
Property testing of regular tree languages∗

Frédéric Magniez† Michel de Rougemont‡

September 26, 2006

Abstract

We consider the edit distance with moves on the class of words and the class of ordered trees. We
first exhibit a simple tester for the class of regular languages on words and generalize it to the class of
ranked and unranked regular trees. We also show that this distance problem is NP-complete on ordered
trees.

1 Introduction

Inspired by the notion of self-testing [BK95, BLR93], property testing has been initially defined and studied
for graph properties [GGR98]. It has been successfully extended for various classes of finite structures. Let
K be a class of finite structures and a distance function dist, i.e. a function between structures of K. Two
inputs are ε-far if their normalized distance is greater than ε. An ε-tester for a class K0 ⊆ K is a randomized
algorithm which takes a structure Un of size n as input and decides if Un ∈ K0 or if Un is ε-far from K0

with high probability. A class K0 ⊆ K is testable, if there is a randomized algorithm which is an ε-tester
for K0 for every sufficiently small ε given as input, and whose query and time complexities only depend on
ε, i.e. independent of n.

For the Hamming distance, regular languages and Σ2-definable graph properties are testable [AKNS00,
AFKS00]. Testers have also been generalized to the infinite regular languages [CK04].

In this paper we initiate the study of property testing for words and trees under the edit distance with
moves, where the elementary operations are not only the insertions and deletions of letters or nodes, but
also the moves of any entire subword or subtree in one step. This distance is natural on words such as DNA
sequences as a move captures the folding operation, and on trees where entire subtrees to be displaced in
one step as in graphs with the Hamming distance.

First (Section 3), we develop a tester for regular languages on words that greatly simplifies the tester
of [AKNS00] and improves its complexity by a log(1/ε) factor, when we consider the edit distance with
moves instead of the standard edit distance.

Then (Section 4), we initiate the study of property testing on trees. The testability of regular tree
languages is an open problem [CK04] for the standard edit distance. We solve this problem when moves are
allowed, by proving the testability of regular ranked tree languages.

Finally (Section 5), we generalize the testability to unranked trees. As a direct application, it implies that
one can decide in constant time if a large XML document follows or is far from a DTD or an XML-Schema,
as they are special cases of the regular tree languages.

The word edit distance with moves decision problem and the standard tree edit distance decision problem
are computable in polynomial time [Cor03, Tai79]. We prove in (Section 6) that the tree edit distance with
moves is NP-complete. It is then interesting to point out that this apparently more complex distance yields
a tester for regular languages, whereas we do not know such a tester for the classical tree edit distance.

∗A preliminary version of this paper appeared in Proceedings of 31st International Colloquium on Automata, Languages
and Programming, volume 3142 of Lecture Notes in Computer Science, pages 932-944, Verlag, 2005.
Work supported by ACI Sécurité Informatique: VERA of the French Ministry of research.

†CNRS–LRI, UMR 8623 Université Paris–Sud, France
‡LRI & Université Paris II, France

1

2 Preliminaries

2.1 Property Testing

Recall the notion of a property tester [GGR98] on a class K of finite structures for which a distance function
between structures has been defined.

Let ε > 0 be a real. We say that two structures U,U ′ ∈ K are ε-close if their distance is at most ε×M ,
where M is a normalization factor, that is the maximum of dist(V, V ′) when V and V ′ range over K and
have respectively same sizes than U and U ′. They are ε-far if they are not ε-close. For words and trees,
M is set to the maximal size of the respective structures, since this is always the order of M . (For dense
graphs, M is the square of the maximal size of the respective structures.)

We now define the notion of ε-tester for a subclass of K. Since our algorithms will have 1-sided error,
we only defined testers in this way. Nonetheless, 2-sided error testers are also well investigated in various
contexts.

Definition 1. Let ε ≥ 0 be a real. An ε-tester for a class K0 ⊆ K is a randomized algorithm A such that:
(1) If U ∈ K0, A always accepts;
(2) If U is ε-far from K0, then Pr[A rejects] ≥ 2/3.

When the tester accesses the input structure U by queries (that are defined below depending on the class
K), the query complexity is the number of queries to U . The time complexity is the usual definition, where
we assume that the following operations are performed in constant time: arithmetic operations, a uniform
random choice of an integer from any finite range not larger than the input size, and a query to the input.

A class K0 ⊆ K is testable, if there is a randomized algorithm A such that for every sufficiently small
ε > 0 as input, A(ε) is an ε-tester of K0 whose query and time complexities only depend on ε.

2.2 Words

Let Σ be a finite alphabet. We consider the words on the alphabet Σ. Every word W of size |W | = n is a
finite structure (n, [n], l : [n] → Σ), where [n] denote the set {1, . . . , n}. The class K is the set of all such
structures. We will denote a subclass K0 of K as a subset L ⊆ Σ∗. In this context, a query i to some word
W asks the letter W [i] = l(i).

Let W be a word. Let W [i, j] be the word W [i] . . .W [j]. A word w is a subword of W if w = W [i, j], for
some i, j.

An elementary operation (on words) is a substitution, a deletion or an insertion of a letter, or a move:
given (i, j, k) such that k 6∈ [i, j], a move is a transformation of the word, where the subword W [i, . . . , j] has
been removed from its current position and inserted in the position k. For instance if k > j, the resulting
word is the concatenation W [1, i− 1]W [j + 1, k − 1]W [i, j]W [k, n].

The edit distance with moves between two words W and W ′ is the minimum number of elementary
operations necessary to reach W ′ from W , denoted by dist(W,W ′). The distance between W and a language
L, denoted by dist(W,L), is the minimum dist(W,W ′) when W ′ ∈ L.

