
INF561: Using randomness in algorithms Spring 2012

Lecture 2 — 16th of January
Lecturer: Fréderic Magniez Scribe: Yan Wang and Bart van Merriënboer

2.1 Pattern Matching

Let u ∈ {0, 1}m be a pattern and w ∈ {0, 1}n a word where m ≤ n. The task is
to find the starting points i of occurences of the pattern u in w i.e. all the i such that
{w (i) , w (i+ 1) , . . . , w (i+m− 1)} = u.

A trivial greedy algorithm consists of verifying bits at each position i. This deterministic
algorithm has a complexity of O((n−m+ 1)m). Using automata we can obtain a better
deterministic algorithm with complexity O(m + n). Alternatively we can use fingerprinting
to construct a randomised algorithm with the same complexity.

We start by defining the polynomial Pu of the pattern u as

Pu =
m∑
j=1

u (j)xj−1

which allows us to compute fingerprints of u. We can also compute the fingerprint of a subset
vi = {w (i) , . . . , w (i+m− 1)} of w to compare with Pu. Our algorithm makes use of the
fact that given the polynomial Pvi it is very easy to calculate the polynomial Pvi+1

since

Pvi = w (i) + w (i+ 1)x+ . . .+ w (i+m− 1)xm−1

Pvi+1
= w (i+ 1) + w (i+ 1)x+ . . .+ w (i+m)xm−1

=
1

x
Pvi − w (i) + w (i+m)xm−1

For computational reasons we prefer to multiply instead of divide, so we use Pvi = Pvi+1
x+

w (i)−w (i+m)xm−1 and scan the word in reverse. We pick a prime p such that n3 ≤ p ≤ 2n3

and test whether the fingerprints are identical by checking whether (Pvi − Pu) (a) mod p = 0
for random sampled values of a ∈R {0, . . . , p− 1}.

2-1

INF561 Lecture 2 — 16th of January Spring 2012

Algorithm 1 Pattern matching

Input u ∈ {0, 1}m and w ∈ {0, 1}n where m ≤ n
Output {i | {w (i) , w (i+ 1) , . . . , w (i+m− 1)} = u}
p← prime number between n3 and 2n3

a← random element from S = {0, . . . , p− 1}
hu ← 0
b← 1
for i = 1 to m do . Calculate the fingerprint Pu (a) mod p

hu ← hu + b · u(i) mod p
b← b · a mod p

end for
hv ← 0
b← 1
for i = 1 to m do . Calculate the fingerprint Pvn−m+1 (a) mod p

hv ← hv + b · w (n−m+ i) mod p
b← b · a mod p

end for
if hu = hv then . Check whether the fingerprints match

return n−m+ 1
end if
c← am−1 mod p
for i = 1 to n−m do . Move to the left and update the fingerprint

hv ← (hv − c · w (n− i+ 1)) · a+ w (n−m+ 1− i)
if hu = hv then

return n−m+ 1− i
end if

end for

Looking at the size of the for-loops we can conclude that the complexity of the algorithm
is O (n+m) = O (n). It is a one-sided error algorithm because if there is a pattern occurence,
the fingerprints will always match and the algorithm will return the position i of the match.
If they do not match, the Schwartz-Zippel tells us that the probability of the fingerprints
matching is P (hu = hv | u 6= v) ≤ m

p
≤ n

n3 = 1
n2 . The algorithm compares a total of n−m+1

fingerprints, so it follows from Boole’s inequality that the probability of at least 1 of the
returned values of i being incorrect is less than or equal to

∑
n−m+1

1
n2 = O

(
1
n

)
.

2.2 Commutativity testing

Let G be a finite group and h1, h2, . . . , hn ∈ G. We wish to find an algorithm to determine
whether the group elements h1, h2, . . . , hn ∈ G commute, minimising the number of group
operations required to do so. Hence, the algorithm accepts if hi ◦hj = hj ◦hi for 1 ≤ i, j ≤ n
and rejects if not.

Let H = 〈h1, . . . , hn〉 be the subgroup H ⊆ G generated by the elements h1, h2, . . . , hn ∈
G. Note that H is abelian if and only if the generators h1, h2, . . . , hn commute.

