
INF561: Using randomness in algorithms Winter 2013

Cours 3 — 23rd January
Enseignant : David Xiao Rédacteur : Menglong Fu and Nathan Grosshans

3.1 Introduction

Computational efficiency is all about reducing the amount of resources that are used by an
algorithm. These resources can be :

• Time and space, which are the standard resources we focus on when designing algo-
rithms.

• Randomness, whose use we may also want to reduce, as there is a cost to generate
random bits.

But how do we actually generate random bits ? In fact, classically, the generation of
bits isn’t really random, that’s why those generators are called “pseudo-random” (a physical
measure like time, temperature or quantum information is used). There are two assumptions
that are made about randomness in algorithms :

• we have access to a polynomial amount of randomness (if algorithms are in polynomial
time);

• we have uniform and random bits.

These are the two main topics in pseudo-randomness, but we will mostly focus on the first
point.

3.2 Reducing the amount of randomness used

3.2.1 Randomness inefficient error reduction

Théorème 3.1. Let A be an algorithm deciding L with error less than or equal to 1
3
, such

that for all x, Prr uniform[A(x, r) 6= L(x)] ≤ 1
3

and A runs in time O(T). Then, there exists
A′ deciding L running in time O(kT) with error less than or equal to 2−k.

Preuve: The idea is to run A O(k) times, and then output the majority result.

Théorème 3.2 (Chernoff-Hoeffding bound). Let X1, . . . , Xl be independent and iden-
tically distributed (i.i.d.) random variables in {0, 1}. Let µ = E[Xi], ε ∈ {0, 1}. Then,
Pr[1

l

∑l
i=1Xi < µ− ε] ≤ e−2ε

2l. This inequality is symmetric.

3-1

INF561 Cours 3 — 23rd January Winter 2013

We will prove Theorem 3.1 using the Chernoff-Hoeffding bound. Let X1, . . . , Xl be such
that

Xi =

{
1 if ith execution correct
0 else

Then Pr[A′(x, r′) 6= L(x)] = Pr[1
l

∑l
i=1Xi <

1
2
] ≤ e−2

1
62
l. So, if l = O(k), we have an error

less than or equal to 2−k.
�

The great disadvantage of this error reduction method is that we have a linear increase
in the amount of randomness used.

3.2.2 Efficient deterministic error reduction

Théorème 3.3. Suppose A decides L in time T , with error less than or equal to 1
3
. Then

there exists c > 0, such that for all δ > 0, there exists A′ deciding L in time O((T
δ
)c) (n

being a function of the input size) and with error less than or equal to δ. Furthermore, A′

uses no more randomness than A.

To prove this theorem, we have to introduce the notion of expander graphs.

Expander graphs: intuitive definition

The intuition is that expander graphs are highly connected and “random-looking”, but also
sparse (the number of edges |E| is small relative to the number of vertices |V |).

Examples: Examples of non-expanders are graphs that are made of different parts that
are well connected but linked by very few edges (so that the graph in general is not well
connected), or complete graphs which are not sparse (the number of edges in it is |E| =
Ω(|V |2)).

Why does graph theory help ? Fix an algorithm A with input x. Say A uses m bits
of randomness on x. Taking k uniform random m-bits strings is equivalent to taking a
random walk of length k on K2m (the complete graph on 2m vertices, where each vertex is
labelled by an m-bits string). The randomness cost of the walk is then m + (k − 1) · m
(m = log2(degree of K2m)). The idea is that reducing the degree is equivalent to reducing
the cost (in terms of randomness), but we must make sure that when taking a random walk
in the resulting graph, the number of times we hit bad vertices remains roughly the same as
in the original graph (a bad vertex is one where the algorithm would make a mistake if it
used it as a random string).

Définition 3.4. A graph G = (V,E) is d-regular if every v ∈ V has exactly d neighbours
(assuming that G is undirected and can contain self-loops and multiple edges).

Définition 3.5. Fix any G = (V,E). For v ∈ V , N(v) = {u|(v, u) ∈ E} is the neighbour-
hood of v. For S ⊆ V , N(S) =

⋃
v∈S N(v).

3-2

INF561 Cours 3 — 23rd January Winter 2013

Définition 3.6. G = (V,E) is a (d, α)-vertex expander if :

• G is d-regular;

• for all S ⊆ V , 0 < |S| < |V |
2

, |N(S)| ≥ (1 + α) · |S|.

