| INF 561: Using randomness in algorithms | Winter 2013 |
| :--- | ---: | ---: |
| Lecture $1-9$ 9th January 2013 | |
| Lecturer: Frédéric Magniez | Scribe: Lauriane Aufrant and Matthieu Vegreville |

The goal of this course is to present a formal definition of randomized algorithms and some easy applications.

1.1 Formal basis

1.1.1 Typology of problems

Given an input x, the purpose of a problem is to search for an appropriate output:

- decision problem: ACCEPT or REJECT
- functional problem: $F(x)$
- relational problem: y such that $x \mathcal{R} y$

1.1.2 Deterministic and randomized algorithms

Deterministic algorithm

Input: $\mathrm{x} \longrightarrow$ Algorithm \longrightarrow Output

Goal:

- correctly solve the problem on all inputs
- efficiently: linear or polynomial time on input size

Randomized algorithm

Input: $\mathrm{x} \longrightarrow$ Algorithm $_{\uparrow}^{\text {Random bits / integers: } \mathrm{r}}$ (C

A randomized algorithm, compared to a deterministic algorithm, has an additional input: the random variable r. We suppose that we have access to a source of uniform random bits or integers (which is basically equivalent).
Remarks:

- Behaviour depends on both x and r.
- Once r is fixed, the algorithm is deterministic.

Goal: find a randomized algo such that on all inputs:

- Monte Carlo algorithms: output is correct for most of random choices r, complexity is small for all random choices r
- Las Vegas algorithms: output is correct for all random choices r, complexity is small in average over random choices r

NB: We do not know yet how to generate random numbers with computers, we have only access to pseudo-random generators.

1.1.3 Typology of randomized algorithms

Definition 1.1. In this course we will study 3 types of randomized algorithms, presented here for a functional problem.

1. Algorithm A computes f without error and with average complexity T if for all inputs x :

- for all random choices $r, A(x, r)=f(x)$
- $\underset{r}{\mathbb{E}}[\operatorname{complexity}(A(x, r))] \leq T$

NB: T is generally a function of size of x
Example: Quicksort with random pivot.
2. Algorithm A computes f without error, with probability $\delta<1$ to abort and with complexity T if for all inputs x :

- for all random choices r such that $A(x, r)$ does not abort, $A(x, r)=f(x)$
- for all random choices r, complexity $(A(x, r)) \leq T$
- $\underset{r}{\mathbb{P}}[A(x, r)$ aborts $] \leq \delta$

NB: δ is often $\frac{1}{2}$. The algorithm is generally run a few times with new random bits each time, until it terminates at least once: $\delta_{k}=\frac{1}{2^{k}}$
Example: Quicksort with random pivot and finite time of execution.
3. Algorithm A computes f with bounded error $\epsilon<\frac{1}{2}$ and complexity T if for all inputs x :

- $\underset{r}{\mathbb{P}}[A(x, r) \neq f(x)] \leq \epsilon$
- for all random choices r, complexity $(A(x, r)) \leq T$

Theorem 1.2. Types 1 and 2 are equivalent.
Proof: The basic idea for converting an algorithm to type 2 is to stop the algorithm when T becomes too large.

- Let A be an algorithm of type 1 . Let $c>1$ be some constant.

Define $B(x, r)$: Run $A(x, r)$ and stop it after running time T. If A has terminated, output the output of A. Otherwise, abort.
If $B(x, r)$ does not abort, then its output is correct. Running time of $B \leq c T$. Let $\tau(r)$ be the running time of $A(x, r) \cdot \underset{r}{\mathbb{P}}(B(x, r)$ aborts $)=\underset{r}{\mathbb{P}}(\tau(r) \geq c T) \leq \frac{1}{c}$ because of Markov property, since $\tau(r) \geq 0$ and $\underset{r}{\mathbb{E}}[\tau(r)] \leq T$. We constructed an equivalent algorithm of type 2.

- Let A be an algorithm of type 2 .

