INF561: Algorithmes de streaming

Hiver 2012

Lecture 6 - 8 février

Scribe: Raphael BOST

6.1 Model

6.1.1 Definitions

Two players Alice and Bob are separated. They have access to unlimited computational resources.

At the beginning of the protocol, A gets $x \in X$ and B gets $y \in Y$. A starts the protocol. The two players successively exchange messages M_i , functions of the previous received messages and x for A, y for B. The last message is named the output of the protocol and we call the transcript P(x, y) of the protocol the sequence of the messages $(P(x, y) = (M_1, M_2, ...))$.

The complexity of P on input (x, y) is the number of bits in the transcript (|P(x, y)|). The complexity of P is $C(P) = \max_{x \in X, y \in Y} |P(x, y)|$

We say that P computes f if $\forall x, y$ output of P(x, y) = f(x, y). The protocol P can be :

- deterministic
- randomized by bounded error $(\mathbb{P}(\text{output } P(x, y) \neq f(x, y)) \leq \epsilon)$
- using public coins : A and B can access to the same sequence of random bits
- using private coins : A and B have access to independent sequence of random bits

We can define for a function f the following quantities :

$$D(f) = \min_{P \ deterministic} C(P)$$
$$R_{\epsilon}(f) = \min_{P \ random. \ bounded \ error, \ private \ coins} C(P)$$
$$R_{\epsilon}^{pub}(f) = \min_{P \ random. \ bounded \ error, \ public \ coins} C(P)$$

We have

$$R^{pub}_{\epsilon}(f) \le R_{\epsilon}(f) \le D(f)$$

6.1.2 Example

Lets consider the problem EQ_n : $X = Y = \{0, 1\}^n$ and determine if x = y.

We can prove $D(EQ_n) \leq n$ (check bit by bit) and $R_{\frac{1}{2}}(EQ_n) \leq O(\log n)$.

If we have access to public randomized bits we have indeed $R_{\frac{1}{2}}^{pub}(EQ_n) = 2$. To prove it we can use the following protocol : let $r \in \{0,1\}^n$; Alice computes $a = \sum_i r_i x_i \mod 2 = \bigoplus r_i x_i$ and sends a to Bob (1 bit). Bob computes $b = \bigoplus r_i y_i$. If a = b, Bob outputs 1, else he outputs 0 (1 bit).

If x = y, then a = b, the protocol always outputs 1, if $x \neq y$, then $\mathbb{P}(a = b) = \frac{1}{2}$.

We are here in the special case of one-way protocol (only one message exchanged for Alice to Bob plus the output). In those cases, we introduce the quantities $\overrightarrow{D}(f)$, $\overrightarrow{R}_{\epsilon}(f)$, $\overrightarrow{R}_{\epsilon}^{pub}(f)$ which are the size of Alice's message.

6.2 General principle for lower bounds of D(f)

Let M_f be :

$$M_f = (f(x, y))_{(x,y) \in X \times Y}.$$

Theorem 6.1. $\overrightarrow{D}(f) \ge \log_2(|\text{distinct rows of } M_f|)$

Proof: As the protocol is one-way, the output is only a function of y and $M_1(x)$. So, if $M_1(x) = M_1(x')$ then $\operatorname{output}(x, y) = \operatorname{output}(x', y)$.

So, $\forall x, x'$, if $\exists y$ such that $f(x, y) \neq f(x', y)$, then $M_1(x) \neq M_1(x')$. And in this case, the rows of x and x' in M_f are different. So Alice must be able to send |distinct rows of M_f | different messages, using $\log_2(|\text{distinct rows of } M_f|)$ bits.

Example:
$$M_{EQ_2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 and more generally $M_{EQ_n} = I_{2^n}$ so $\overrightarrow{EQ_n}(f) \ge m$

Theorem 6.2. Let f be a boolean function : $f: X \times Y \to \{0, 1\}$. $D(f) \ge \log_2(\operatorname{rank}(M_f))$

To prove the theorem, we will use a small lemma : we introduce the rectangles. $X \times Y$ is a rectangle if we have

$$P(x,y) = P(x',y') \Rightarrow P(x',y) = P(x,y') = P(x,y)$$

Lemma 6.3. Rectangle Principle :

For every fixed transcript τ , $\{(x, y) | P(x, y) = \tau\}$ is a rectangle.

Proof (Proof of th.): For each transcript τ such that the output is 1, we associate the rectangle R_{τ} of inputs and $(M_{\tau})_{x,y} = 1$ if $(x, y) \in R_{\tau}$, 0 otherwise.

Then we have

$$M_f = \sum_{\tau} M_{\tau}$$

We have also $\operatorname{rank}(M_{\tau}) = 1$ (in the matrix, there is only copies of two different columns according to the rectangle principle). Thus we have

$$\operatorname{rank}(M_f) \le \sum_{\tau} \operatorname{rank}(M_{\tau}) \le 2^{|P|}$$

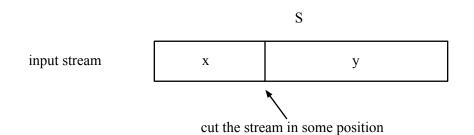
Example: consider the two problems :

INDEX		TRANSMIT	
А	В	А	В
$x \in \{0,1\}^n$	$i\in\{1,2,,n\}$	$x \in \{0,1\}^n$	Ø
	output x_i		output x

When we work in one-way, we have TRANSMIT \leq INDEX and as $\overrightarrow{D}(\text{TRANSMIT}) \geq n$, $\overrightarrow{D}(\text{INDEX}) \geq n$

6.3 Application to streaming

Idea : Given a 1-pass streaming algorithm with memory M calculating f, we want to construct a one-way protocol with communication complexity M



The protocol computes F(x, y) = f(x||y) (x||y) is the stream obtained by concatenating x and y). Alice simulates the streaming algorithm for the beginning of the stream (x), sends the memory to Bob and Bob ends the simulation and outputs the result.