2-2

INF561 Lecture 2 — 16th of January Spring 2012

Lemma 2.1. If H is non-abelian then

P
h,k∈H

(h ◦ k 6= k ◦ h) ≥ 1

4

Proof: If H is non-abelian then the center Z (H) = {h ∈ H | ∀k ∈ H, h ◦ k = k ◦ h} is a
proper subgroup of H. Let h /∈ Z (H), then the centralizer CH (h) = {k ∈ H | h ◦ k = k ◦ h}
is also a proper subgroup of H. By Lagrange’s theorem the orders of Z (H) and CH (h) must
divide H, so they are at most 1

2
|H|. Hence

P
h,k∈H

(h ◦ k 6= k ◦ h) = P
h,k∈H

(h /∈ Z (H) ∧ k /∈ CH (h))

= P
h,k∈H

(k /∈ CH (h) | h /∈ Z (H)) P
h∈H

(h /∈ Z (H))

≥ 1

2
· 1

2
=

1

4

�

For our algorithm we need a method to to sample randomly from H, which is a difficult
problem. We will prove here that for a random string of bits u ∈R {0, 1}n the element
h (u) = hu11 ◦ . . . ◦ hunn is random in the sense that for any proper subgroup K of H

P
u∈{0,1}n

Pr (h (u) ∈ K) ≤ 1

2

in which case our lemma holds.

Proof: Since K is a proper subgroup there exists hi /∈ K. Let i be the smallest number such
that hi /∈ K and write

h (u) =
(
hu11 ◦ . . . ◦ h

ui−1

i−1
)
◦ huii ◦

(
h
ui+1

i+1 ◦ . . . ◦ hunn
)

= l ◦ huii ◦ t

Note that l ∈ K by definition of i. We now have the two cases

t ∈ K P
u∈{0,1}

((l ◦ huii ◦ t) ∈ K) =
1

2

t /∈ K P
u∈{0,1}

((l ◦ huii ◦ t) ∈ K) ≤ 1

2

which allows us to conclude that P
ui∈{0,1}n

(h (u) ∈ K) ≤ 1
2
.

�

With this sampling method we can now write an algorithm with a one-sided error of 1
4

that requires an average of n
2

+ 2 = O (n) binary operations, with an upper bound of n+ 2.

In comparison, the deterministic algorithm requires 2

(
n
2

)
= n (n− 1) = O (n2) binary

operations to compare all possible pairs.

2-3

INF561 Lecture 2 — 16th of January Spring 2012

Algorithm 2 Commutativity testing

Input h1, . . . , hn ∈ G
Output boolean indicating whether hi ◦ hj = hj ◦ hi for all 1 ≤ i, j ≤ n
u, v ← random {0, 1}n
h← hu11 ◦ . . . ◦ hunn
k ← hv11 ◦ . . . ◦ hvnn
if h ◦ k = k ◦ h then

return true
else

return false
end if

2.3 Perfect matching in bipartite graphs

Definition 2.2. A balanced bipartite graph G = (U, V,E) is specified by two disjoint sets
of vertices, U and V where |U | = |V | = n, and a set of edges E between them.

Definition 2.3. A perfect matching is a subset of the set E such that every vertex of the
graph is incident to exactly one edge of the matching.

The best known deterministic algorithm to find a perfect matching of G is the Hop-
croft–Karp algorithm which has a complexity of O(

√
|U ∪ V | |E|) ≤ O

(
n5/2

)
. However,

using matrix representation of the graph G we can find randomised algorithms which perform
better. Let U = {1, . . . , n} and V = {1, . . . , n} then the biadjacency matrix A representing
G has entries

Aij =

{
1 if (i, j) ∈ E
0 if (i, j) /∈ E

i ∈ U, j ∈ V

This matrix has the property that its permanent is equal to the number of perfect matchings
of G.

perm (A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

However, computing the permanent of a matrix is #P-complete, and the fastest determi-
nistic algorithm to do so is Ryser’s formula which requires O (2nn) operations. The fastest

2-4

INF561 Lecture 2 — 16th of January Spring 2012

known approximation algorithm due to Jerrum, Sinclair and Vigoda, has a complexity of
approximately O (n10). So instead, we consider the determinant of A, which is easier to
compute

det (A) =
∑
σ∈Sn

sgn (σ)
n∏
i=1

Ai,σ(i)

From the definition we can see that if det (A) 6= 0 there exists at least one perfect matching.
However, the converse is not true, so instead of considering the biadjacency matrix we define
the Tutte matrix T of G as the n× n matrix with the entries

Ti,j =

{
xij if (i, j) ∈ E
0 if (i, j) /∈ E

1 ≤ i, j ≤ n

Now det (T) is a polynomial with |E| variables x = {xij | 1 ≤ i, j ≤ n}, a degree d ≤ n, and
coefficients of 0 and 1. Moreover, we have

det (T) = 0⇐⇒ @ perfect matching of G

where 0 is the zero polynomial.