Define $B(x)$: Run $A(x, r)$ with fresh random bits r until A does not abort. Output the output of A.
B is always correct. A run of A aborts with probability $\delta<1$.

$$
\begin{gathered}
\mathbb{P}(A(x, r) \text { aborts } k \text { times }) \leq \delta^{k} \\
\mathbb{E}[\text { running time of } B] \leq \sum_{k=0}^{\infty}\left(\delta^{k} T\right)=\frac{T}{1-\delta}=2 T \text { for } \delta=\frac{1}{2}
\end{gathered}
$$

We constructed an equivalent algorithm of type 1 .

Definition 1.3. A randomized algorithm applied to a decision problem can have several types of error:

1. Algorithm A has a one-sided error ϵ if

- if the appropriate output for x is $A C C E P T$, then $\underset{r}{\mathbb{P}}[A(x, r)$ accepts $]=1$
- if the appropriate output for x is $R E J E C T$, then $\underset{r}{\mathbb{P}}[A(x, r)$ accepts $] \leq \epsilon$

NB: In this case the algorithm is run a few times and x is accepted if it has been accepted by every execution. For $\epsilon=\frac{1}{2}, \epsilon_{k}=\frac{1}{2^{k}}$
2. Algorithm A has a two-sided error ϵ if

- if the appropriate output for x is $A C C E P T$, then $\underset{r}{\mathbb{P}}[A(x, r)$ accepts $] \geq 1-\epsilon$
- if the appropriate output for x is $R E J E C T$, then $\underset{r}{\mathbb{P}}[A(x, r)$ accepts $] \leq \epsilon$

NB: In this case the algorithm is run a few times and x is accepted if it has been accepted by most executions. Generally, $\epsilon=\frac{1}{3}$.

1.1.4 Complexity classes

Our interest lies in two complexity classes:

1. ZPP complexity class, with zero-error algorithms:
algorithms of type 1 or 2 with T polynomial on input size and $\delta=\frac{1}{2}$ for type 2
2. BPP complexity class, with bounded-error algorithms:
algorithms of type 3 with T polynomial on input size and $\epsilon=\frac{1}{3}$

1.2 Applications

1.2.1 Matrix multiplication

Decision problem:

- input: A, B and $C, n \times n$ matrices over an arbitrary ring
- output: decide if $A \times B=C$

Freivald's test:

- Choose $r \in\{0,1\}^{n}$
- Evaluate $u=C r, v=B r$ and $w=A v$
- Return ACCEPT if $u=w$, else REJECT

Theorem 1.4. Freivald's algorithm has a one-sided error:

- If $A B=C, \mathbb{P}[$ algorithm accepts $]=1$
- If $A B \neq C, \mathbb{P}[$ algorithm accepts $] \leq \frac{1}{2}$

Since its running time is at most $3 n^{2}$, it belongs to BPP complexity class.
Proof: Assume there are two indices i and j such that $(A B)_{i j} \neq C_{i j}$. Let $D=C-A B$. Then $D_{i j} \neq 0, D \neq 0$. We want to prove $\underset{r \in\{0,1\}^{n}}{\mathbb{P}}[D r=0] \leq \frac{1}{2}$.

$$
\begin{gathered}
(D r)_{i}=\sum_{k} D_{i k} r_{k}=D_{i j} r_{j}+f\left(\left(r_{k}\right)_{k \neq j}\right) \\
\mathbb{P}[D r=0] \leq \mathbb{P}\left[(D r)_{i}=0\right]
\end{gathered}
$$

Fix r_{1}, \ldots, r_{n} excepts r_{j}. Then $v=f\left(\left(r_{k}\right)_{k \neq j}\right)$.

- If $v=-D_{i j}$: if $r_{j}=0$ then $(D r)_{i} \neq 0$, if $r_{j}=1$ then $(D r)_{i}=D_{i j}-D_{i j}=0$. Conditional probability of $(D r)_{i}=0$ is $\frac{1}{2}$.
- If $v=0$: if $r_{j}=0$ then $(D r)_{i}=0$, if $r_{j}=1$ then $(D r)_{i}=D_{i j} \neq 0$. Conditional probability of $(D r)_{i}=0$ is $\frac{1}{2}$.
- Otherwise: for $r_{j}=0,1(D r)_{i} \neq 0$.

$$
\mathbb{P}\left[(D r)_{i}=0\right] \leq \frac{1}{2}
$$

1.2.2 Finding prime numbers

Primality testing

Decision problem:

- input: an integer $N \geq 2$
- output: decide if N is prime

The sieve of Eratosthenes gives a result in \sqrt{N} steps which is too long.
Theorem 1.5. Fermat's little theorem: p prime number $\Rightarrow \forall a \in[1, p-1], a^{p-1}=1[p]$
Two random primality tests are based on the above theorem:

- Miller-Rabin test: $O\left((\log N)^{2}\right)$ running time
- Solovay-Strassen test: $O\left((\log N)^{2}\right)$ running time

Tentative algorithm

Lemma 1.6. Assume there is $1 \leq a<N$ such that $a \wedge N=1$ and $a^{N-1} \neq 1[N]$. Then $\underset{1 \leq a<N}{\mathbb{P}}\left[a^{N-1}=1[N] \mid a \wedge N=1\right] \leq \frac{1}{2}$

Primality test algorithm:

- Input: $N \geq 2$
- Select a random $a \in[1, N-1]$
- If $a \wedge N \neq 1$ then reject (in this case N is not prime, because $(a \wedge N) \mid N)$
- Compute a^{N-1} with rapid exponentiation: $a^{2 r}=\left(a^{r}\right)^{2}, a^{2 r+1}=a\left(a^{r}\right)^{2}$
- Accept if $a^{N-1}=1[N]$, otherwise reject

Remarks:

- Running time is $O(\log N)$.
- If N is prime then the algorithm accepts N with probability 1.

Corollary 1.7. Assume there is $1 \leq a<N$ such that $a \wedge N=1$ and $a^{N-1} \neq 1[N]$. Then $\underset{a}{\mathbb{P}}($ algorithm accepts $N) \leq \frac{1}{2}$

Proof: Take N non prime such that there is $1 \leq a<N$ such that $a \wedge N=1$ and $a^{N-1} \neq 1[N]$

$$
\begin{aligned}
\underset{a}{\mathbb{P}}(\text { algorithm accepts } N) & =\underset{\leq}{\mathbb{P}\left(a \wedge N=1 \text { and } a^{N-1}=1[N]\right)} \\
& =\underbrace{\mathbb{P}\left(a^{N-1}=1[N] \mid a \wedge N=1\right)}_{\leq \frac{1}{2}} \times \underbrace{\underset{a}{\mathbb{P}}(a \wedge N=1)}_{\leq 1} \\
& \leq \frac{1}{2}
\end{aligned}
$$

Definition 1.8. An integer N is a Carmichael number if there is $1 \leq a<N$ such that $a \wedge N=1$ and $a^{N-1} \neq 1[N]$ and N is not prime.

The smallest Carmichael number is $561=3 \times 11 \times 17$

Miller-Rabin test

Lemma 1.9. If p is prime then the only solution of $x^{2}=1[p]$ are $\pm 1 \bmod p$.
Algorithm:

- Input: $N \geq 2$
- If $N=2$, ACCEPT. Otherwise if $2 \mid N$, REJECT.
- Take $a \in[2, N-1]$ uniformly at random.
- If $a \wedge N \neq 1$, REJECT
- Let $N-1=2^{t} u\left(t \geq 1\right.$ since N is odd). Compute $b=a^{u}$. Let $i \leq t$ be the smallest integer such that $b^{2^{2}}=1$.
- If i does not exist, REJECT (since $b^{2^{t}} \neq 1[N]$, Fermat's test fails)
- If $i=0$ or $b^{2^{i-1}}=-1$, ACCEPT
- Otherwise, REJECT

Remark: Running time is $O(\log N)$.

Prime finding algorithm

Relational problem:

- input: integer N
- output: prime $p \in[N, 2 N]$

Theorem 1.10. Let $\pi(x)$ be the number of prime numbers lower than x. Then $\pi(x) \sim \frac{x}{\ln x}$ while $x \rightarrow+\infty$

Algorithm:

- Take a random $p \in[N, 2 N]$
- Check if p is prime
- If p is prime, output p
- If not, start again

Analysis: The number of primes between N and $2 N$ is $\pi(2 N)-\pi(N-1) \sim \frac{2 N}{\ln 2 N}-\frac{N}{\ln N} \sim \frac{N}{\ln N}$. Therefore p is prime with probability $\sim \frac{1}{\ln N}$.