This means that the graph “expands” in terms of number of vertices.

Remark: This definition is intuitively nice, but technically inconvenient.

Expander graphs: formal definition and properties

Définition 3.7. Fix G = (V,E), a d-regular graph. The normalized adjacency matrix of G

is a |V | × |V | matrix M where Muv =
number of edges between u and v in G

d
.

Remarks: 1. For all u ∈ V ,
∑

v∈V Muv = 1, and the same for u and v reverted (this is
called a doubly stochastic matrix).

2. M is symmetric and real, therefore eigenvalues are real and the associated eigenvectors
are orthonormal.

3. As a consequence of the two previous points, the eigenvalues belong to [−1, 1].

Proposition 3.8. For all d-regular graph G, 1 is an eigenvalue of G.

Preuve:
−→
1 is eigenvector of G with eigenvalue 1. �

Proposition 3.9. If G is disconnected, then 1 has multiplicity greater than or equal to 2
as eigenvalue of G.

Preuve: If G is disconnected, it has at least 2 different connected components. Let S and
T be those components. Then,

−→
1S =



1
...
1
0
...
0


and
−→
1T =



0
...
0
1
...
1


are two different orthogonal eigenvectors of G for 1 as eigenvalue. �

Proposition 3.10. If 1 has multiplicity greater than or equal to 2, then G is disconnected.

Proposition 3.11. If G is bipartite, then −1 is eigenvalue of G.

3-3

INF561 Cours 3 — 23rd January Winter 2013

Preuve: As G is d-regular, we can organise its adjacency matrix such that


0 · · ·

· · · 0

 ·


−1
...
−1
1
...
1


=



1
...
1
−1
...
−1


�

Proposition 3.12. If −1 is eigenvalue of G, then G is bipartite.

Définition 3.13. λ2(G) = max
λ 6=1

λ eigenvalue of G

(λ).

Définition 3.14. G is a (d, λ)-expander if λ2(G) ≤ λ and G is d-regular. We want λ < 1
as small as possible.

Example: λ2(Kn) = 0, the adjacency matrix of the complete graph on n vertices being

1

n
·

1 · · · 1
...

. . .
...

1 · · · 1


Théorème 3.15. G is a (d, α)-vertex expander for some α > 0 if and only if G is a (d, λ)-
expander for some λ < 1. Correspondence between α and λ is independent of |G|.

Définition 3.16. G = {G1, G2, . . . , Gi, . . .} is a family of (d, λ)-expanders if each G ∈ G is
a (d, λ)-expander, λ < 1 and d being constants independent of |G|.

Efficient construction of expanders and proof of the theorem

Do expanders exist ? Yes, because random d-regular graphs are expanders. But what about
efficient deterministic constructions ?

Définition 3.17. G = {G1, G2, . . .} is computable in time t (t : N → N) if there exists an
algorithm A running in time t such that A(i, u) = {v|(u, v) neighbours in Gi} (which is a
list of size d). If |Gi| > |Gj| for all i > j, then the input size is in O(log2(|Gi|)).

Lemme 3.18 (Expander Mixing Lemma). If G is a (d, λ)-expander, then ∀S,T ⊆ V∣∣ |E(S, T)| − d |S| |T |
|V |

∣∣ 6 dλ
√
|S| |T |

where E(S, T)
d
= {(u, v) ∈ E, u ∈ S, v ∈ T}. In fact E

randomd−regular graph
[E (S, T)] =

d |S| |T |
n

.

3-4

INF561 Cours 3 — 23rd January Winter 2013

Preuve: Let M be the adjacency matrix of G. Let
−→
1S = (0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸

S

, 0, · · · , 0)T

First claim, |E(S, T)| = (
−→
1S|M

−→
1T) · d, since

(
−→
1S|M

−→
1T)d =

∑
u∈S

(# edges between u and T) = |E(S, T)|

Let ~x1, · · · , ~xn be orthonormal eigenvectors of M , with eigenvalues s.t|λ1| = 1 > |λ2| > · · · >
|λn|
Let

