
INF 561: Using randomness in algorithms Winter 2013

Lecture 1 — 9th January 2013
Lecturer: Frédéric Magniez Scribe: Lauriane Aufrant and Matthieu Vegreville

The goal of this course is to present a formal definition of randomized algorithms and some
easy applications.

1.1 Formal basis

1.1.1 Typology of problems

Given an input x, the purpose of a problem is to search for an appropriate output:

• decision problem: ACCEPT or REJECT

• functional problem: F (x)

• relational problem: y such that xRy

1.1.2 Deterministic and randomized algorithms

Deterministic algorithm

Input: x - Algorithm - Output

Goal:

• correctly solve the problem on all inputs

• efficiently: linear or polynomial time on input size

Randomized algorithm

Input: x - Algorithm - Output

6

Random bits / integers: r

1-1

INF 561 Lecture 1 — 9th January 2013 Winter 2013

A randomized algorithm, compared to a deterministic algorithm, has an additional input:
the random variable r. We suppose that we have access to a source of uniform random bits
or integers (which is basically equivalent).
Remarks:

• Behaviour depends on both x and r.

• Once r is fixed, the algorithm is deterministic.

Goal: find a randomized algo such that on all inputs:

• Monte Carlo algorithms: output is correct for most of random choices r, complexity is
small for all random choices r

• Las Vegas algorithms: output is correct for all random choices r, complexity is small
in average over random choices r

NB: We do not know yet how to generate random numbers with computers, we have only
access to pseudo-random generators.

1.1.3 Typology of randomized algorithms

Definition 1.1. In this course we will study 3 types of randomized algorithms, presented
here for a functional problem.

1. Algorithm A computes f without error and with average complexity T if for all inputs
x:

• for all random choices r, A(x, r) = f(x)

• E
r
[complexity(A(x, r))] ≤ T

NB: T is generally a function of size of x

Example: Quicksort with random pivot.

2. Algorithm A computes f without error, with probability δ < 1 to abort and with
complexity T if for all inputs x:

• for all random choices r such that A(x, r) does not abort, A(x, r) = f(x)

• for all random choices r, complexity(A(x, r)) ≤ T

• P
r
[A(x, r) aborts] ≤ δ

NB: δ is often 1
2
. The algorithm is generally run a few times with new random bits

each time, until it terminates at least once: δk = 1
2k

Example: Quicksort with random pivot and finite time of execution.

3. Algorithm A computes f with bounded error ε < 1
2
and complexity T if for all inputs

x:

1-2

INF 561 Lecture 1 — 9th January 2013 Winter 2013

• P
r
[A(x, r) 6= f(x)] ≤ ε

• for all random choices r, complexity(A(x, r)) ≤ T

Theorem 1.2. Types 1 and 2 are equivalent.

Proof: The basic idea for converting an algorithm to type 2 is to stop the algorithm when
T becomes too large.

• Let A be an algorithm of type 1. Let c > 1 be some constant.
Define B(x, r): Run A(x, r) and stop it after running time T . If A has terminated,
output the output of A. Otherwise, abort.
If B(x, r) does not abort, then its output is correct. Running time of B ≤ cT . Let
τ(r) be the running time of A(x, r). P

r
(B(x, r)aborts) = P

r
(τ(r) ≥ cT) ≤ 1

c
because

of Markov property, since τ(r) ≥ 0 and E
r
[τ(r)] ≤ T . We constructed an equivalent

algorithm of type 2.

• Let A be an algorithm of type 2.
Define B(x): Run A(x, r) with fresh random bits r until A does not abort. Output
the output of A.
B is always correct. A run of A aborts with probability δ < 1.

P(A(x, r) aborts k times) ≤ δk

E [running time of B] ≤
∞∑
k=0

(δkT) =
T

1− δ
= 2T for δ =

1

2

We constructed an equivalent algorithm of type 1.

�

Definition 1.3. A randomized algorithm applied to a decision problem can have several
types of error:

1. Algorithm A has a one-sided error ε if

• if the appropriate output for x is ACCEPT , then P
r
[A(x, r) accepts] = 1

• if the appropriate output for x is REJECT , then P
r
[A(x, r) accepts] ≤ ε

NB: In this case the algorithm is run a few times and x is accepted if it has been
accepted by every execution. For ε = 1

2
, εk = 1

2k

2. Algorithm A has a two-sided error ε if

• if the appropriate output for x is ACCEPT , then P
r
[A(x, r) accepts] ≥ 1− ε

• if the appropriate output for x is REJECT , then P
r
[A(x, r) accepts] ≤ ε

NB: In this case the algorithm is run a few times and x is accepted if it has been
accepted by most executions. Generally, ε = 1

3
.