Proof: If det(T) 6= 0 then ∃σ ∈ Sn such that
∏n

i=1 Ti,σ(i) 6= 0. This means that for this
permutation (i, σ (i)) ∈ E for all 1 ≤ i ≤ n. Hence the set M = {(i, σ(i))} is a perfect
matching.

If M is a perfect matching, then consider the permutation σ = {σ(i) = j | (i, j) ∈M}
where σ ∈ Sn. Since M ⊆ E this implies that

∏n
i=1 Ti,σ(i) 6= 0 and hence det(T) 6= 0 because

of the unique decomposition of det(T).
�

We can design a decision algorithm that determines whether there exist perfect mat-
chings of G by checking whether the determinant of its Tutte matrix is identical to the zero
polynomial. To do so, we use the Schwartz-Zippel lemma with S = {0, . . . , p− 1} where p is
prime and n2 ≤ p ≤ 2n2. We reduce the space complexity of the algorithm by testing whether
det (T) mod p = 0 instead of det (T) = 0. We use det (T (a)) to denote det (T |x=a).

Algorithm 3 Perfect matching of a bipartite graph

Input E ⊆ {1, . . . , n} × {1, . . . , n}
Output boolean indicating whether there exists a perfect matching of G
p← prime number between n2 and 2n2

T ← Tutte matrix of G
a← |E| random elements from S = {0, . . . , p− 1}
if det (T (a)) mod p = 0 then

return false
else

return true
end if

2-5

INF561 Lecture 2 — 16th of January Spring 2012

By the Schwartz-Zippel lemma we know that the chance of rejecting even though the de-
terminant is equal to the zero polynomial is less than or equal to d

|S| ≤
n
n2 = 1

n
. Furthermore,

the complexity of this algorithm depends on calculating the determinant of an n×n matrix,
requiring the same time as matrix multiplication, which Coppersmith-Winograd algorithms
can do in O (n2.3727).

2.4 st-connectivity

Undirected st-onnectivity (USTCON) is the decision problem asking whether two vertices
(s, t) ∈ V 2 in an undirected graph G = (V,E) are connected by a path. Let |V | = n and

|E| = m. Note that if we assume the graph is connected we have n− 1 ≤ m ≤ n(n−1)
2

.
The deterministic depth-first search (DFS) and breadth-search first (BFS) algorithms can

solve this problem in linear time complexity O (m+ n) = O (m) because in the worst case
scenario they will visit every edge and vertex. Their space complexity is O (n) as the algo-
rithms need to store their past and future search paths in the graph. The space complexity of
these algorithms can be problematic for very large graphs (for example, the Internet graph).
Therefore, we wish to find an algorithm with a smaller space complexity.

Definition 2.4. L (logarithmic-space, also known as LSPACE) is the complexity class
containing decision problems which can be solved by a deterministic Turing machine using
a logarithmic amount of memory space.

Definition 2.5. NL (non-deterministic logarithmic-space, also known as NSPACE) is the
complexity class containing decision problems which can be solved by a non-deterministic
Turing machine using a logarithmic amount of memory space.

Definition 2.6. RL (randomized logarithmic-space), sometimes called RLP (randomized
logarithmic-space polynomial-time), is the complexity class of computational complexity
theory problems solvable in logarithmic space and polynomial time with probabilistic Turing
machines with one-sided error.

Note that L ⊆ RL ⊆ NL. Considering the space complexity of the DFS and BFS algo-
rithms we know that USTCON ∈ NL. In fact, it has been shown in 2005 by Reingold that
USTCON ∈ L. However, here we will only prove the following theorem :

Theorem 2.7. USTCON ∈ RL.

To do so we consider a randomised algorithm.

Algorithm 4 USTCON Las Vegas Algorithm
Input s, t ∈ V
Output boolean indicating whether there exists a path from s to t
u← s
while u 6= t do

v ← random element from {v | (u, v) ∈ E}
u← v

end while
return true

2-6

INF561 Lecture 2 — 16th of January Spring 2012

The space complexity of this algorithm is O (log n) because it suffices to keep the current
vertex in memory, which requires a maximum of log2 (n) bits. If s and t are not connected
then the algorithm never terminates. If there exists a path from s to t in G then the expected
number of steps the algorithm requires is clearly less than or equal to the cover time C (G, u),
which is defined as the expected number of steps it takes to visit every vertex in the graph,
starting at u.

