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6.1 Model

6.1.1 Definitions

Two players Alice and Bob are separated. They have access to unlimited computational
resources.

At the beginning of the protocol, A gets x ∈ X and B gets y ∈ Y . A starts the
protocol. The two players successively exchange messages Mi, functions of the previous
received messages and x for A, y for B. The last message is named the output of the protocol
and we call the transcript P (x, y) of the protocol the sequence of the messages (P (x, y) =
(M1,M2, ...)).

The complexity of P on input (x, y) is the number of bits in the transcript (|P (x, y)|).
The complexity of P is C(P ) = maxx∈X,y∈Y |P (x, y)|

We say that P computes f if ∀x, y output of P (x, y) = f(x, y).
The protocol P can be :

• deterministic

• randomized by bounded error (P(outputP (x, y) 6= f(x, y)) ≤ ε)

• using public coins : A and B can access to the same sequence of random bits

• using private coins : A and B have access to independent sequence of random bits

We can define for a function f the following quantities :

D(f) = min
P deterministic

C(P )

Rε(f) = min
P random. bounded error, private coins

C(P )

Rpub
ε (f) = min

P random. bounded error, public coins
C(P )

We have
Rpub
ε (f) ≤ Rε(f) ≤ D(f)
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6.1.2 Example

Lets consider the problem EQn : X = Y = {0, 1}n and determine if x = y.
We can prove D(EQn) ≤ n(check bit by bit) and R 1

2
(EQn) ≤ O(log n).

If we have access to public randomized bits we have indeed Rpub
1
2

(EQn) = 2. To prove it we

can use the following protocol : let r ∈ {0, 1}n; Alice computes a =
∑

i rixi mod 2 = ⊕rixi
and sends a to Bob (1 bit). Bob computes b = ⊕riyi. If a = b, Bob outputs 1, else he
outputs 0 (1 bit).
If x = y, then a = b, the protocol always outputs 1, if x 6= y, then P(a = b) = 1

2
.

We are here in the special case of one-way protocol (only one message exchanged for Alice

to Bob plus the output). In those cases, we introduce the quantities
−→
D(f),

−→
R ε(f),

−→
R pub
ε (f)

which are the size of Alice’s message.

6.2 General principle for lower bounds of D(f )

Let Mf be :
Mf = (f(x, y))(x,y)∈X×Y .

Theorem 6.1.
−→
D(f) ≥ log2(|distinct rows of Mf |)

Proof: As the protocol is one-way, the output is only a function of y and M1(x). So, if
M1(x) = M1(x

′) then output(x, y) = output(x′, y).
So, ∀x, x′, if ∃y such that f(x, y) 6= f(x′, y), then M1(x) 6= M1(x

′). And in this case, the
rows of x and x′ in Mf are different. So Alice must be able to send |distinct rows of Mf |
different messages, using log2(|distinct rows of Mf |) bits.

�

Example: MEQ2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and more generally MEQn = I2n so
−−→
EQn(f) ≥ n

Theorem 6.2. Let f be a boolean function : f : X × Y → {0, 1}. D(f) ≥ log2(rank(Mf ))

To prove the theorem, we will use a small lemma : we introduce the rectangles.
X × Y is a rectangle if we have

P (x, y) = P (x′, y′)⇒ P (x′, y) = P (x, y′) = P (x, y)

Lemma 6.3. Rectangle Principle :
For every fixed transcript τ , {(x, y)|P (x, y) = τ} is a rectangle.

Proof (Proof of th.): For each transcript τ such that the output is 1, we associate the
rectangle Rτ of inputs and (Mτ )x,y = 1 if (x, y) ∈ Rτ , 0 otherwise.
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Then we have
Mf =

∑
τ

Mτ

We have also rank(Mτ ) = 1 (in the matrix, there is only copies of two different columns
according to the rectangle principle). Thus we have

rank(Mf ) ≤
∑
τ

rank(Mτ ) ≤ 2|P |

�

Example: consider the two problems :

INDEX TRANSMIT
A B A B

x ∈ {0, 1}n i ∈ {1, 2, ..., n} x ∈ {0, 1}n ∅
output xi output x

When we work in one-way, we have TRANSMIT ≤ INDEX and as
−→
D(TRANSMIT) ≥ n,

−→
D(INDEX) ≥ n

6.3 Application to streaming

Idea : Given a 1-pass streaming algorithm with memory M calculating f , we want to
construct a one-way protocol with communication complexity M

cut the stream in some position

x y

S

input stream

The protocol computes F (x, y) = f(x||y) (x||y is the stream obtained by concatenating
x and y). Alice simulates the streaming algorithm for the beginning of the stream (x), sends
the memory to Bob and Bob ends the simulation and outputs the result.