1-3

INF 561 Lecture 1 — 9th January 2013 Winter 2013

1.1.4 Complexity classes

Our interest lies in two complexity classes:

1. ZPP complexity class, with zero-error algorithms:

algorithms of type 1 or 2 with T polynomial on input size and δ = 1
2
for type 2

2. BPP complexity class, with bounded-error algorithms:

algorithms of type 3 with T polynomial on input size and ε = 1
3

1.2 Applications

1.2.1 Matrix multiplication

Decision problem:

• input: A, B and C, n× n matrices over an arbitrary ring

• output: decide if A×B = C

Freivald’s test:

• Choose r ∈ {0, 1}n

• Evaluate u = Cr, v = Br and w = Av

• Return ACCEPT if u = w, else REJECT

Theorem 1.4. Freivald’s algorithm has a one-sided error:

• If AB = C, P [algorithm accepts] = 1

• If AB 6= C, P [algorithm accepts] ≤ 1
2

Since its running time is at most 3n2, it belongs to BPP complexity class.

Proof: Assume there are two indices i and j such that (AB)ij 6= Cij. Let D = C − AB.
Then Dij 6= 0, D 6= 0. We want to prove P

r∈{0,1}n
[Dr = 0] ≤ 1

2
.

(Dr)i =
∑
k

Dikrk = Dijrj + f((rk)k 6=j)

P [Dr = 0] ≤ P [(Dr)i = 0]

Fix r1, . . . , rn excepts rj. Then v = f((rk)k 6=j).

• If v = −Dij: if rj = 0 then (Dr)i 6= 0, if rj = 1 then (Dr)i = Dij − Dij = 0.
Conditional probability of (Dr)i = 0 is 1

2
.

1-4

INF 561 Lecture 1 — 9th January 2013 Winter 2013

• If v = 0: if rj = 0 then (Dr)i = 0, if rj = 1 then (Dr)i = Dij 6= 0. Conditional
probability of (Dr)i = 0 is 1

2
.

• Otherwise: for rj = 0, 1 (Dr)i 6= 0.

P [(Dr)i = 0] ≤ 1

2

�

1.2.2 Finding prime numbers

Primality testing

Decision problem:

• input: an integer N ≥ 2

• output: decide if N is prime

The sieve of Eratosthenes gives a result in
√
N steps which is too long.

Theorem 1.5. Fermat’s little theorem: p prime number ⇒ ∀a ∈ [1, p− 1] , ap−1 = 1 [p]

Two random primality tests are based on the above theorem:

• Miller-Rabin test: O((logN)2) running time

• Solovay-Strassen test: O((logN)2) running time

Tentative algorithm

Lemma 1.6. Assume there is 1 ≤ a < N such that a ∧ N = 1 and aN−1 6= 1 [N]. Then
P

1≤a<N
[aN−1 = 1 [N] |a ∧N = 1] ≤ 1

2

Primality test algorithm:

• Input: N ≥ 2

• Select a random a ∈ [1, N − 1]

• If a ∧N 6= 1 then reject (in this case N is not prime, because (a ∧N)|N)

• Compute aN−1 with rapid exponentiation: a2r = (ar)2, a2r+1 = a(ar)2

• Accept if aN−1 = 1 [N], otherwise reject

Remarks:

• Running time is O(logN).

• If N is prime then the algorithm accepts N with probability 1.

1-5

INF 561 Lecture 1 — 9th January 2013 Winter 2013

Corollary 1.7. Assume there is 1 ≤ a < N such that a ∧ N = 1 and aN−1 6= 1 [N]. Then
P
a
(algorithm accepts N) ≤ 1

2

Proof: TakeN non prime such that there is 1 ≤ a < N such that a∧N = 1 and aN−1 6= 1 [N]

P
a
(algorithm accepts N) = P

a
(a ∧N = 1 and aN−1 = 1 [N])

= P
a
(aN−1 = 1 [N] |a ∧N = 1)︸ ︷︷ ︸

≤ 1
2

×P
a
(a ∧N = 1)︸ ︷︷ ︸

≤1

≤ 1

2

�

Definition 1.8. An integer N is a Carmichael number if there is 1 ≤ a < N such that
a ∧N = 1 and aN−1 6= 1 [N] and N is not prime.

The smallest Carmichael number is 561 = 3× 11× 17

Miller-Rabin test

Lemma 1.9. If p is prime then the only solution of x2 = 1 [p] are ±1 mod p.

Algorithm:

• Input: N ≥ 2

• If N = 2, ACCEPT. Otherwise if 2|N , REJECT.

