
INF 581: Using randomness in algorithms Spring 2012

Lecture 1 — 4th January 2012
Lecturer: Frédéric Magniez Scribe: Arindam Biswas

The goal of this course is to furnish the definition of different models and also to present
some examples of probabilistic algorithms.

1.1 Randomness in Computation and Randomized Algo-
rithms :

A randomized algorithm is an algorithm that in addition to taking the usual input also
takes a string of independent, uniformly distributed random bits. We may then view the
(randomized) algorithm as a traversal of a decision tree, where we take the left branch
at each stage if the next random bit is 0 and the right branch if it is 1. If the tree has
height k, then each possible outcome has probability 2−k. The above is a strict model. In
practice, we can say things like, "with probability 2/3 do..." because we can simulate any
such probability with small error. We can also say "choose a random x ∈ [0, 1]". The error
of these approximations can be added to the error inherent in our algorithms as long as our
algorithm does not depend in very precise ways on the probabilities.

1.2 Model
We consider accessible the randomly generated numbers (random resources) r ∈ {0, 1}∗.

From here we can easily consider accessible r ∈ [|a, b|]∗ where a and b are integers.

Note : We do not yet know how to generate the random numbers (which is a question
important and difficult).

Let f : X → Y and A an algorithm(Here X and Y are finite sets).

Definition 1.1. We say that A calculates f without an error with an average complexity T
if and only if :

1. ∀x ∈ X, A (x) outputs f (x)

2. ∀x ∈ X, E
r∈{0,1}∗

(C (A(x, r))) ≤ T (| x |) where | x | is the size of the entry and

C (A (x, r)) is the complexity of A over the entry x with the random choices r.
We study the complexity on average.

e.g ; Quicksort with random pivot.

1-1

INF 581 Lecture 1 — 4th January 2012 Spring 2012

Definition 1.2. We say that A calculates f without error with a probability of failure δ
and a complexity T if and only if :

1. ∀x, ∀r, if A (x, r) does not abort, then A(x, r) gives f (x)

2. ∀x, Pr(A (x, r) aborts) ≤ δ

3. ∀x, ∀r, C (A (x, r)) ≤ T (worst case)
In here we study the complexity in the worst case.

� In general we choose δ = 1/2. To pass from δ0 = 1/2 to δk = 1/2kwe iterate k
times the same algorithm with the new random bits and we get T

(
δ = 1/2k

)
≤ kT (δ = 1/2).Suppose

δk = 100 then we need to iterate dlog2 100e = 7 times.

� All algorithms of the previous form can be converted to this form. It is sufficient to stop
the algorithm if T becomes too large.

e.g ; Quicksort with random pivot and finite time of execution.

� � From now on we consider the languages : Y = {0, 1}∗ and L = {x | f (x) = 1}.

Definition 1.3. One sided error (RP)
A calculates f with a one-sided error δ and a complexity T if and only if :

1. ∀x, ∀r, C (A (x, r)) ≤ T

2. if x ∈ L, then Pr (A (x, r) accepts) = 1

3. if x /∈ L, then Pr (A (x, r) accepts) ≤ δ

� In general we choose δ = 1/2. (it is sufficient to have δ < 1).
Similar to the above, if we wish to have δ = 1/2k, we reiterate the algorithm k times

and accept the result if and only if the k executions are all accepted.

Definition 1.4. Co-RP
A is in Co-RP if and only if :

1. ∀x, ∀r, C (A (x, r)) ≤ T

2. if x ∈ L, then Pr (A (x, r) accepts) ≥ 1− δ
3. if x /∈ L, then Pr (A (x, r) accepts) = 0

Definition 1.5. Two-sided error (BPP)
A calculates f with a two-sided error δ and a complexity T if and only if :

1. ∀x, ∀r, C (A (x, r)) ≤ T

2. if x ∈ L, then Pr (A (x, r) accepts) ≥ 1− δ
3. if x /∈ L, then Pr (A (x, r) accepts) ≤ δ

� In this case without loss of generality we can take δ < 1
2
.In general we choose δ = 1

3
.