Lemma 6.4. Memory of 1-pass deterministic (resp. randomized) algorithm for f is greater than max $\vec{D}(F)$ (resp. $\vec{R}(F)$) where the maximum is taken over all the possible cuts of the stream.

We can extend this result to k-pass streaming algorithms : maximum memory of k-pass deterministic streaming algorithm for $f \geq \frac{1}{2k} \max D(F)$ (Bob sends its memory at the end of each pass so Alice can begin a new one).

Theorem 6.5.

$$\overrightarrow{R}_{\delta}(TRANSMIT) \geq \overrightarrow{D}(TRANSMIT)$$

for $\delta > \frac{1}{2}$

Proof: Let P be a one-way probabilistic protocol for transmit with bounded error δ , r_A the random bits sequence of A and r_B the random bits sequence of B. In the protocol, the message M_1 of Alice depends on x and r_A and Bob computes the output, depending on M_1 and r_B

Define $p(x, r_A)$ by $p(x, r_A) = \mathbb{P}_{r_B}(\text{output}(M_1(x, r_A), r_B) \neq f(x))$ Because $\mathbb{E}_{r_A} p(x, r_A) = \mathbb{P}_{r_A, r_B}(\text{output}(M_1(x, r_A), r_B) \neq f(x)) \leq \delta, \forall x \exists r_A(x) \text{ such that } p(x, r_A(x)) \leq \delta$

For the deterministic algorithm, Alice computes such a random bits sequence r_A and sends the corresponding message $M_1(x, r_A)$. Then, Bob computes $\operatorname{output}(M_1, r_B)$ for all possible sequence r_B and outputs the most frequent one (f(x) should appear at least with a fraction $\frac{2}{3}$).

We can also prove complementary results for the communicational complexity of TRANSMIT :

$$\overrightarrow{R}_{\delta}(TRANSMIT) \leq \overrightarrow{R}_{\frac{\delta}{n}}(INDEX_n)$$

Indeed,

$$\begin{split} \mathbb{P}_{r_A, r_B}(\text{output}_{TRANSMIT} \neq x) &= \mathbb{P}_{r_A, r_B}(\exists i | \text{output}_{INDEX}(M_1(x, r_A), i, r_B) \neq x_i) \\ &\leq \sum_{i=1}^n \mathbb{P}_{r_A, r_B}(\text{output}_{INDEX}(M_1(x, r_A), i, r_B) \neq x_i) \\ &\leq n \frac{\delta}{n} = \delta \end{split}$$

Finally, $\overrightarrow{R}_{\frac{\delta}{n}}(INDEX_n) \leq O(\log n)\overrightarrow{R}_{\delta}(INDEX_n)$ This can be see as a result of the parallel repetition paradigm : if P is a random protocol for INDEX with bounded error δ , we construct the following protocol :

$$\begin{array}{cccc} \mathbf{A} & & \mathbf{B} \\ r_A^1 & \underbrace{M_1(x,r_A^1)}_{M_2(x,r_A^2)} & \text{Bob computes the majority} \\ r_A^2 & \underbrace{\overline{M_2(x,r_A^2)}}_{M_2(x,r_A^2)} & \text{of output}(i,M_i(x,r_A^i)) \\ \dots & & \text{for } i=1,\dots,k \\ r_A^k & \underbrace{M_k(x,r_A^k)} \end{array}$$

If $k \sim \log n$ then the new protocol has bounded error $\frac{\delta}{n}$

Example: Let a stream be $a_1a_2...a_n$, with $a_i \in \{1, 2, ..., n\}$. Define $f_j = |\{i|a_i = j\}|$ and $F_k = \sum f_j^k$, $F_{\infty} = \max f_j$.

Any randomized, 1-pass streaming algorithm A that computes z such that $\mathbb{P}[|z - F_{\infty}| \geq \frac{F_{\infty}}{3}] \leq \frac{1}{3}$ requires memory $\Omega(n)$

Assume A is given and A has memory M. We will construct a protocol for INDEX using A. We will find a stream such that for this stream $F_{\infty} = x_i$ and the first part depends on x and the second part on i.

$$A \qquad B \\ x \in \{0,1\}^n \quad i \in \{1,2,...,n\} \\ \text{output } x_i$$

Imagine, we have a stream such that $f_j = 1$ if $x_j = 1$, $f_j = 0$ otherwise. Then for non-zero x, we will have $F_{\infty} = 1$. Append to such a stream the element x, the stream will be $\{j|x_j = 1\}||\{x\}$. Then, we have :

- if $x_i = 0$, then all the element in the stream appear only once and $F_{\infty} = 1$ and $\mathbb{P}[|z-1| \ge \frac{1}{3}] \le \frac{1}{3} \Rightarrow \mathbb{P}(z \ge \frac{4}{3}) \le \frac{1}{3}$
- if $x_i = 1$, the $F_{\infty} = 2$ (*i* appears twice in the stream) and $\mathbb{P}[|z-2| \ge \frac{2}{3}] \le \frac{1}{3} \Rightarrow \mathbb{P}(z \le \frac{4}{3}) \le \frac{1}{3}$

We end, by simulating A on the stream. If the output is $<\frac{4}{3}$, then output 0, else output 1.

This is a protocol for INDEX with bounded error $\frac{1}{3}$ and communicational complexity M. But $\overrightarrow{R}_{\frac{1}{3}}(INDEX_n) = \Omega(n)$ so $M = \Omega(n)$