The standard edit distance only considers the operations without moves, and this new distance is essential
for most of the arguments. From now, all our discussions and results will be for the edit distance with moves.

2.3 Trees

Fix a finite alphabet Σ. We consider ordered Σ-trees, i.e. trees with labels σ ∈ Σ on the nodes. A tree is
ranked if the degree is bounded by a fixed constant, and unranked otherwise. We omit the term ‘ordered’,
since all our trees will be ordered. Unlabeled trees are considered as Σ-trees where all nodes have the same
label.

A subtree t of T is a tree induced by a subset of nodes V = {v1, . . . , vm} of T such that for every pair
of nodes vi, vj the path between vi and vj in T is included in V . The leaves of T among {v1, . . . , vm} are
leaves of t, while some nodes are leaves in t but not in T and called ∗-nodes where their new label is ∗ (that
we assume to be outside Σ). By extension, a subtree t is a tree where some of the leaves are ∗-nodes.

2

2.3.1 Ranked Trees

Let us first consider r-ranked trees for some fixed constant r. An r-ranked tree T of size |T | = n is a finite
structure

(n, [n], root , l : [n] → Σ, d : [n] → [r], s : [n]× [r] → [n]),

where root is the distinguished element representing the root of T , l is the label function, d is the degree
function which gives the degree of any node, and s is the successor partial function which associates to every
node v and any position i ∈ [d(v)] the i-th successor of v, that we will also name the successor of v at position
i. When i > d(v), the function s is undefined for (v, i).

The class K is the set of all such structures. We will denote a subclass K0 of K as a subset L of all
r-ranked trees. In this context, a query (v, i) to some tree T asks the label and the degree d(v) of the node
v and its i-th node successor in T , if i ≤ d(v).

Note that the structure of the tree itself is completely unknown. Only the size n and the rank r are given
as an input. The access to the tree is only made by queries.

2.3.2 Unranked Trees

For unranked trees, there is no degree condition. An unranked tree is a structure:

(n, [n], root , l : [n] → Σ, suc : [n] → [n], sib : [n] → [n]),

where n = |T | is the size of T , root is the distinguished element representing the root of T , l is the label
function, suc is the successor partial function which associates with every node v the first successor of v,
and sib is the sibling partial function which associates with every node v its next sibling, i.e. a node w such
that if v is the i-th successor of u, w is the (i + 1)-th successor of u if it exists.

The class K is the set of all such structures. We will denote a subclass K0 of K as a subset L of all
unranked trees. In this context, a query v to some tree T asks for the label of the node v, its successor
and its sibling node in T . Notice that in the case of XML files, if we assume that T is given by its DOM
(Document Object Model) structures, the model enables us to simulate our queries. On the other hand, the
SAX model views the tree as a stream, and it is not as simple to access a random subtree.

Again, the structure of the tree is unknown. The access to the tree is made by queries given as input its
size n.

2.3.3 Distance

The classical tree edit distance [Tai79] assumes basic insertions, deletions on a tree T and substitutions of
labels (see Figure 1). A substitution (v, σ), where σ ∈ Σ, changes the label of a node v into the label σ ∈ Σ.
Let v be a node of degree d. Then an insertion (u, σ, v, i, j) inserts a new node u in T with label σ which
is the i-th successor of v. If 1 ≤ i ≤ j ≤ d, the successors of v between positions i and j are now the
successors of u in the same order, and the positions of previous (j + 1)-th, (j + 2)-th, . . . successors of v are
now i + 1, i + 2, If j = 0 and 1 ≤ i ≤ d + 1, then u is simply a leaf, and the positions of previous i-th,
(i + 1)-th, . . . successors of v are now shifted by 1. A deletion u is the inverse of a node insertion. Note
that an insertion/deletion on a r-ranked tree might give a tree whose rank is greater than r. Therefore, we
implicitly restrict ourselves only to insertions/deletions that gives a r-ranked tree when we are working with
r-ranked trees.

We will also allow some moves in T (see Figure 1). A move (u, v, i) moves in one step u (and the
corresponding subtree rooted at u) as the i-th successor of v, shifting all the j-th successors of v for j ≥ i
by one. As a consequence, the new ancestor of u is now v. Moreover if u was the i′-th successor of v′, then
all the successors of v′ for j > i′ are also shifted by one. Note that all moves are not necessarily valid. Let
d be the number of successors of v. We require that i ≤ d + 1, and in the case of r-ranked trees that d < r.

An elementary operation (on trees) is one of the above operations. The tree edit distance with moves
between two trees T and T ′ is the minimum number of elementary operations necessary to reach T ′ from T ,
denoted by dist(T, T ′). Similarly to words, the distance is extended to tree languages.

3

σ

v

u
i j i−1 j+1

1 j−i+1

Insertion (u, ,v,i,j)

Move (u,v,2)v

u u

v

Figure 1: Elementary operations on trees.

2.3.4 Tree Automata

An (nondeterministic) r-ranked tree automaton is a 5-tuple A = (Q,Σ, δ, (Iσ)σ∈Σ, F) where Q is the set of
states, F ⊆ Q is the set of accepting states, Iσ ⊆ Q the set of initial states for σ, and δ ⊆ (Q≤r ×Σ)×Q is
the transition relation.

An assignment λ for a r-ranked tree T determines states for its leaves such that if u is a leaf with label l(u),
then λ(u) ∈ Il(u). A run on a tree T extends λ, defined on the leaves, to all internal nodes: If u is a node with
successors v1, . . . , vl where l ≤ r in states λ(v1), . . . , λ(vl) then λ(u) satisfies (λ(v1), . . . , λ(vl), l(u);λ(u)) ∈ δ.
A run accepts if the state of the root is in F . We assume that the transition relation is complete, meaning that
the above extension can always continue until the root of T . In a formal way, for each sequence q1, . . . , ql, σ,
there exists q ∈ Q such that (q1, . . . , ql, σ; q) ∈ δ.

