INF 561: Using randomness in algorithms Winter 2013
Lecture 1 — 9th January 2013

Lecturer: Frédéric Magniez Scribe: Lauriane Aufrant and Matthieu Vegreville

The goal of this course is to present a formal definition of randomized algorithms and some
easy applications.

1.1 Formal basis

1.1.1 Typology of problems

Given an input z, the purpose of a problem is to search for an appropriate output:
e decision problem: ACCEPT or REJECT
e functional problem: F(z)

e relational problem: y such that ¥Ry

1.1.2 Deterministic and randomized algorithms

Deterministic algorithm

Input: x — Algorithm —— Output

Goal:
e correctly solve the problem on all inputs

e cfficiently: linear or polynomial time on input size

Randomized algorithm

Input: x —— Algorithm —— Output

T

Random bits / integers: r

1-1

INF 561 Lecture 1 — 9th January 2013 Winter 2013

A randomized algorithm, compared to a deterministic algorithm, has an additional input:
the random variable r. We suppose that we have access to a source of uniform random bits
or integers (which is basically equivalent).

Remarks:

e Behaviour depends on both x and r.
e Once r is fixed, the algorithm is deterministic.
Goal: find a randomized algo such that on all inputs:

e Monte Carlo algorithms: output is correct for most of random choices r, complexity is
small for all random choices r

e Las Vegas algorithms: output is correct for all random choices r, complexity is small
in average over random choices r

NB: We do not know yet how to generate random numbers with computers, we have only
access to pseudo-random generators.

1.1.3 Typology of randomized algorithms

Definition 1.1. In this course we will study 3 types of randomized algorithms, presented
here for a functional problem.

1. Algorithm A computes f without error and with average complexity T if for all inputs
x:
e for all random choices r, A(x,r) = f(x)

o E [complexity(A(z,r))] <T

NB: T is generally a function of size of x
Example: Quicksort with random pivot.
2. Algorithm A computes f without error, with probability 6 < 1 to abort and with
complexity T' if for all inputs x:
e for all random choices r such that A(z,r) does not abort, A(xz,r) = f(x)

e for all random choices r, complexity(A(z,r)) < T

o P[A(z,r) aborts] <o
NB: § is often % The algorithm is generally run a few times with new random bits
each time, until it terminates at least once: 0, = 2%
Example: Quicksort with random pivot and finite time of execution.

3. Algorithm A computes f with bounded error € < % and complexity T' if for all inputs
x:

1-2

INF 561 Lecture 1 — 9th January 2013 Winter 2013

o PlA(z,r) # f(x)] <€

e for all random choices r, complexity(A(z,r)) < T
Theorem 1.2. Types 1 and 2 are equivalent.
Proof: The basic idea for converting an algorithm to type 2 is to stop the algorithm when
T becomes too large.

e Let A be an algorithm of type 1. Let ¢ > 1 be some constant.

Define B(x,r): Run A(x,r) and stop it after running time 7. If A has terminated,
output the output of A. Otherwise, abort.

If B(z,r) does not abort, then its output is correct. Running time of B < ¢T'. Let
7(r) be the running time of A(z,r). P(B(x,r)aborts) = P(r(r) > ¢T) < % because

of Markov property, since 7(r) > 0 and E[r(r)] < T. We constructed an equivalent
algorithm of type 2.

e Let A be an algorithm of type 2.

Define B(x): Run A(z,r) with fresh random bits r until A does not abort. Output
the output of A.

B is always correct. A run of A aborts with probability § < 1.
P(A(z,7) aborts k times) < 6"

T

E [running time of B] < Z(&kT) =13

k=0

1
:2Tf07“5:§

We constructed an equivalent algorithm of type 1.