In the last case we accept the results if the majority of the results are accepted.

1-2

INF 581 Lecture 1 — 4th January 2012 Spring 2012

1.3 First Examples :

Example 1 : Primality

L = {p|p nombre premier}, x ∈ N∗, |x| = log2(x).

� The sieve of Eratosthenes gives us a result in
√
n steps which is too long.

Theorem 1.6. Rappel : Fermat’s Little Theorem
p prime number =⇒ ∀a ∈ {1, 2, ..., p− 1} , ap−1 ≡ 1 [mod p]

Two simple methods to prove the above result are :
a) We proceed by induction over a, namely we assume the original version of the theorem
i.e. a ∈ N and show that if the result holds for a = k then it also holds for a = k + 1.

b) We prove using the theory of groups for which we recognise that the set G =
{1, 2, ..., p−1},with the operation of multiplication (taken modulo p), forms a group.Then if
k denotes the order of a we have ak ≡ 1 [mod p]. We then apply Lagrange’s theorem (namely
the order of every element divides the order of the group which is p-1 in this case) to get the
result.

Algorithm :

1. We choose a at random, uniformly from the set {1, 2, ..., p− 1}.
2. If a ∧ p 6= 1 we reject the result.
3. If ap−1 6= 1 [p] we reject the result.
4. If not we accept the result.

� The complexity of this algorithm is logarithmic in the number of arithmetic operations.

Theorem 1.7. The previous algorithm is of type One-sided error.

Proof: – If p is prime, the algorithm accepts each time (Fermat’s Little Theorem). If p
is not prime then we have 2 cases (namely because the statement of Fermat’s Little
Theorem is not if and only if)

– We recall the fact that a number p (not prime) is called a Carmichael number if for all
a relatively prime to p we have ap−1 ≡ 1 [p].
Suppose that p is not a Carmichael number.
Let a0 such that a0 ∈ {0, 1..., p− 1} , a0 ∧ p = 1 and a0

p−1 6= 1 [p].

Lemma 1.8. Pra∈{0,1...,p−1} et a∧p=1 [ap−1 ≡ 1 [p]] ≤ 1
2

1-3

INF 581 Lecture 1 — 4th January 2012 Spring 2012

Proof: Let G be the multiplicative group such that G = {a|a ∧ p = 1} et H le sub-
group de G such that H = {a ∈ G|ap−1 ≡ 1 [p]}.
a0 /∈ H, 1 ∈ H et a0 ∈ G and so H is a non-empty strict subgroup of G and hence using
Lagrange’s theorem we get |H| ≤ |G|

2
.

�
The lemma implies that if p is neither prime nor a Carmichael number we have :
Pra [the algorithm rejects in (3) knowing that it accepted in (2)] ≥ 1

2

We recall that Pr(A ∩B) = Pr(B)Pr(A|B).

Pra [the algorithm rejects in (2) or in (3)]
= Pra [the algorithm rejects in (2)]+Pra [the algorithm rejects in (3) and not in (2)]
= ∆ + (1−∆)Pra [the algorithm rejects in (3)|the algorithm accepts in (2)]
≥ ∆ + 1−∆

2
= 1+∆

2
≥ 1

2

p is now a Carmichael number
p− 1 = 2tu
We wish to calculate ap−1 [p]. Let i be the last integer such that v = a2iu 6= 1 [p]
v2 = 1 = a2i+1u.(if p is prime we have v = −1)

Theorem 1.9. Pra [v = −1 or i does not exist] ≤ 1
4

� For details see paper of Miller and Robin.
�

Utility and examples of Cryptographic codes :

Now we ask the question that what is the utility of the above ? One of the main applica-
tions is in Cryptography which is the practice and study of techniques for secure communi-
cation in the presence of third parties (called adversaries). Modern cryptography is mainly
based on the fact that in the theory of computation there exist problems which are easy to
compute but the inverse problems are much harder for computers to calculate.
e.g. - Given two sufficiently large primes p and q, with the help of computers we can easily
calculate their product n = pq however if we are supplied n and we wish to decompose it
into prime factors then the task takes relatively longer to accomplish.