Lemma 1.11. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of random variables in 0,1 such that $\forall i, \mathbb{P}\left(X_{i}=1\right) \geq p$ and T be the first i such that $X_{i}=1$. Then $\mathbb{E}[T] \leq \frac{1}{p}$

The expected number of iterations before finding a prime is $\sim \ln N$. The expected time complexity of the algorithm is $O(\log N) \times($ primality test complexity $)$.

1.2.3 Polynomial identity testing

Problem

- input: two polynomials $P\left(X_{1}, X_{2}, \ldots, X_{n}\right), Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of degree $\leq d$
- output: decide if $P=Q$

Representation of P and $Q: P$ and Q are represented as a black box, such that they can be evaluated efficiently, given $a_{1}, a_{2}, \ldots, a_{n}$ The complexity of an algorithm is the number of evaluations of P and Q.
Remark: Checking if $P=Q$ can be done by expanding them but it will cost an exponential time in their representation size.

Lemma 1.12. Schwartz-Zippel: Let F be a field and $S \subset F$. Let $P\left(X_{1}, \ldots, X_{n}\right)$ be a non-zero polynomial of degree $\leq d$. Then $\underset{a_{1}, \ldots, a_{n} \in S}{\mathbb{P}}\left(P\left(a_{1}, \ldots, a_{n}\right)=0\right) \leq \frac{d}{|S|}$

Proof: By induction on $n . n=1$ is easy since P has at most d roots.

Algorithm 1

- $S=\{1,2,3, \ldots, 2 d\}$
- Select $a_{1}, \ldots, a_{n} \in S$ at random
- Accept if $P\left(a_{1}, \ldots, a_{n}\right)=Q\left(a_{1}, \ldots, a_{n}\right)$
- Reject otherwise

Analysis:

- Complexity: 2 evaluations.
- If $P=Q$ then the algorithm accepts with probability 1
- If $P \neq Q$ then \mathbb{P} (algorithm accepts $) \leq \frac{d}{|S|} \leq \frac{1}{2}$ with Schwartz-Zippel's lemma

Algorithm 2

Assume the greatest coefficient of P and Q is lower than M.
Issue: Find p such that $P=Q \Leftrightarrow P=Q \bmod p$
Then take $p \geq 2 M$. In order to adapt the previous algorithm, we also need $p \geq 2 d$.
First step: Find a prime between N and $2 N$ where N is the maximum of $2 d$ and $2 M$.
Then it is same algorithm than the first one but we accept if $P\left(a_{1}, \ldots, a_{n}\right)=Q\left(a_{1}, \ldots, a_{n}\right)$ $\bmod p$

1.2.4 Fingerprints

Problem

- There are 2 players A and B.
- A's input: u, sequence of n bits
- B's input: v, sequence of n bits
- output: decide if $u=v$
- complexity $=$ number of bits exchanged between A and B

A naive solution would be: A sends u to B . But it costs n bits.

Hashing

We define two polynomials P_{u} and P_{v} :

$$
\begin{aligned}
u & =u_{0}, u_{1}, \ldots, u_{n-1} \\
v & =v_{0}, v_{1}, \ldots, v_{n-1} \\
P_{u} & =u_{0}+u_{1} X+\cdots+u_{n-1} X^{n-1} \\
P_{v} & =v_{0}+v_{1} X+\cdots+v_{n-1} X^{n-1}
\end{aligned}
$$

Remark: $u=v \Leftrightarrow P_{u}=P_{v}$
Random hash value:

- Take a prime p between n^{2} and $2 n^{2}$.
- Select a random a between 0 and $p-1$.
- $P_{u}(a) \bmod p$ is the fingerprint of u in $a \bmod p$.

Protocol

Algorithm:

1. A selects p and a as described above
2. A sends $P_{u}(a) \bmod p$ to B
3. B checks if $P_{u}(a)=P_{v}(a)[p]$. If yes, B accepts. Else, B rejects.

Remarks:

- Number of exchanged bits: $6 \log n$
- If $u=v, \mathrm{~B}$ accepts with probability 1 . Otherwise, B accepts with probability $\leq \frac{1}{n}$.