Then the tree language that recognizes A is the set of trees that have an accepting run.
For unranked trees, the notion of tree automata is slightly different. Recall that unranked trees are

trees where the degree of each node is unbounded. An unranked tree automaton generalizes the transition
relation where the transition condition is encoded by a regular expression. Namely δ is a finite subset of
(Q×Σ)×R(Q), where R(Q) is the set of regular expressions on Q. The notions of assignment and run can
also be extended in the following way. A run extends an assignment on the leaves of a tree to all its nodes
such that, if u is a node with successors v1, . . . , vl in states λ(v1), . . . , λ(vl), then the word λ(v1) · · ·λ(vl) is
recognized by some regular expression r such that λ(u) and r satisfy (λ(u), l(u); r) ∈ δ. Then unranked tree
regular languages are defined in a similar way.

3 Testing regular languages

3.1 Basic definitions

Let A be a (nondeterministic) automaton on words with m states, m ≥ 2, which recognizes a language L.
We say that w connects the states q1 to the state q2 when starting from q1, the automaton A can reach q2

after reading word w. If w connects q1 to q2, we also say that q1 is connected to q2. This notion will be used
for random subwords w of a fixed word W .

Proposition 1. Let q1 be a state connected to q2. Then there exists a word w of size less than m that
connects q1 to q2.

4

Let G(A) be the transitive closure of the graph of the automaton: G(A) is a directed graph whose vertices
are the states of A, and whose edges connect states that are connected by any word (of size less than m).
We assume without lost of generality that G(A) is connected but not necessarily strongly connected. A
strongly connected component of G(A) will be simply called a connected component of G(A). A connected
component of G(A) is truly connected if it is not a singleton without single loop in G. By definition, any truly
connected component has a non empty path in G(A). We will denote by Ĝ(A) the graph of the connected
components of G(A).

Definition 2. Let Π = (C1, . . . , Ck) be a path of Ĝ(A). Then Π is admissible if C1 contains an initial state,
and Ck contains a final state.

Definition 3.

1. Let C be a truly connected component of G(A). A word w is C-feasible if it connects two states of C.

2. Let Π be a path of Ĝ(A). A word w of is Π-feasible if it connects two states along a path visiting
connected components along a subsequence of Π.

A word w is C-infeasible (respectively Π-infeasible) if it is not C-feasible (respectively Π-feasible).
A cut of a word W is an ordered partition of W in subwords, whose order is consistent with the one of

W . Below we omit the term ‘ordered’. A cut is Π-feasible if the subwords defined by the cut are Π-feasible.
Since a cut defines a word by the juxtaposition of the corresponding subwords according to its order, we
naturally extend the distance on words to cuts.

3.2 The tester

The tester takes random subwords of finite length of W and tests their feasibility for every admissible paths
Π, that is at most 2m where m is the number of states of the automaton. The Robustness lemma will
ensure that if a word W is far from L, then with high probability a random subword of finite length will be
infeasible.

Regular language tester (A, ε,W):

If the size n of W is less than 80m2 log(5m2/ε)/ε
Read W and accept iff A accepts W

Else

For i = 1, . . . , log(5m2/ε) {
Compute Ni = d(m + 1)× 20m2 log(m2/ε)/(ε2i)e
Choose Ni random subwords wi

j of W of size 2i+1, for j = 1, . . . , Ni }
For every admissible path Π of Ĝ(A) {
If all the wi

j are Π-feasible then accept W (and stop) }
Reject W .

Theorem 1. For every real ε > 0, every automaton A with m states, the algorithm Regular lan-
guage tester (A, ε, ·) is an ε-tester for the language recognized by A. Moreover, its query complexity is
in O(m3 log2(m2/ε)/ε), and its time complexity in O(2mm5 log2(m2/ε)/ε).

Corollary 1. Regular properties of words are testable.

Before proving Theorem 1, we need the following Robustness lemma which will be crucial for our proof.
The notion of robustness was first defined in [RS96] and studied in [Rub99]. In the rest of this section, we
fix an automaton A and we call L its associated language.

5

Lemma 1 (Robustness). Let n ≥ 80m2 log(5m2/ε)/ε, and let W be a word of size n such that dist(W,L) >

εn. Then for every admissible path Π of Ĝ(A), there exists an integer 1 ≤ i ≤ log(5m2/ε), such that the
number of Π-infeasible subwords of size 2i+1 is at least 2i

20m2 log(5m2/ε) × εn.

We delay the full proof of the Robustness lemma to the end of Section 3.3, and for now we only sketch
its main steps:

1. The Splitting lemma shows that if the distance between W and L is large then there are many infeasible
disjoint subwords. Its proof is by contraposition (see Figure 2):

(a) First, from a cut of minimal infeasible subwords, we construct a close feasible cut.

(b) Then the Merging lemma shows that if a cut is feasible, then it is close to L.

CCC

C CC

Splitting a word Merging a word

Figure 2: The correction (steps 1.a and 1.b) of a word with two infeasible subwords where C is some connected
component (and h′ = 3 for the proof of Lemma 3).

2. The Amplifying lemma shows that if there are many infeasible words, then there are many short ones.

Proof of Theorem 1. We can assume without lost of generality that the size n of W is at least 15m2/ε,
otherwise the proof of the correctness is obvious.