• Take a ∈ [2, N − 1] uniformly at random.

• If a ∧N 6= 1, REJECT

• Let N − 1 = 2tu (t ≥ 1 since N is odd). Compute b = au. Let i ≤ t be the smallest
integer such that b2i = 1.

• If i does not exist, REJECT (since b2t 6= 1 [N], Fermat’s test fails)

• If i = 0 or b2i−1
= −1, ACCEPT

• Otherwise, REJECT

Remark: Running time is O(logN).

1-6

INF 561 Lecture 1 — 9th January 2013 Winter 2013

Prime finding algorithm

Relational problem:

• input: integer N

• output: prime p ∈ [N, 2N]

Theorem 1.10. Let π(x) be the number of prime numbers lower than x. Then π(x) ∼ x
lnx

while x→ +∞

Algorithm:

• Take a random p ∈ [N, 2N]

• Check if p is prime

• If p is prime, output p

• If not, start again

Analysis: The number of primes between N and 2N is π(2N)−π(N−1) ∼ 2N
ln 2N
− N

lnN
∼ N

lnN
.

Therefore p is prime with probability ∼ 1
lnN

.

Lemma 1.11. Let X1, X2, . . . , Xn be a sequence of random variables in 0,1 such that
∀i,P(Xi = 1) ≥ p and T be the first i such that Xi = 1. Then E [T] ≤ 1

p

The expected number of iterations before finding a prime is ∼ lnN . The expected time
complexity of the algorithm is O(logN)× (primality test complexity).

1.2.3 Polynomial identity testing

Problem

• input: two polynomials P (X1, X2, . . . , Xn), Q(X1, X2, . . . , Xn) of degree ≤ d

• output: decide if P = Q

Representation of P and Q: P and Q are represented as a black box, such that they can
be evaluated efficiently, given a1, a2, . . . , an The complexity of an algorithm is the number of
evaluations of P and Q.
Remark: Checking if P = Q can be done by expanding them but it will cost an exponential
time in their representation size.

Lemma 1.12. Schwartz-Zippel: Let F be a field and S ⊂ F . Let P (X1, . . . , Xn) be a
non-zero polynomial of degree ≤ d. Then P

a1,...,an∈S
(P (a1, . . . , an) = 0) ≤ d

|S|

Proof: By induction on n. n = 1 is easy since P has at most d roots. �

1-7

INF 561 Lecture 1 — 9th January 2013 Winter 2013

Algorithm 1

• S = {1, 2, 3, . . . , 2d}

• Select a1, . . . , an ∈ S at random

• Accept if P (a1, . . . , an) = Q(a1, . . . , an)

• Reject otherwise

Analysis:

• Complexity: 2 evaluations.

• If P = Q then the algorithm accepts with probability 1

• If P 6= Q then P(algorithm accepts) ≤ d
|S| ≤

1
2
with Schwartz-Zippel’s lemma

Algorithm 2

Assume the greatest coefficient of P and Q is lower than M .
Issue: Find p such that P = Q⇔ P = Q mod p
Then take p ≥ 2M . In order to adapt the previous algorithm, we also need p ≥ 2d.
First step: Find a prime between N and 2N where N is the maximum of 2d and 2M .
Then it is same algorithm than the first one but we accept if P (a1, . . . , an) = Q(a1, . . . , an)
mod p

1.2.4 Fingerprints

Problem

• There are 2 players A and B.

• A’s input: u, sequence of n bits

• B’s input: v, sequence of n bits

• output: decide if u = v

• complexity = number of bits exchanged between A and B

A naive solution would be: A sends u to B. But it costs n bits.

1-8

INF 561 Lecture 1 — 9th January 2013 Winter 2013

Hashing

We define two polynomials Pu and Pv:

u = u0, u1, . . . , un−1

v = v0, v1, . . . , vn−1

Pu = u0 + u1X + · · ·+ un−1X
n−1

Pv = v0 + v1X + · · ·+ vn−1X
n−1

Remark: u = v ⇔ Pu = Pv

Random hash value:

• Take a prime p between n2 and 2n2.

• Select a random a between 0 and p− 1.

• Pu(a) mod p is the fingerprint of u in a mod p.

Protocol

Algorithm:

1. A selects p and a as described above

2. A sends Pu(a) mod p to B

3. B checks if Pu(a) = Pv(a) [p]. If yes, B accepts. Else, B rejects.

Remarks:

• Number of exchanged bits: 6 log n

• If u = v, B accepts with probability 1. Otherwise, B accepts with probability ≤ 1
n
.

1-9