U

Definition 1.3. A randomized algorithm applied to a decision problem can have several
types of error:

1. Algorithm A has a one-sided error ¢ if
e if the appropriate output for x is ACCEPT, then P [A(x,r) accepts] = 1
e if the appropriate output for x is REJECT, then P [A(z,r) accepts] < €

NB: In this case the algorithm is run a few times and x is accepted if it has been
accepted by every execution. For e = 5, €, = 3¢
2. Algorithm A has a two-sided error ¢ if

e if the appropriate output for x is ACCEPT, then P [A(x,r) accepts] > 1 — ¢

e if the appropriate output for x is REJECT, then P [A(z,r) accepts] < €

NB: In this case the algorithm is run a few times and x is accepted if it has been

accepted by most executions. Generally, € = %

1-3

INF 561 Lecture 1 — 9th January 2013 Winter 2013

1.1.4 Complexity classes

Our interest lies in two complexity classes:

1. ZPP complexity class, with zero-error algorithms:

algorithms of type 1 or 2 with 7" polynomial on input size and § = % for type 2

2. BPP complexity class, with bounded-error algorithms:

algorithms of type 3 with T" polynomial on input size and € = %

1.2 Applications

1.2.1 Matrix multiplication

Decision problem:
e input: A, B and C, n X n matrices over an arbitrary ring
e output: decide if A x B =C
Freivald’s test:
e Choose r € {0,1}"
e Evaluate u = Cr, v = Br and w = Av

e Return ACCEPT if u = w, else REJECT

Theorem 1.4. Freivald’s algorithm has a one-sided error:
e If AB = C, Plalgorithm accepts] = 1
o If AB # C, Plalgorithm accepts] < 3

Since its running time is at most 3n?, it belongs to BPP complexity class.

Proof: Assume there are two indices ¢ and j such that (AB);; # C;;. Let D = C — AB.
Then D;; # 0, D # 0. We want to prove P [Dr=0] < 1.

re{0,1}"
(Dr)s =Y Digre = Dijrj + f((ri)iz)
k

P[Dr =0] <P[(Dr); = 0]
Fix rqy,...,r, excepts rj. Then v = f((ri)rz;)-

o If v = —D” if ri = 0 then (DT')Z ;é O, if ri = 1 then (DT)Z = D” - D” = 0.
Conditional probability of (Dr); =0 is 3.

1-4

INF 561 Lecture 1 — 9th January 2013 Winter 2013

o If v =0: if r; = 0 then (Dr); = 0, if r; = 1 then (Dr); = D;; # 0. Conditional

probability of (Dr); =0 is 3.

e Otherwise: for r; = 0,1 (Dr); # 0.

1
P[(Dr); =0] < B

1.2.2 Finding prime numbers
Primality testing
Decision problem:
e input: an integer N > 2
e output: decide if N is prime
The sieve of Eratosthenes gives a result in v/N steps which is too long.

Theorem 1.5. Fermat’s little theorem: p prime number = Va € [1,p — 1] ,a?~" = 1 [p]

Two random primality tests are based on the above theorem:
e Miller-Rabin test: O((log N)?) running time

e Solovay-Strassen test: O((log N)?) running time

Tentative algorithm
Lemma 1.6. Assume there is 1
P [a¥'=1[N]laAN=1]<

1<a<N

< a < N such that a AN = 1 and a™~' # 1[N]. Then
1
2

Primality test algorithm.:

e Input: N >2

Select a random a € [1, N — 1]

If a AN # 1 then reject (in this case N is not prime, because (a A N)|N)

Compute a”¥~! with rapid exponentiation: a?" = (a")?, a*** = a(a")?

Accept if a1 = 1[N], otherwise reject

Remarks:
e Running time is O(log N).

e If N is prime then the algorithm accepts N with probability 1.

1-5

INF 561 Lecture 1 — 9th January 2013 Winter 2013

Corollary 1.7. Assume there is 1 < a < N such that a AN =1 and a”~! # 1[N]. Then
P(algorithm accepts N) < 1

Proof: Take N non prime such that thereis 1 < a < N such that aAN = 1 and a™ ! # 1[N]

P(algorithm accepts N) = P(a AN =1anda" "' = 1[N])

= P(@" '=1[N]jaAN=1)xP(aAN =1)

g

<1

(2

4

IN
Nl

1

IA

O

Definition 1.8. An integer N is a Carmichael number if there is 1 < a < N such that
a AN =1 and a” ' #1[N] and N is not prime.