First, if W ∈ L then W is Π-feasible for some admissible Π. Therefore every subword of W is Π-feasible
for this path Π. Thus the tester accepts W with probability 1.

Now suppose that dist(W,L) > εn. Let us fix an admissible path Π. Using the Robustness lemma
(Lemma 1), we get that the probability to accept W for this Π is at most 2−m/3. Now, since there are at
most 2m candidates Π, we can conclude using the union bound, that the overall acceptance probability is
upper bounded by 1/3.

Last, for each integer i = 1, . . . , log(5m2/ε), the tester queries Ni subwords of size 2i+1, that is
O(m3 log(m2/ε)/ε) letters. Therefore the query complexity of the tester is clearly in O(m3 log2(m2/ε)/ε).
For the time complexity, we need to evaluate the complexity of deciding if a subword w is Π-feasible, for a
fixed Π. This can be done in time O(m2 × |w|), using a m-dimensional vector of reachable states. We start
from the states of all connected components in Π, and we update the reachable states from each initial states
after each letter of w. Since at most m states are reachable from any state, this updating can be done in
time O(m2). Consequently, w is Π-feasible if there is a reachable state in one connected components in Π
at the last step. Thus, the overall time complexity of the tester is in O(2mm5 log2(m2/ε)/ε).

3.3 Robustness of the tester

Lemma 2 (Merging). Let Π = (C1, . . . , Ck) be an admissible path of Ĝ(A). Let F be a Π-feasible cut of
size h′. Then dist(F,L) ≤ m− 1 + (m2 + 2m− 1)× h′.

Proof. First, we split each subword of F in C-feasible subwords, for some C ∈ Π. Given a Π-feasible subword
w which connects p ∈ Ci to q ∈ Cj , we follow the automaton from p to q on w, and we delete each letter
leading to a new connected component. Then the subword is cut along each deleted letter.

This technique only keeps subwords that are C-feasible for some truly connected component C. Moreover,
each initial subword of F splits in at most m subwords with at most (m− 1) deletions. Let (wi)1≤i≤l be the
remaining subwords of F , where 1 ≤ l ≤ m× h′.

6

Now we explain how to move and glue the remaining subwords wi in order to get a subword W ′ ∈ L. Let
C ′

i be a component of Π such that wi is C ′
i-feasible. Let pi, qi ∈ C ′

i such that wi connects pi to qi. Then, we
do (l − 1) moves so that the components C ′

i are in the order defined by Π. Up to some reindexing of pi, qi

and wi , we assume now that (C ′
1, . . . , C

′
l) are in the same order than (C1, . . . , Ck) with multiplicity.

We glue by induction. Let q0 be an initial state of C1, and let pl+1 be an accepting state of Ck. For i = 0
to i = l do the following. By Proposition 1, let gi be a word of size at most m that connects qi to pi+1. By
inserting gi between wi and wi+1, we get the word W ′ = g0w1g1 . . . wlgh such that W ′ ∈ L. In this last step,
we did at most m× (l + 1) insertions.

The total number of elementary operations is less than (m − 1) × h′ + (l − 1) + m × (l + 1) ≤ m − 1 +
(m2 + 2m− 1)× h′, since l ≤ m× h′ and m ≥ 2.

Lemma 3 (Splitting). Let Π be an admissible path of Ĝ(A). Let W be a word such that dist(W,L) > h.
Then there exists a cut of W that has more than h−m

2m2 Π-infeasible disjoint subwords.

Proof. The proof is by contraposition. By assumption, any cut of W has at most h−m
2m2 infeasible subwords.

We will show how to construct a cut of size h′ with at least (h′−1) infeasible subwords such that dist(W,L) ≤
m + 2m2 × h′, which together with our assumption gives dist(W,L) ≤ h.

First we construct a cut P of W of size h′ whose (h′ − 1) first subwords are minimal Π-infeasible and
disjoint subwords. The last subword of P might be Π-feasible. In this case, the entire word W might also
be Π-feasible and h′ = 1.

We visit W from the left to the right and the construction of each Π-infeasible subword W [i, j] is done
by induction on that walk.

Initially: h′ = 0, i = j = 1, and n =size of W .
While (j ≤ n) {

While (subword W [i, j] is Π-feasible and j < n) {increase j}
h′ = h′ + 1, wh′ = W [i, j],
i = j + 1, j = i.

}

At the end of the procedure we get the desired partition P = (wi)1≤i≤h′ .
Now we explain how to get a word W ′ ∈ L. Let w′

i be wi without the last letter, for i = 1, . . . , h′. When
wh′ is Π-feasible then w′

h′ = wh′ . By construction of wi, the subwords w′
i are Π-feasible. Let F be the

cut of the (w′
i)1≤i≤h′ . Applying Lemma 2, we get that dist(F,L) ≤ m − 1 + (m2 + 2m − 1) × h′. Because

dist(W,F) ≤ h′, then dist(W,L) ≤ m− 1 + (m2 + 2m)× h′ ≤ m + 2m2 × h′, since m ≥ 2.

Lemma 4 (Amplifying). Let Π be a path of Ĝ(A). Let W be a word of length n with at least h′ Π-infeasible
disjoint subwords. Then there exists an integer 1 ≤ i ≤ log(2n/h′) such that the number of Π-infeasible
subwords of size 2i+1 is at least 2i

3 (h′

2 log(2n/h′) − 4).

Proof. In this proof, we understand feasible as Π-feasible.
Let w1, . . . , wh′ be some infeasible disjoint subwords of W . For every integer i ≥ 1, let si = |{wj :

2i−1 + 1 ≤ |wj | ≤ 2i}|. Then
∑

i≥1 si = h′. Let a be a positive integer. Then since |W | = n, we get that
|{wj : |wj | > 2a}| ≤ n

2a . Therefore
∑a

i=1 si ≥ h′ − n
2a .

