INF 561: Using randomness in algorithms		Winter 2013
Lecture $1 - 9$ th January 2013		
Lecturer: Frédéric Magniez	Scribe: Lauriane Aufrant and	d Matthieu Vegreville

The goal of this course is to present a formal definition of randomized algorithms and some easy applications.

1.1 Formal basis

1.1.1 Typology of problems

Given an input x, the purpose of a problem is to search for an appropriate output:

- decision problem: ACCEPT or REJECT
- functional problem: F(x)
- relational problem: y such that $x\mathcal{R}y$

1.1.2 Deterministic and randomized algorithms

Deterministic algorithm

Goal:

- correctly solve the problem on all inputs
- efficiently: linear or polynomial time on input size

Randomized algorithm

A randomized algorithm, compared to a deterministic algorithm, has an additional input: the random variable r. We suppose that we have access to a source of uniform random bits or integers (which is basically equivalent).

Remarks:

- Behaviour depends on both x and r.
- Once r is fixed, the algorithm is deterministic.

Goal: find a randomized algo such that on all inputs:

- Monte Carlo algorithms: output is correct for most of random choices r, complexity is small for all random choices r
- Las Vegas algorithms: output is correct for all random choices r, complexity is small in average over random choices r

NB: We do not know yet how to generate random numbers with computers, we have only access to pseudo-random generators.

1.1.3 Typology of randomized algorithms

Definition 1.1. In this course we will study 3 types of randomized algorithms, presented here for a functional problem.

- 1. Algorithm A computes f without error and with average complexity T if for all inputs x:
 - for all random choices r, A(x,r) = f(x)
 - $\mathbb{E}[complexity(A(x,r))] \leq T$

NB: T is generally a function of size of x

Example: Quicksort with random pivot.

- 2. Algorithm A computes f without error, with probability $\delta < 1$ to abort and with complexity T if for all inputs x:
 - for all random choices r such that A(x,r) does not abort, A(x,r) = f(x)
 - for all random choices r, $complexity(A(x, r)) \leq T$
 - $\mathbb{P}[A(x,r) \ aborts] \leq \delta$

NB: δ is often $\frac{1}{2}$. The algorithm is generally run a few times with new random bits each time, until it terminates at least once: $\delta_k = \frac{1}{2^k}$

Example: Quicksort with random pivot and finite time of execution.

3. Algorithm A computes f with bounded error $\epsilon < \frac{1}{2}$ and complexity T if for all inputs x:

- $\mathbb{P}_{r}[A(x,r) \neq f(x)] \leq \epsilon$
- for all random choices r, $complexity(A(x, r)) \leq T$

Theorem 1.2. Types 1 and 2 are equivalent.

Proof: The basic idea for converting an algorithm to type 2 is to stop the algorithm when T becomes too large.

• Let A be an algorithm of type 1. Let c > 1 be some constant. Define B(x,r): Run A(x,r) and stop it after running time T. If A has terminated, output the output of A. Otherwise, abort.

If B(x,r) does not abort, then its output is correct. Running time of $B \leq cT$. Let $\tau(r)$ be the running time of A(x,r). $\mathbb{P}(B(x,r)aborts) = \mathbb{P}(\tau(r) \geq cT) \leq \frac{1}{c}$ because of Markov property, since $\tau(r) \geq 0$ and $\mathbb{E}[\tau(r)] \leq T$. We constructed an equivalent algorithm of type 2.

• Let A be an algorithm of type 2.

Define B(x): Run A(x, r) with fresh random bits r until A does not abort. Output the output of A.

B is always correct. A run of A aborts with probability $\delta < 1$.

$$\mathbb{P}(A(x,r) \ aborts \ k \ times) \le \delta^k$$

$$\mathbb{E}\left[running \ time \ of \ B\right] \leq \sum_{k=0}^{\infty} (\delta^k T) = \frac{T}{1-\delta} = 2T \ for \ \delta = \frac{1}{2}$$

We constructed an equivalent algorithm of type 1.

Definition 1.3. A randomized algorithm applied to a decision problem can have several types of error:

- 1. Algorithm A has a **one-sided error** ϵ if
 - if the appropriate output for x is ACCEPT, then $\mathbb{P}_r[A(x,r) \ accepts] = 1$
 - if the appropriate output for x is REJECT, then $\mathbb{P}_r[A(x,r) \ accepts] \leq \epsilon$

NB: In this case the algorithm is run a few times and x is accepted if it has been accepted by every execution. For $\epsilon = \frac{1}{2}$, $\epsilon_k = \frac{1}{2^k}$

- 2. Algorithm A has a **two-sided error** ϵ if
 - if the appropriate output for x is ACCEPT, then $\mathbb{P}_r[A(x,r) \ accepts] \ge 1 \epsilon$
 - if the appropriate output for x is REJECT, then $\mathbb{P}[A(x,r) \ accepts] \leq \epsilon$

NB: In this case the algorithm is run a few times and x is accepted if it has been accepted by most executions. Generally, $\epsilon = \frac{1}{3}$.