Lemma 6.4. Memory of 1-pass deterministic (resp. randomized) algorithm for f is greater

than max
−→
D(F ) (resp.

−→
R (F )) where the maximum is taken over all the possible cuts of the

stream.

We can extend this result to k-pass streaming algorithms : maximum memory of k-pass
deterministic streaming algorithm for f ≥ 1

2k
maxD(F ) (Bob sends its memory at the end

of each pass so Alice can begin a new one).
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Theorem 6.5. −→
R δ(TRANSMIT ) ≥

−→
D(TRANSMIT )

for δ > 1
2

Proof: Let P be a one-way probabilistic protocol for transmit with bounded error δ, rA
the random bits sequence of A and rB the random bits sequence of B. In the protocol, the
message M1 of Alice depends on x and rA and Bob computes the output, depending on M1

and rB
Define p(x, rA) by p(x, rA) = PrB(output(M1(x, rA), rB) 6= f(x))

Because ErAp(x, rA) = PrA,rB(output(M1(x, rA), rB) 6= f(x)) ≤ δ, ∀x∃rA(x) such that
p(x, rA(x)) ≤ δ

For the deterministic algorithm, Alice computes such a random bits sequence rA and
sends the corresponding message M1(x, rA). Then, Bob computes output(M1, rB) for all
possible sequence rB and outputs the most frequent one (f(x) should appear at least with a
fraction 2

3
). �

We can also prove complementary results for the communicational complexity of
TRANSMIT :

−→
R δ(TRANSMIT ) ≤

−→
R δ

n
(INDEXn)

Indeed,

PrA,rB(outputTRANSMIT 6= x) = PrA,rB(∃i| outputINDEX(M1(x, rA), i, rB) 6= xi)

≤
n∑
i=1

PrA,rB(outputINDEX(M1(x, rA), i, rB) 6= xi)

≤ n
δ

n
= δ

Finally,
−→
R δ

n
(INDEXn) ≤ O(log n)

−→
R δ(INDEXn) This can be see as a result of the

parallel repetition paradigm : if P is a random protocol for INDEX with bounded error δ,
we construct the following protocol :

A B
r1A M1(x, r

1
A)

−−−−−−→
Bob computes the majority

r2A M2(x, r
2
A)

−−−−−−→
of output(i,Mi(x, r

i
A))

... for i = 1, ..., k
rkA Mk(x, r

k
A)

−−−−−−→

If k ∼ log n then the new protocol has bounded error δ
n
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Example: Let a stream be a1a2...an, with ai ∈ {1, 2, ..., n}. Define fj = |{i|ai = j}| and
Fk =

∑
fkj , F∞ = max fj.

Any randomized, 1-pass streaming algorithm A that computes z such that P[|z − F∞| ≥
F∞
3

] ≤ 1
3

requires memory Ω(n)
Assume A is given and A has memory M . We will construct a protocol for INDEX

using A. We will find a stream such that for this stream F∞ = xi and the first part depends
on x and the second part on i.

A B
x ∈ {0, 1}n i ∈ {1, 2, ..., n}

output xi

Imagine, we have a stream such that fj = 1 if xj = 1, fj = 0 otherwise. Then for
non-zero x, we will have F∞ = 1. Append to such a stream the element x, the stream will
be {j|xj = 1}||{x}. Then, we have :

• if xi = 0, then all the element in the stream appear only once and F∞ = 1 and
P[|z − 1| ≥ 1

3
] ≤ 1

3
⇒ P(z ≥ 4

3
) ≤ 1

3

• if xi = 1, the F∞ = 2 (i appears twice in the stream) and P[|z − 2| ≥ 2
3
] ≤ 1

3
⇒ P(z ≤

4
3
) ≤ 1

3

We end, by simulating A on the stream. If the output is < 4
3
, then output 0, else output

1.
This is a protocol for INDEX with bounded error 1

3
and communicational complexity

M . But
−→
R 1

3
(INDEXn) = Ω(n) so M = Ω(n)
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