Examples of Cryptographic Codes are :
a)Diffie-Hellmann Key Exchange
b)RSA Cryptography
etc. They are both examples of Public-Key Cryptography or more generally known as Asym-
metric Key Cryptography (one in which two different, but mathematically related keys are
used.One for encryption and the other for decryption of a message). This has considerable
advantage over symmetric key crypto-systems.
We are going to speak a little about the RSA encryption.
One thing to note is that in both of the above, everything really depends on generating

1-4

INF 581 Lecture 1 — 4th January 2012 Spring 2012

randomly a sufficiently large prime number.
How to achieve this ? We take a random number and see whether it is prime or not.
How to do that ? → use Primality Test.

RSA Encryption Method :

The RSA algorithm was publicly described in 1978 by Ron Rivest, Adi Shamir, and Leo-
nard Adleman at MIT ; the letters RSA stand for initials of their surnames.
How does it work ?
Coding :
Choose two distinct sufficiently large primes p and q.
Let n = pq denote their product called modulus of coding.
Calculate Euler’s phi function of n, φ(n) = (p− 1)(q − 1).
Choose e an integer relatively prime to φ(n) called exposant of coding
As e is prime to φ(n), so from Bézout’s theorem we get that it is invertible modulo φ(n) i.e.
there exist an integer d such that ed ≡ 1[mod φ(n)] . d is called the exposant of decoding.
The couple (n, e) is called public key while the couple (n, d) is called private key.
If M is an integer less than n representing a message, then the coded message is represented
by C where C ≡M e [mod n]

Decoding :
For decoding C, we use d, the inverse of e modulo φ(n) and we calculate Cd [mod n]
We have, Cd[mod n] ≡ (M e)d[mod n] ≡M ed(mod n)
As ed ≡ 1[mod φ(n)] by definition of modulo we have ed = 1 + kφ(n) = 1 + k(p− 1)(q − 1)
with k ∈ N.
Or for all integers M , M1+k(p−1)(q−1) ≡ M [mod p] and M1+k(p−1)(q−1) ≡ M [mod q] (using
Fermat’s little theorem)
which in turn gives M1+k(p−1)(q−1) ≡M [mod pq] as p ∧ q = 1.
So we have Cd ≡M ed ≡M1+k(p−1)(q−1) ≡M [mod n].
This solves the problem. We reiterate that for coding, it is sufficient to know e and n, while
for decoding we need d and n. To calculate d with the help of e and n, we need to find
the inverse of e modulo (p − 1)(q − 1) which forces us to know the primes p and q i.e. the
decomposition of n into prime factors.

Example 2 : Verification of a matrix product

Problem :

Consider three n × n input matrices A, B and C with integer entries. The algorithm
ACCEPTS and returns 1 if C is the matricel product of A and B else it REJECTS and
returns 0.

Freivald’s Algorithm :

1. Choose r ∈ {0, 1}n.
2. Evaluate u = Cr, v = Br and w = Av .

1-5

INF 581 Lecture 1 — 4th January 2012 Spring 2012

3. Return ACCEPT if u = w, else REJECT.

Theorem 1.10. Freivald’s Algorithm has one-sided error : the decision problem responds
YES, then the algorithm accepts it as well, while in the other case, the algorithm accepts it
with a probability Pr[ACCEPT] ≤ 1

2
and with a time complexity θ(n2).

Proof: – Number of multiplications (matrix with a vector) comes out to three and each
has a complexity of order n2.

– If AB = C algorithm returns ACCEPT.
– Let AB 6= C, we prove that ∃r ∈ {0, 1}n such that ABr 6= Cr. Consider the basis

vectors of the vector space {0, 1}n. If (AB)ij 6= (C)ij, then taking r = (0, 0, 0...1...0)
with 1 at the j’th position serves our purpose.