−→
1S =

n∑
i=1

αi~xi

−→
1T =

n∑
i=1

βi~xi

then

d(
−→
1S|M

−→
1T) = d

n∑
i,j=1

(αi~xi|Mβj ~xj)

= d
n∑

i,j=1

αiβjλj (~xi|~xj)

= d
n∑
i

λiαiβi

= d

(
λ1α1β1 +

n∑
i=2

λiαiβi

)

= d
|S| |T |
n

+ d
n∑
i=2

λiαiβi

3-5

INF561 Cours 3 — 23rd January Winter 2013

therefore,

∣∣ |E(S, T)| − d |S| |T |
|V |

∣∣ =

∣∣∣∣∣d
n∑
i=2

λiαiβi

∣∣∣∣∣
6 d

n∑
i=2

|λi| |αi| |βi|

6 dλ

n∑
i=2

|αi| |βi|

6 dλ

√√√√ n∑
i=2

|αi|2
√√√√ n∑

i=2

|βi|2
 (Cauchy-Schwartz inequality)

6 dλ

√√√√ n∑
i=1

|αi|2
√√√√ n∑

i=1

|βi|2

6 dλ
√
|S| |T | as ~x1, · · · , ~xn are orthonormal

�

Théorème 3.19. If A decides L in time T, then ∃ c, ∀δ, ∃ A′ deciding L in time O
((

T
δ

)c)
with error 6 δ, A′ using no more randomness than A.

Preuve: Assume G = {G1, · · · , Gn, · · · } is a family of (d, λ)-expanders, which is efficiently
computable. Assume |Gi| = 2i.

Définition 3.20. Given G, let Gl = (V,E ′), where {# edges between u,v in E ′}= {# path
of length l between u,v in E}.

Proposition 3.21. M
(
Gl
)

= M (G)l ⇒ λ2(G
l) =

(
λ2(G)

)l
and deg(Gl) = deg(G)l.

If G is computable in time t, then Gl = {Gl
1, G

l
2, · · · } is computable in time t′ 6 2dlt. So

if l is not too large, Gl remains efficient.
A′ : on input x, suppose A uses m (uniform) random bits.

• Set l =
log(12

δ)
2 log(1

λ)
.

• Pick u ∈ Gl
m at random.

• Output majority of {A (x, v) : (u, v) ∈ Gl
m}.

3-6

INF561 Cours 3 — 23rd January Winter 2013

Clearly, A′ uses m bits of randomness. The running time of A′:

since dl = d

log(12
δ)

2 log(1
λ) = 2

log(d)·log(12
δ)

2log(1
λ) = O

(
1
δc

)
then,

2dlt (m)︸ ︷︷ ︸
time to compute neighbours

+

time to runAonneighbours︷︸︸︷
dlT 6 O

(
T + t (m)

δc

)
6 O

(
T + T c

′

δc

)

Fix x, let
Bad = {v ∈ Gl

m : A(x, v) 6= L (x)}
Bad′ = {v ∈ Gl

m : A′(x, v) 6= L (x)}

We know |Bad| 6 1
3
· 2m. By the Expander Mixing Lemma,

E (Bad,Bad′)− dl |Bad| |Bad′|
2m

6 dlλl
√
|Bad| |Bad′| (3.1)

|E (Bad,Bad′)| =
∑

v∈Bad′
|E (Bad, {v})| >

∑
v∈Bad′

dl

2
= |Bad′| d

l

2
(3.2)

as v ∈ Bad′, it means that at least half of its dl neighbours in Gl
m make the algorithm A

output a wrong answer when they are used as random strings, that is to say that at least
half of the neighbours of v belong to Bad, and therefore |E (Bad, {v})| > dl

2
.

(3.1) (3.2)⇒ |Bad
′| dl

2
− dl |Bad| |Bad′|

2m
6 dlλl

√
|Bad| |Bad′|√

|Bad′|
(

1

2
− |Bad|

2m

)
6 λl

√
|Bad|

|Bad′| 6 λ2l |Bad|(
1
2
− |Bad|

2m

)2
6
λ2l 1

3
2m(

1
6

)2
6 12λ2l2m

6 δ2m

�

Remark: It is possible to efficiently reduce error in random algorithm without using addi-
tional randomness. Disadvantages in this approach:

• more time used;

• must constructs good expanders;

• δ must be at least 1
polynomial(n)

.

3-7