The smallest Carmichael number is 561 =3 x 11 x 17

Miller-Rabin test
Lemma 1.9. If p is prime then the only solution of x? = 1[p| are £1 mod p.
Algorithm.:

e Input: N >2

o If N =2 ACCEPT. Otherwise if 2| N, REJECT.

e Take a € [2, N — 1] uniformly at random.

e Ifa AN #1, REJECT

o Let N —1 =2 (t > 1 since N is odd). Compute b = a". Let i <t be the smallest
integer such that %" = 1.

e If i does not exist, REJECT (since b* # 1[N], Fermat’s test fails)
o Ifi=0o0rb ' =—1, ACCEPT
e Otherwise, REJECT

Remark: Running time is O(log N).

1-6

INF 561 Lecture 1 — 9th January 2013 Winter 2013

Prime finding algorithm
Relational problem.:

e input: integer N

e output: prime p € [N, 2N]

Theorem 1.10. Let 7(x) be the number of prime numbers lower than x. Then w(z) ~ %

) Inx
while x — 400

Algorithm:
e Take a random p € [N, 2N]
e Check if p is prime
e If p is prime, output p

e If not, start again

Analysis: The number of primes between N and 2N is 7(2N) —m(N —1) ~ 20— N~ I
Therefore p is prime with probability ~ ﬁ

Lemma 1.11. Let X, X,,..., X, be a sequence of random variables in 0,1 such that
Vi,P(X; = 1) > p and T be the first i such that X; = 1. Then E[T] < 117

The expected number of iterations before finding a prime is ~ In N. The expected time
complexity of the algorithm is O(log N) x (primality test complexity).

1.2.3 Polynomial identity testing
Problem
e input: two polynomials P(X7, Xs, ..., X,), Q(X1, Xs,..., X,,) of degree < d

e output: decide if P = Q

Representation of P and (Q: P and () are represented as a black box, such that they can
be evaluated efficiently, given ay, as, . .., a,, The complexity of an algorithm is the number of
evaluations of P and Q).

Remark: Checking if P =) can be done by expanding them but it will cost an exponential
time in their representation size.

Lemma 1.12. Schwartz-Zippel: Let F' be a field and S C F. Let P(Xy,...,X,) be a
non-zero polynomial of degree < d. Then P S(P(al, coa,) =0) < %
an€

Proof: By induction on n. n =1 is easy since P has at most d roots. 0

1-7

INF 561 Lecture 1 — 9th January 2013

Winter 2013

Algorithm 1
o S=1{1,2,3,...,2d}
e Select aq,...,a, € S at random
e Accept if P(ay,...,a,) = Q(ay,...,a,)
e Reject otherwise
Analysis:
e Complexity: 2 evaluations.

e If P = () then the algorithm accepts with probability 1

o If P+ @ then P(algorithm accepts) < & < % with Schwartz-Zippel’s lemma

|5

Algorithm 2

Assume the greatest coefficient of P and () is lower than M.
Issue: Find p such that P=0Q < P = mod p

Then take p > 2M. In order to adapt the previous algorithm, we also need p > 2d.
First step: Find a prime between N and 2N where N is the maximum of 2d and 2M.

Then it is same algorithm than the first one but we accept if P(ay, ..

mod p

1.2.4 Fingerprints
Problem

e There are 2 players A and B.

e A’s input: u, sequence of n bits

B’s input: v, sequence of n bits

output: decide if u =v

complexity = number of bits exchanged between A and B

A naive solution would be: A sends u to B. But it costs n bits.

1-8

San) = Qay, ..., ap)

INF 561 Lecture 1 — 9th January 2013 Winter 2013

Hashing
We define two polynomials P, and P,:

U = Up, Uty .-, Up-1
v

= V,V1,...,Un-1

P, = uy+wu X+ F+u,_ X"
PU = Uo+U1X+"'—|—Un_1Xn_1

Remark: w=v < P, =P,
Random hash value:

e Take a prime p between n? and 2n?.
e Select a random a between 0 and p — 1.

e P,(a) mod p is the fingerprint of w in @ mod p.

Protocol

Algorithm:

1. A selects p and a as described above

2. A sends P,(a) mod p to B

3. B checks if P,(a) = P,(a)[p]. If yes, B accepts. Else, B rejects.
Remarks:

e Number of exchanged bits: 6logn

o If u = v, B accepts with probability 1. Otherwise, B accepts with probability < %

1-9