1.1.4 Complexity classes

Our interest lies in two complexity classes:

- 1. **ZPP complexity class**, with *zero-error* algorithms: algorithms of type 1 or 2 with T polynomial on input size and $\delta = \frac{1}{2}$ for type 2
- 2. BPP complexity class, with *bounded-error* algorithms: algorithms of type 3 with T polynomial on input size and $\epsilon = \frac{1}{3}$

1.2 Applications

1.2.1 Matrix multiplication

Decision problem:

- input: A, B and C, $n \times n$ matrices over an arbitrary ring
- output: decide if $A \times B = C$

Freivald's test:

- Choose $r \in \{0,1\}^n$
- Evaluate u = Cr, v = Br and w = Av
- Return ACCEPT if u = w, else REJECT

Theorem 1.4. Freivald's algorithm has a one-sided error:

- If AB = C, $\mathbb{P}[algorithm \ accepts] = 1$
- If $AB \neq C$, $\mathbb{P}[algorithm \ accepts] \leq \frac{1}{2}$

Since its running time is at most $3n^2$, it belongs to BPP complexity class.

Proof: Assume there are two indices *i* and *j* such that $(AB)_{ij} \neq C_{ij}$. Let D = C - AB. Then $D_{ij} \neq 0, D \neq 0$. We want to prove $\underset{r \in \{0,1\}^n}{\mathbb{P}} [Dr = 0] \leq \frac{1}{2}$.

$$(Dr)_i = \sum_k D_{ik} r_k = D_{ij} r_j + f((r_k)_{k \neq j})$$
$$\mathbb{P}[Dr = 0] \le \mathbb{P}[(Dr)_i = 0]$$

Fix r_1, \ldots, r_n excepts r_j . Then $v = f((r_k)_{k \neq j})$.

• If $v = -D_{ij}$: if $r_j = 0$ then $(Dr)_i \neq 0$, if $r_j = 1$ then $(Dr)_i = D_{ij} - D_{ij} = 0$. Conditional probability of $(Dr)_i = 0$ is $\frac{1}{2}$.

- If v = 0: if $r_j = 0$ then $(Dr)_i = 0$, if $r_j = 1$ then $(Dr)_i = D_{ij} \neq 0$. Conditional probability of $(Dr)_i = 0$ is $\frac{1}{2}$.
- Otherwise: for $r_j = 0, 1 \ (Dr)_i \neq 0$.

$$\mathbb{P}\left[(Dr)_i=0\right] \le \frac{1}{2}$$

1.2.2 Finding prime numbers

Primality testing

Decision problem:

- input: an integer $N \ge 2$
- output: decide if N is prime

The sieve of Eratosthenes gives a result in \sqrt{N} steps which is too long.

Theorem 1.5. Fermat's little theorem: p prime number $\Rightarrow \forall a \in [1, p-1], a^{p-1} = 1[p]$

Two random primality tests are based on the above theorem:

- Miller-Rabin test: $O((\log N)^2)$ running time
- Solovay-Strassen test: $O((\log N)^2)$ running time

Tentative algorithm

Lemma 1.6. Assume there is $1 \leq a < N$ such that $a \wedge N = 1$ and $a^{N-1} \neq 1[N]$. Then $\mathbb{P}_{1 \leq a < N}[a^{N-1} = 1[N] | a \wedge N = 1] \leq \frac{1}{2}$

Primality test algorithm:

- Input: $N \ge 2$
- Select a random $a \in [1, N-1]$
- If $a \wedge N \neq 1$ then reject (in this case N is not prime, because $(a \wedge N)|N$)
- Compute a^{N-1} with rapid exponentiation: $a^{2r} = (a^r)^2$, $a^{2r+1} = a(a^r)^2$
- Accept if $a^{N-1} = 1 [N]$, otherwise reject

Remarks:

- Running time is $O(\log N)$.
- If N is prime then the algorithm accepts N with probability 1.

Corollary 1.7. Assume there is $1 \le a < N$ such that $a \land N = 1$ and $a^{N-1} \ne 1[N]$. Then $\mathbb{P}(algorithm \ accepts \ N) \le \frac{1}{2}$

Proof: Take N non prime such that there is $1 \le a < N$ such that $a \land N = 1$ and $a^{N-1} \ne 1 [N]$

$$\mathbb{P}_{a}(algorithm \ accepts \ N) = \mathbb{P}_{a}(a \land N = 1 \ and \ a^{N-1} = 1 \ [N])$$
$$= \underbrace{\mathbb{P}_{a}(a^{N-1} = 1 \ [N] \ |a \land N = 1)}_{\leq \frac{1}{2}} \times \underbrace{\mathbb{P}_{a}(a \land N = 1)}_{\leq 1}$$
$$\leq \frac{1}{2}$$

Definition 1.8. An integer N is a Carmichael number if there is $1 \le a < N$ such that $a \land N = 1$ and $a^{N-1} \ne 1[N]$ and N is not prime.

The smallest Carmichael number is $561 = 3 \times 11 \times 17$

Miller-Rabin test

Lemma 1.9. If p is prime then the only solution of $x^2 = 1 [p]$ are $\pm 1 \mod p$.