Take a = log(2n/h′). Then
∑a

i=1 si ≥ h′

2 , thus there exists some 1 ≤ i ≤ a such that si ≥ h′

2a .
To lower bound the number of infeasible subwords of size 2i+1, we count the number of subwords of size

2i+1 that contains a least one subword wj whose size is in [2i−1 + 1, 2i]. These subwords are also infeasible
since they contain one of the infeasible subwords wj . Note that since the subwords wj are disjoint, each
infeasible subword of length 2i+1 contains at most 3 of the wj of length greater than 2i−1. Moreover, each
infeasible subword wj of length at most 2i is included in at least 2i subwords of length 2i+1 (except, maybe,
the two first and the two last subwords). We then get that the number of infeasible subwords of size 2i+1 is
at least 2i

3 × (h′

2a − 4).

7

Proof of Lemma 1. From the Splitting lemma with h = εn, the word W has more than h′ = 2εn
5m2 Π-infeasible

disjoint subwords. Now, by the Amplifying lemma, there exists an integer 1 ≤ i ≤ log(5m2/ε) such that
the number of Π-infeasible subwords of size 2i+1 is at least 2i((2εn/5m2)−8 log(5m2/ε))

6 log(5m2/ε) . Using the hypothesis

n ≥ 80m2 log(5m2/ε)
ε , we get that (2εn/5m2)− 8 log(5m2/ε) ≥ (1.5εn/5m2), and then we can lower bound the

above by 2iεn
20m2 log(5m2/ε) .

4 Testing regular ranked tree languages

4.1 Basic definitions

First, let us generalize the notion of assignment to subtrees. An assignment λ for a subtree t determines
states for its leaves such that if u is a leaf with label l(u) 6= ∗, then λ(u) ∈ Il(u), otherwise λ(u) can be any
state of Q. A run is defined for a subtree exactly in the same way as for trees. A run on a subtree t extends
λ, defined on the leaves, to all internal nodes: If u is a node with successors v1, . . . , vl where l ≤ r in states
λ(v1), . . . , λ(vl) then λ(u) satisfies (λ(v1), . . . , λ(vl), l(u);λ(u)) ∈ δ.

Two states q and q′ are connected if there exists a finite tree t with exactly one ∗-leaf, and a run λ such
that the ∗-leaf of t is assigned the state q, and the root of t is assigned the state q′. As in the case of words,
t can be always chosen of size at most rm−1 + 1 ≤ rm, since one can glue two nodes on a same path of t if
they have the same state assigned by λ.

Let G(A) be the transitive closure of the graph of the tree automaton: G(A) is a directed graph whose
vertices are the states of A, and whose edges connect states that are connected by any subtree (of size at
most rm).

We assume without lost of generality that G(A) is connected. We define Ĝ(A) and the notion of truly
connected as in Section 3.1, and we omit the term ‘strongly’. Let C(A) be the set of connected components
of G(A). We generalize the notions of Π-feasibility for subtrees where Π is a subset of C(A).

Definition 4. Let Π ⊆ C(A). Then Π is admissible if there is a pair (T0, λ0), the witness of Π, such that
λ0 is an accepting run of the tree T0 which visits every connected components in Π, and no more.

Observe that T0 can be always chosen such that its size is at most rm.

Definition 5. Let Π ⊆ C(A).

1. A path σ from a leaf to the root of a subtree t is Π-feasible if there exists a run which visits along σ
connected components along a subset of Π.

2. A subtree t is simply Π-feasible if there exists a Π-feasible path σ in T .

3. A subtree t is Π-feasible if there exists a run λ such that every path σ of t is Π-feasible for the same
run λ.

A subtree t is (simply) Π-infeasible if it is not (simply) Π-feasible.
We now define two related notions of partitions of a tree into subtrees, namely cut and forest. Intuitively,

the cut will be constructed such that its subtrees are infeasible. These subtrees will be in fact minimal
infeasible, leading to a forest of maximal feasible subtrees.

We say that two subtrees of a tree T are disjoint if they are node-disjoint except in one node that might
be both a ∗-leaf of one subtree and the root of the other subtree. When we want to precise that two subtrees
have no node in common, we explicitly say that they are node-disjoint.

A cut of a tree T is a subset of nodes of T , where T will be cut. A cut of T defines inductively a partially
ordered partition of T into disjoint subtrees, whose order is defined by T :

We visit T bottom-up. While visiting a node v, if v is in the cut, then the subtree of T rooted in
v becomes a new subtree of the partition that we suppress from T , keeping v as a ∗-node in the
remaining part of T .

8

Depending on the context, we will consider a cut of T either as a subset of nodes, or as such a partially
ordered partition of subtrees.

Those subtrees of the cut will be defined as minimal infeasible subtrees of T . By removing the root
of those subtrees, they will become maximal feasible subtrees. This operation on the cut naturally defines
another partition of T which is node-disjoint, and that we call the forest of the cut. Each subtree t of the
cut whose root is also a ∗-node in another subtree of the cut, is replaced by the subtrees of its root (at most
r). A forest is therefore a partially ordered partition of T into node-disjoint subtrees whose order is defined
by T .

By definition, we only consider forests that correspond to some implicit tree T . Therefore we naturally
extend our distance on trees to such forests. An elementary operation on a forest modifies implicitly the
corresponding tree.

The size of a forest of subtrees is the number of its subtrees, and a forest is Π-feasible if all its subtrees
are Π-feasible.