Theorem 2.8. Define C (G) as maxu∈V C (G, u). We have C (G) ≤ 4 |V | |E| = 4nm

Proof: To prove this we shall consider the random walk on a graph as a Markov chain with
a state space V and a transition matrix P where

Pij =

{
1

deg(i)
(i, j) ∈ E

0 otherwise

Let T be a totally ordered set (the steps in the random walk) and Xt ∈ V the position of the
random walk at step t ∈ T . Since all states v ∈ V are positive recurrent (every vertex will
be visited an infinite number of times, and the expected time to do so is finite) there exists a
unique stationary distribution, described by a vector π = (π1, . . . , πn) such that 0 ≤ πi ≤ 1
for all i ∈ V and ∑

i∈V

πi = 1

πi =
∑

(i,j)∈E

πj
1

deg (j)

Which is equivalent to πP = P . In fact, the stationary distribution is given by πi = deg(i)
2m

.
For u, v ∈ G we define the hitting time (or first hit time) as the average time it takes for

a random walk on G starting at u to reach v :

hu,v = E (inf {t ∈ T | Xt = v,X0 = u})

The return time of u, defined as hu,u, is actually related to the stationary distribution πu
and satisfies

hu,u =
1

πu
=

2m

deg (u)

The intuition behind this lies in the probability of Xt = u being constant, and hence resem-
bling a series of Bernoulli trials (biased coin tosses). The expected number of steps needed
to get one success is then given by the expected value of the geometric distribution, which
is 1

p
.

We can establish an upper bound on the hitting time hu,v where (u, v) ∈ E.

hv,v = 1 +
1

deg(v)

∑
(w,v)∈E

hw,v

≥ 1 +
1

deg(u)
hu,v

hu,v ≤ (hv,v − 1) deg (v)

≤ 2m

2-7

INF561 Lecture 2 — 16th of January Spring 2012

Now fix u ∈ V . By performing a depth-first search of graph G starting a u we obtain a
spanning tree of G which has n vertices and n− 1 edges. We can construct a tour T = (u1 =
u, u2, . . . , uN = u) of the tree such that (ui, ui+1) ∈ E and so that it covers all the vertices
of G. This tour passes each edge of the spanning tree twice, therefore N ≤ 2 (n− 1).

Note that C(G) is less than or equal to the average time it takes to travel from u1 to u2,
then from u2 to u3, etc. So C (G) ≤ hu1,u2 + . . . + huN−1,uN . For all i we have hui,ui+1

≤ 2m,
and thus

C(G) ≤ (N − 1) · (2m) < 4nm

�

We can use this upper bound of the expected runtime of algorithm 4 to convert it into a
Monte Carlo algorithm.

Algorithm 5 USTCON Monte Carlo Algorithm

Input s, t ∈ V , Tmax ∈ Z+

Output boolean indicating whether there exists a path from s to t
u← s
while u 6= t and number of iterations ≤ Tmax do

v ← random element from {v | (u, v) ∈ E}
u← v

end while
if u = t then

return true
else

return false
end if

If there is no path between s and t, the algorithm will always return false. As a corollary
to theorem 2.8 we have

Corollary 2.9. If T ≥ 8knm, then algorithm 5 has a one-sided error less than or equal to
2−k

Proof: Using Markov’s inequality and

C (G) = E

(
max
u∈V

min
t∈T

{
t ∈ T |

t⋃
s=0

Xs = V,X0 = u

})

we can see that the probability of the algorithm returning false because it has not found t
yet, even though there is a path between s and t at step T ≥ 8nm is

P

(
max
u∈V

min
t∈T

{
t ∈ T |

t⋃
s=0

Xs = V,X0 = u

}
≥ 8nm

)
≤ C (G)

8nm
<

1

2

2-8

INF561 Lecture 2 — 16th of January Spring 2012

We can run our algorithm for a longer time T ≥ 8knm, giving us a one-sided error of
2−k, since

P (t not reached at run k) = P (t not reached at run k | t not reached at run k − 1) · . . .
P (t not reached at run 2 | t not reached at run 1) ·
P (t not reached at run 1)

≤
(

1

2

)k
�

2.4.1 Examples

Linear Graph

Let V = {1, . . . , n} and E = {(i, i+ 1) | i ∈ {1, . . . , n− 1}}. By theorem 2.8 we have
C(G) ≤ 4 (n− 1)n = O (n2).

Complete Graph

In a complete graph, we have C(G) ≤ 4n · n(n−1)
2

= O (n3). But in fact, we can prove a
tighter bound of C(G) ∼ n log n.

Proof: In a complete graph the cover time is closely related to the coupon collector’s pro-
blem. Let τi denote the first step at which i vertices have been visited. The number of steps
it takes to reach a new vertex is

τi+1 − τi =
n− i
n− 1

Since these events are independent we have

E (τi+1 − τi) =
n− 1

n− i

and we can use the approximation of the harmonic series by the natural logarithm to show
that

E (τn) = E (τ1) +
n−1∑
i=1

E (τi+1 − τi) = 1 +
n−1∑
i=1

n− 1

n− i
= 1 + (n− 1)

n−1∑
i=1

1

i
≈ n log n as n→∞

�

Lollipop Graph

Lollipop graph is a graph as the conjunction of a linear graph (with n
2

vertices) and a
complete graph (also with n

2
vertices). We deduce from the last section that : C(G) ≤ O(n3).