Algorithm:

- Input: $N \ge 2$
- If N = 2, ACCEPT. Otherwise if 2|N, REJECT.
- Take $a \in [2, N-1]$ uniformly at random.
- If $a \wedge N \neq 1$, REJECT
- Let $N 1 = 2^t u$ $(t \ge 1$ since N is odd). Compute $b = a^u$. Let $i \le t$ be the smallest integer such that $b^{2^i} = 1$.
- If *i* does not exist, REJECT (since $b^{2^t} \neq 1 [N]$, Fermat's test fails)
- If i = 0 or $b^{2^{i-1}} = -1$, ACCEPT
- Otherwise, REJECT

Remark: Running time is $O(\log N)$.

Prime finding algorithm

Relational problem:

- input: integer N
- output: prime $p \in [N, 2N]$

Theorem 1.10. Let $\pi(x)$ be the number of prime numbers lower than x. Then $\pi(x) \sim \frac{x}{\ln x}$ while $x \to +\infty$

Algorithm:

- Take a random $p \in [N, 2N]$
- Check if p is prime
- If p is prime, output p
- If not, start again

Analysis: The number of primes between N and 2N is $\pi(2N) - \pi(N-1) \sim \frac{2N}{\ln 2N} - \frac{N}{\ln N} \sim \frac{N}{\ln N}$. Therefore p is prime with probability $\sim \frac{1}{\ln N}$.

Lemma 1.11. Let X_1, X_2, \ldots, X_n be a sequence of random variables in 0,1 such that $\forall i, \mathbb{P}(X_i = 1) \ge p$ and T be the first i such that $X_i = 1$. Then $\mathbb{E}[T] \le \frac{1}{p}$

The expected number of iterations before finding a prime is $\sim \ln N$. The expected time complexity of the algorithm is $O(\log N) \times (primality test complexity)$.

1.2.3 Polynomial identity testing

Problem

- input: two polynomials $P(X_1, X_2, \ldots, X_n), Q(X_1, X_2, \ldots, X_n)$ of degree $\leq d$
- output: decide if P = Q

Representation of P and Q: P and Q are represented as a black box, such that they can be evaluated efficiently, given a_1, a_2, \ldots, a_n The complexity of an algorithm is the number of evaluations of P and Q.

Remark: Checking if P = Q can be done by expanding them but it will cost an exponential time in their representation size.

Lemma 1.12. Schwartz-Zippel: Let F be a field and $S \subset F$. Let $P(X_1, \ldots, X_n)$ be a non-zero polynomial of degree $\leq d$. Then $\underset{a_1,\ldots,a_n \in S}{\mathbb{P}}(P(a_1,\ldots,a_n)=0) \leq \frac{d}{|S|}$

Proof: By induction on n. n = 1 is easy since P has at most d roots.

Algorithm 1

- $S = \{1, 2, 3, \dots, 2d\}$
- Select $a_1, \ldots, a_n \in S$ at random
- Accept if $P(a_1,\ldots,a_n) = Q(a_1,\ldots,a_n)$
- Reject otherwise

Analysis:

- Complexity: 2 evaluations.
- If P = Q then the algorithm accepts with probability 1
- If $P \neq Q$ then $\mathbb{P}(algorithm \ accepts) \leq \frac{d}{|S|} \leq \frac{1}{2}$ with Schwartz-Zippel's lemma

Algorithm 2

Assume the greatest coefficient of P and Q is lower than M.

Issue: Find p such that $P = Q \Leftrightarrow P = Q \mod p$

Then take $p \ge 2M$. In order to adapt the previous algorithm, we also need $p \ge 2d$. First step: Find a prime between N and 2N where N is the maximum of 2d and 2M. Then it is same algorithm than the first one but we accept if $P(a_1, \ldots, a_n) = Q(a_1, \ldots, a_n) \mod p$

1.2.4 Fingerprints

Problem

- There are 2 players A and B.
- A's input: u, sequence of n bits
- B's input: v, sequence of n bits
- output: decide if u = v
- complexity = number of bits exchanged between A and B

A naive solution would be: A sends u to B. But it costs n bits.

Hashing

We define two polynomials P_u and P_v :

$$u = u_0, u_1, \dots, u_{n-1}$$

$$v = v_0, v_1, \dots, v_{n-1}$$

$$P_u = u_0 + u_1 X + \dots + u_{n-1} X^{n-1}$$

$$P_v = v_0 + v_1 X + \dots + v_{n-1} X^{n-1}$$

Remark: $u = v \Leftrightarrow P_u = P_v$ Random hash value:

- Take a prime p between n^2 and $2n^2$.
- Select a random a between 0 and p-1.
- $P_u(a) \mod p$ is the fingerprint of u in $a \mod p$.

Protocol

Algorithm:

- 1. A selects p and a as described above
- 2. A sends $P_u(a) \mod p$ to B
- 3. B checks if $P_u(a) = P_v(a)[p]$. If yes, B accepts. Else, B rejects.

Remarks:

- Number of exchanged bits: $6 \log n$
- If u = v, B accepts with probability 1. Otherwise, B accepts with probability $\leq \frac{1}{n}$.