4.2 The tester

A k-subtree of T from v is a subtree of T with v as a root and containing every nodes at depth at most k
below v. The tester generates random k-subtrees from random nodes v. More precisely, the tester is going
to select Θ(mrΘ(m)

ε2) random i-subtrees, for i = 1, . . . , rΘ(m)/ε, and check if they are all Π-feasible, for some
admissible Π.

Regular ranked tree language tester (A, ε, T):

If the size n of T is less than 10r2m+1/ε
Read T and accept iff A accepts T

Else

Compute N = d(m + 1)× 64r4m+2/ε2e
For i = 1, . . . , 16r2m+1/ε {
Choose N random nodes vi

j , for j = 1, . . . , N .
Query the i-subtree tij of T from vi

j , for j = 1, . . . , N }
For every admissible subset Π ⊆ C(A). {
If all the tij are Π-feasible then accept T (and stop) }

Reject T .

Theorem 2. For every real ε > 0, every r-ranked tree automaton A with m states, and every r-ranked tree
T , the algorithm Regular ranked tree language tester (A, ε, T) is an ε-tester for the language recognized
by A. Moreover, its query and time complexities are in rO(r2m+1/ε).

Corollary 2. Regular properties of ranked trees are testable.

In the rest of this section, we fix an r-ranked automaton A and we call L its associated language. The
proof of Theorem 2 will follow the same arguments as Theorem 1 using the Robustness lemma for trees.

Lemma 5 (Robustness). Let n ≥ 10r2m+1/ε, and let T be a r-ranked tree of size n such that dist(T,L) > εn.
Then for every admissible subset Π ⊆ C(A), there exists an integer 1 ≤ i ≤ 2r2m+1/ε, such that the number
of Π-infeasible i-subtrees is at least 1

64r4m+2 × ε2n.

We delay the proof of the above lemma to the end of Section 4.3. Its structure is the same as the one of
Lemma 1:

1. The Splitting lemma shows that if the distance between T and L is large then there are many infeasible
disjoint subtrees. Its proof is by contraposition (see Figure 3):

9

(a) First, from a cut of minimal infeasible subtrees, we construct a close feasible forest.

(b) Then the Merging lemma shows that if a forest is feasible, then it is close to L.

C D D D

Merging trees
Splitting trees

*
*

Connected components

C C

T

C

C

C D

D

D

Figure 3: The correction of a tree with two infeasible subtrees where we mention C and D as some connected
components (and h′ = 3 for the proof of Lemma 7).

2. The Amplifying lemma shows that if there are many infeasible subtrees, then there are many short
ones.

Proof of Theorem 2. We can assume without lost of generality that the size n of T is large enough.
First, if T ∈ L then T is Π-feasible for some admissible Π. Therefore every subtree of T is Π-feasible for

that Π. Thus the tester accepts T with probability 1.
Now suppose that dist(T,L) > εn. The argument is similar to the one given in the proof of Theorem 1.

Using the Robustness lemma for trees (Lemma 5), we get that for each admissible set Π, the probability to
accept T for this Π is at most 2−m/3. Now, since there at most 2m candidates Π, we can then conclude
using the union bound, that the overall acceptance probability is upper bounded by 1/3.

For the complexity, we observe that the bottleneck is due to the sampling of the i-subtrees that might
be of size ri.

4.3 Robustness of the tester

In this section, all the trees we consider are r-ranked trees.

Lemma 6 (Merging). Let Π ⊆ C(A) be admissible. Let F be the forest of a cut of a tree T . Assume that F
is a Π-feasible forest of size h′1 with at most h′2 ∗-nodes. Then dist(T,L) ≤ rm(2m + 2h′2 + 3rmh′1).

Proof. First, we construct a subforest F ′ by splitting each subtree t of F in simply C-feasible subtrees, for
some C of Π.

In more details, fix such a t ∈ F , and let λ be a run of t such that all paths of t are Π-feasible. Let C be
the connected component of the root of t, and let σ be the longest path from the root such that λ(σ) ⊆ C,
i.e. all nodes of σ are in a state of C. Denote by v the last node of σ. Then we cut t just before leaving C,
that is between v and its successors. This leads to one simply C-feasible subtree from the root of t where
the label of v is now ∗, and r new Π-feasible subtrees from the successors of v. We iterate the argument for
the r subtrees using the restrictions of the same run λ. Therefore, the paths that we will consider in the
r subtrees will start with a component D 6= C such that C is connected to D in Ĝ(A). This guarantees a
depth recursion of size at most m.

Therefore, at the end of the process each subtree of F generates at most 1+ r+ . . .+ rm−1 ≤ rm subtrees
in F ′, that are simply C-feasible, for some C of Π, and at most rm new ∗-nodes. Therefore, the size of the
resulting forest F ′ is at most h′′1 = rm × h′1 and the number of ∗-nodes is at most h′′2 = (h′2 + rm × h′1).

Now we only consider subtrees that are simply C-feasible for some truly connected component C of Π,
and delete the other ones, necessarily of size 1, using at most h′′1 deletions. Let (ti)1≤i≤k be the remaining
subtrees of F ′, where 1 ≤ k ≤ h′′1 .

10

We now explain how to move and glue the remaining subtrees ti in order to get a tree T ′ ∈ L. Let
(T0, λ0) be a witness of Π such that T0 is of size at most rm. First we reduce the size of the forest to at
most m subtrees. Let Cti

be a connected component of Π such that ti is simply Cti
-feasible. We first move

and glue linearly each subtree ti with the same Cti
= C. At each ∗-node, a tree of size at most rm is also

inserted so that the resulting subtree is simply C-feasible and without any ∗-nodes. The total number of
moves or insertions of this step is at most 2rm × h′′2

Last, our final forest consists in inserting T0 and gluing the remaining subtrees to T0 in order to get a
tree T ′ ∈ L, using at most m moves, and rm ×m insertions.