The following graph is examples of Lollipop graphs.

2-9

INF561 Lecture 2 — 16th of January Spring 2012

Let s and t be left-most and right-most vertices of the linear graph. We can show that
h(s, t) = O(n3) and h(t, s) = O(n2), which shows an interesting property of asymmetry in
this graph.

2.5 Randomized algorithm for satisfiability : SAT

Definition 2.10. Let X1, X2, ..., Xn be n ≥ 1 logic variables. A literal l is of the form Xi or
Xi i.e. a literal is either a variable or the negation of a variable. A clause C is a disjunction
of literals, for example C = X1 ∨X2 ∨X3. A clause C containing at most k variables is also
called a k-clause. A SAT formula φ is of the form φ = C1∧C2∧ ...∧Cm where Ci are clauses.
A SAT formula φ is called a k-SAT formula if φ contains only k-clauses.

The k-SAT is a decision problem to decide if for a given k-SAT formula there exist values
of the boolean variables for which the formula is true.

We will pose the following theorems without proving them.

Theorem 2.11. 2-SAT ∈ P and k-SAT is NP-complete for all k ≥ 3

2-10

INF561 Lecture 2 — 16th of January Spring 2012

Theorem 2.12. 2-SAT can be solved by a deterministic algorithm with complexityO(n+m)
where n is the number of variables and m is the number of clauses.

The algorithm of the above theorem is first to construct a graph with literals of all
variables, and then to check whether a variable xi and xi are contained in the same strongly
connected component. Note that the second step can be completed within linear time using
Tarjan’s algorithm.

We are interested in designing a probabilistic algorithm to solve k-SAT which works for
all k.

Algorithm 6 Random k-SAT algorithm

Input a k-SAT formula φ, clauses C1, . . . , Cm, and literals (¬)X1, . . . , (¬)Xn . n = km
Output a boolean indicating whether there exists an interpretation that satisfies φ
a← any value in {0, 1}n . a = (X1, . . . , Xn)
while φ (a) = 0 do

j ← any integer such that Cj(a) = 0
i← random integer from {k | Xk is a variable of Cj}
Xk ← 1−Xk . Flip the bit of this variable in a

end while
return true

This algorithm will never terminate if there is no interpretation that satisfies φ i.e. φ(a) =
0 for all a. If there is an interpretation satisfying φ, the algorithm will always find it, but
there is no upper bound to its running time. Note that each iteration of the while-loop has
a complexity of O(mk) since it requires the evaluation of the entire formula, which has km
literals.

Theorem 2.13. If φ is 2-SAT and there exists an interpretation a such that φ(a) = 1, then
the average number of iterations needed to find a is ≤ 4n2.

Corollary 2.14. There exists an algorithm for 2-SAT with one-sided error 2−k and running
time 8kn2.

Proof: For a 2-SAT problem let s ∈ {0, 1}n such that φ(s) = 1. Define d(a, s) = |{ai 6= si | 1 ≤ i ≤ n}|.
If a = s then d(a, s) = 0 and in general d(a, s) ∈ {0, 1, ..., n}. Let Xi = d(a, s) after i itera-
tions.

If the algorithm has not stopped, we have

P (Xi+1 = n− 1 | Xi = n) = 1

P (Xi+1 = j − 1 | Xi = j) ≥ 1

2
for 1 ≤ j < n

The first statement is obvious because if all literals have the wrong value, changing one
will always decrease the distance. For the case where 1 ≤ j < n we can consider two cases :

– If C is a single literal, e.g. C = X5 ∨X5, the distance decreases with probability 1.

2-11

INF561 Lecture 2 — 16th of January Spring 2012

– If C has two literals, e.g. C = X2 ∨X7, the distance decreases with probability ≥ 1
2
,

because at least 1 of the 2 bits is wrong, and there is a probability of 1
2

that we flip
the right one.

�

Note that the algorithm we have constructed is similar to a random walk on a line, where
the upper bound of probability 1

2
is the case where either direction is equally likely. We know

that hn,0 is upper bounded by C(G) ≤ 4n2.
As we did with the USTCON algorithms, we can bound the runtime of the 2-SAT algo-

rithm by a time 8kn2 to construct an algorithm with a one-sided error of 2−k.

2-12