– Considering the case where the matrix entries are {0, 1}. Define a set S = {r|(AB − C)r = 0}

S = Ker(AB − C)

such that S is a proper subspace of the n-dimensional vector space over the field Z/2Z.
Hence S forms a subgroup of the additive group of the field Z/2Z and so satisfies :

|S| ≤ | {0, 1}
n |

2
.

Hence the result.
�

Theorem 1.11. In the general case where the matrix entries form a ring.

Proof: Define D = AB − C.
Let Di0j0 be a non-zero entry of D. ∀r, (Dr)i0 =

∑n
j=1Di0jrj = Di0j0rj0 +

∑
j 6=j0

Di0jrj
We fix (r1, r2, ...rj0−1, rj0+1..., rn).
r0 = (r1, r2, ...rj0−1, 0, rj0+1..., rn) and r1 = (r1, r2, ...rj0−1, 1, rj0+1..., rn).
As Di0j0 6= 0 we have (Dr0)i0 6= (Dr1)i0 and this concludes that the algorithm holds in the
general case as well.

�

Example 3 : Test of commutativity

Problem :

Having given a finite group G and n elements h1, h2...hn of G, we wish to find an algo-
rithm which accepts if ∀(i, j), hihj = hjhi and rejects if not.

We are interested in the complexity in number of group operations(and not on the num-
ber of additions, multiplications... even though G can be Mn for example).
We recall that the center of the group G is defined by : Z(G) = {k ∈ G|∀g ∈ G, kg = gk}
and H is the sub-group generated by the hi.

� We do not know how to calculate efficiently.

1-6

INF 581 Lecture 1 — 4th January 2012 Spring 2012

Hypothesis :

We suppose that we know how to generate uniformly at random an element of H.

Algorithm :

– Generate h and k uniformly at random in H.
– Output ACCEPT if hk = kh.
– Output REJECT if not.

Theorem 1.12. This is an algorithm of type One-sided error of complexity 2 operations of
group and 2 samples in H.

Proof: – The complexity follows.
– If the hi commute the algorithm outputs ACCEPTER.
– Suppose that H is non-commutative. Z(H) 6= H and H is a sub-group and hence
Prh∈H [h ∈ Z(H)] ≤ 1

2
.

We note that Lh = {g ∈ H|gh = hg}. We have Lh 6= H if h /∈ Z(H).
Let h /∈ Z(H).
As Lh is a strict sub-group of H we have : Prk∈H [k ∈ Lh] ≤ 1

2
.

Finally„ Prk,h [kh 6= hk] ≥ Pr [h /∈ Z(H) and k /∈ Lh] =
Pr [k ∈ Lh|h /∈ Z(H)]× Pr [h /∈ Z(H)] ≥ 1

2
× 1

2
= 1

4

�

Problem of generation of elements at random in H :

The uniform generation at random of elements in H is a difficult question. Even then to
get the result it is sufficient to have a generator of elements of H such that if K is a strict
sub-group of H, Prh coming from our generator [h ∈ K] ≤ 1

2
(�)

Generator :

– Choose uniformly at random r ∈ {0, 1}n.
– Calculate h = h1

r1h2
r2 ...hn

rn

– Output h.

Lemma 1.13. The generator satisfies (�).

Proof: K is a strict sub-group of H.
Let i0 be such that hi0 /∈ K. r ∈ {0, 1}n.
h = h1

r1h2
r2 ...hi0

ri0 ...hn
rn

We fix ri for i 6= i0. We note h0 the product for ri0 = 0 et h1 for ri0 = 1.
h0 = ab and h1 = ahi0b.
We choose i0 = min {i|hi /∈ K} in such a way that it is in K. If b ∈ K then h0 ∈ K but
h1 /∈ K as otherwise a−1h1b−1 = hi0 ∈ K which is false according to our hypothesis.
If b /∈ K we have directly h0 /∈ K. We see that at least one of the 2 elements is not in K and
we conclude. �

1-7