The total number of elementary operations is less than

h′′1 + 2rm × h′′2 + (m + rm ×m)
= rm × h′1 + 2rm(h′2 + rm × h′1) + (m + rm ×m)
≤ rm(2m + 2h′2 + 3rm × h′1)

Lemma 7 (Splitting). Let Π ⊆ C(A) be admissible. Let T be a tree such that dist(T,L) > h. Then T has
more than 1

4rm+1 (h
rm −m)− 1 Π-infeasible disjoint subtrees.

Proof. The proof is by contraposition. By assumption, any cut of T has at most 1
4rm+1 (h

rm −m)−1 infeasible
subtrees. We will show how to construct a cut of size h′ with at least (h′ − 1) infeasible subtrees such that
dist(T,L) ≤ rm(m + 4rm+1h′), which together with our assumption gives dist(T,L) ≤ h.

First we construct a cut P of T of size h′ whose (h′ − 1) subtrees are minimal Π-infeasible and disjoint
subtrees. It might be the case that the top subtree of P is Π-feasible.

We visit T bottom-up. While visiting a node v, if the subtree below v is Π-infeasible, we add it
in our cut P, we suppress the subtree rooted at v from T , and we consider v as a ∗-node in the
remaining part of T .

At the end of the procedure we get the desired cut, which is in terms of subtrees P = (ti)1≤i≤h′ and has at
most h′ ∗-nodes.

Now we explain how to get a tree T ′ ∈ L. Let F be the forest of our cut. Every ti has a root of
degree at most r. Let t1i , . . . , t

r
i be the r subtrees from the root of ti (some of them might be empty),

for i = 1, . . . , h′. The forest F is therefore (t1i , . . . , t
r
i)i=1,...,h′ and has size at most rh′, in the same order

than T . By construction F is Π-feasible and has at most h′ ∗-nodes. Applying Lemma 6, we get that
dist(T,L) ≤ rm

(
2m + 2h′ + 3rm(rh′)

)
, which is upper bounded by dist(T,L) ≤ rm(m + 4rm+1h′).

Lemma 8 (Amplifying). Let Π ⊆ C(A) be admissible. Let T be a tree of size n with at least h′ Π-infeasible
disjoint subtrees. Then there exists an integer 1 ≤ i ≤ 2n/h′ such that the number of Π-infeasible i-subtrees
is at least h′

4n × h′.

Proof. In this proof, we understand feasible as Π-feasible and we follow the structure of the proof of Lemma 4.
Let t1, . . . , th′ be some infeasible disjoint subtrees of T . Let a be a positive integer. For every integer

i ≥ 1, let si = |{tj : depth(tj) = i}|. Since the root of a subtree may be shared with the leaf of another
subtree as a ∗-node, we have |{tj : depth(tj) > a}| ≤ n

a+1 , and therefore
∑a

i=1 si ≥ h′ − n
a+1 .

Take a = 2n
h′ . Then

∑a
i=1 si ≥ h′

2 , thus there exists some 1 ≤ i ≤ a such that si ≥ h′

2a .
For each subtree tj of depth i, we define the i-subtree t′j from the root of tj . Then t′j is also infeasible

since it contains tj . Moreover, the t′j ’s are all distinct since the tj are disjoint. We then get that the number
of infeasible i-subtrees is at least h′

2a .

Proof of Lemma 5. From the Splitting lemma with h = εn and since n is large enough, the tree T has
a number of Π-infeasible disjoint subtrees greater than h′ = εn

8r2m+1 . Now, by the Amplifying lemma,
there exists an integer 1 ≤ i ≤ 16r2m+1/ε such that the number of Π-infeasible i-subtrees is at least

1
64r4m+2 × ε2n.

11

5 Extension to unranked trees

A run λ is generalized such that if u is a node with successors v1, . . . , vl , then there exists a regular expression
r such that the word λ(v1) · · ·λ(vl) ∈ r and (λ(u), l(u); r) ∈ δ.

In order to generalize Regular ranked tree language tester to unranked regular trees we can either
directly construct a new tester, or encode an unranked tree as a binary tree and use Regular ranked tree
language tester on this encoding. We study here the second approach.

Every unranked tree T can be encoded as a binary tree but many encodings are possible. Consider the
Rabin encoding where each node v of the unranked tree is a node v in the binary encoding, the left successor
of v in the binary tree is its first successor in the unranked tree, the right successor of v in the binary tree is
its first sibbling in the unranked tree. New nodes with labels ⊥ are added to complete the binary tree when
there are no successor or no sibling in the unranked tree (See Figure 4).

It is a classical observation that a language L of unranked trees is regular [Tha67] iff the language L′

of its encoding is regular. In the case of XML files, the labels (or tags) are the states and we associate
with each label q a regular expression rq. A node labelled q is parsed correctly if the labels of its successors
belong to the regular expression rq. The DTD gives the sequence of rules q : r(q) but it is assumed to
be 1-unambiguous [BKW98]. In a general situation, we associate with a state q and symbol a a regular
expression ra,q.

