write JD = (1)1≤i,j≤D ∈MD(R) and v‖ =
(
Idn ⊗ JD

D

)
~v

Facts :
– v‖ = ~y ⊗ ~1D

D
where yu =

∑
i=1

vu,i

– ∀u ∈ [n],
∑
i=1

v⊥u,i = 0

(~v|X̃M̃X̃~v) = (v‖ + v⊥|X̃M̃X̃(v‖ + v⊥))

= (v‖|X̃M̃X̃v‖) + 2(v‖|X̃M̃X̃v⊥) + (v⊥|X̃M̃X̃v⊥)

Let’s denote (1), (2) and (3) the three terms of this sum.

About (1), since X̃v‖ = v‖ :

(v‖|M̃v‖) =

(
(Id⊗ JD

D
)v‖|M̃(Id⊗ JD

D
)v‖
)

= (v‖|(Id⊗ JD
D

)M̃(Id⊗ JD
D

)v‖)

We can see that (Id ⊗ JD
D

)M̃(Id ⊗ JD
D

) = M ⊗ JD
D

because during the multiplication on

the left, each block in M̃ is multiplied by JD
D

on the right and on the left, hence the blocks
of the result are uniforms.

We can now compute :

(v‖|X̃M̃X̃v‖) = (v‖|(M ⊗ JD
D

)v‖)

= (~y ⊗
~1

D
|(M ⊗ JD

D
)(~y ⊗

~1

D
))

= (~y ⊗
~1

D
|M~y ⊗

~1

D
)

= (~y|M~y)(
~1

D
|
~1

D
)

≤ λ‖~y‖2 1

D
≤ λ‖v‖‖2
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Let’s now calculate a bound on (2) :

(v‖|X̃M̃X̃v⊥) ≤ ‖v‖‖‖X̃M̃X̃v⊥‖
≤ ‖v‖‖‖X̃v⊥‖
≤ ‖v‖‖‖(I ⊗X)v⊥‖
≤ ‖v‖‖‖(I ⊗X)

∑
u∈[n]

eu ⊗ v⊥u ‖ where (eu)i = δiu

≤ ‖v‖‖‖
∑
u∈[n]

eu ⊗Xv⊥u ‖

≤ ‖v‖‖
√∑

u∈[n]

‖eu⊗Xv⊥u ‖2 by orthogonality

≤ ‖v‖‖
√∑

u∈[n]

‖Xv⊥u ‖2

≤ ‖v‖‖
√∑

u∈[n]

µ2‖v⊥u ‖2

≤ µ‖v‖‖
√∑

u∈[n]

‖v⊥u ‖2

≤ µ‖v‖‖‖v⊥‖

And finally, on (3) :

(v⊥|X̃M̃X̃v⊥) = (X̃v⊥|M̃X̃v⊥)

≤ ‖X̃v⊥‖‖M̃X̃v⊥‖
≤ ‖X̃v⊥‖2

≤ µ2‖v⊥‖2

If we notice that 2‖v‖‖|v⊥‖ ≤ ‖v‖‖2 + ‖v⊥‖2 ≤ 1, we finally have, combining those three
bounds :

λ2(G©z H) ≤ max (~v|~1) = 0, ‖~v‖ = 1λ‖v‖‖2 + 2µ‖v‖‖‖v⊥‖+ µ2‖v⊥‖2

≤ λ+ µ+ µ2

�

4-7



INF561 Cours 4 — January, 30rd Winter 2013

4.4 Construction of family of (d, 1/5)-expanders

Take any H = (d, 1/10)-expander on d8 vertices, we define :

G1 = H2

G2 = H ⊗H
Gi =

(
Gdi−1/2e ⊗Gbi−1/2c

)2©z H
For all i, Gi is of size d8i, degree d2 and λ2(Gi) ≤ 1

5

Running time to compute neighbours in Gi : ti ≤ ic
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