If we code unranked trees as binary trees, the trees have a degree 2, but an additional label ⊥ is used
for certain leaves. If we remove the leaves labelled with ⊥, we consider trees with degree at most 2, where
nodes may only have a left or a right successor. An extended 2-ranked tree is a structure:

(N, [N], root , l : [N] → Σ, d : [N] → [2], s : [N]× [2] → [N]),

as before, i.e. l is the label function, d is the degree function and s is the successor partial function which
defines two successors. Nodes may have a left and a right successor, or a left successor, or a right successor.
The root has only a left successor. We then have a natural one-to-one correspondence between every unranked
tree T and extended 2-ranked tree e(T) (See Figure 4).

a b

c

d

b

b

d

a

b

a b

c

d d

b

a

b b c d

a b d

a

(a) (b) (c)

Figure 4: Encoding of an unranked tree T in (a), as a binary tree with ⊥ in (b), and as an extended 2-ranked
tree e(T) in (c).

Generalize automata and edit distance with moves to extended 2-ranked trees. Then our tester on 2-
ranked trees can be directly generalized to extended 2-ranked trees. The distance between two unranked
trees is of the same order as the distance on their encodings as extended 2-ranked trees: we just check that
every elementary operation on unranked trees (resp. extended 2-ranked trees) translates in finitely many
operations on extended 2-ranked trees (resp. unranked trees).

Proposition 2. For every unranked trees T and T ′,

dist(e(T), e(T ′))/3 ≤ dist(T, T ′) ≤ 3× dist(e(T), e(T ′)).

12

Proof. As previously said, we only need to decompose any elementary transformation from one encoding to
the other one. An insertion (respectively a deletion) on T is simulated by 1 insertion (respectively 1 deletion)
and 1 move on e(T). A move on T is simulated by 1 insertion, 1 move and 1 deletion on e(T).

Conversely, an insertion (respectively a deletion) on e(T) corresponds to 1 insertion (respectively 1
deletion) on T . A move on e(T) corresponds to 1 insertion, 1 move and 1 deletion on T .

Moreover one can sample any k-subtree of e(T), for any k, since one can compute the k-subtree of e(T)
from any node v by using 2k queries suc and sib to T , starting from node v. Therefore our tester can be
extended to unranked trees and we obtain:

Corollary 3. Regular properties of unranked trees are testable.

6 The tree edit distance with moves problem on ordered trees

The tree distance problem takes two ordered trees T1, T2 and an integer p as input, and decides if dist(T1, T2) ≤
p. For the case of the tree edit distance without moves, the problem is known to be NP-complete on unordered
trees and P-computable on ordered trees [Tai79, AG97]. Let EDM be the tree edit distance problem for
ordered trees and the edit distance with moves. We will show that EDM is NP-complete for both unranked
and ranked trees. One might notice that this result remains true for unordered trees when the edit distance
with moves is generalized to those trees, but this is not the purpose of this paper.

Recall that the one-dimensional perfect bin-packing problem, BP, is strongly NP-complete, i.e. BP is still
NP-complete when instances are unary encoded [GJ79] (since it is 3-Partition with less constraints). The
input of BP is a set X = {x1, . . . , xn} of positive integers and an integer B, the capacity. Then the input X, B
satisfies BP if there exists a partition of X into X1, . . . , Xk that satisfies the BP condition:

∑
xi∈Xj

xi = B,
for every j = 1, . . . , k. Note that k is uniquely determined. If X, B satisfies BP, then necessarily B divides∑n

i=1 xi and k satisfies
∑n

i=1 xi = k ×B.
We start as a warm up to prove that EDM is NP-complete on unranked trees. Then we will generalize to

binary trees. The proof consists in reducing BP to EDM, using an encoding of an instance of BP into trees
with many branches. Formally, a branch of length l is a linear tree with l nodes, i.e. such that every node
has only one successor, excepting the leaf.

Proposition 3. EDM is NP-complete on unranked trees.

Proof. Consider a reduction from BP to EDM, similar to the one introduced by [SS06] in the case of words.
Given X, B such that

∑n
i=1 xi = k × B, for some integer k, we construct (see Figure 5) T1 as an unranked

ordered tree of size k × B + 1 with n branches connected to the root: the i-th branch has length xi. The
tree T2 is a tree of size k × B + 1 with k branches of length B connected to the root. Last, the distance
parameter is p = n− k.

i

B
B

xx 1 n

(b) T made of k branches of length B
1 2 (a) T made of n branches each of length x

Figure 5: Unranked Trees T1 and T2.

13

Since the out-degree of the root of T1 is n and the one of T2 is k, at least n − k branches require one
operation in order to modify T1 to T2. Therefore dist(T1, T2) ≥ n− k.

If the input X, B satisfies BP, there exists a partition X1, . . . , Xk which satisfies the BP condition. Each
Xj defines |Xj | − 1 moves of branches of T1 to one of its branches, in order to get one branch of T2 of size
B. Therefore, n− k moves of some branches of T1 gives k branches of size B, so that dist(T1, T2) ≤ n− k.

If the input X, B does not satisfy BP, then for any partition X1, . . . , Xk, the BP condition is not satisfied.
Let us show that distance dist(T1, T2) > n− k. First, we show by contradiction that performing only moves
requires more than n − k moves. Assume that a sequence of n − k moves can modify T1 to T2. Then the
moves are exactly the ones of n− k branches, which define a partition that satisfies the BP condition. This
is a contradiction from our assumption that X, B does not satisfy BP.

Second, consider a sequence of elementary operations (insertions, deletions or moves) that modify T1 to
T2. We want to prove that the length of the sequence is greater than n − k. Since T1 and T2 have the
same size, the number of insertions equals the number of deletions. Let m be the number of moves in the
considered sequence. If m > n− k then the sequence is long enough. If m = n− k, we are in the first case.
Assume that m < n− k. Since the out-degree of T2 is k, at least n− k −m > 1 branches were not deleted
by the moves. This required at least n− k−m deletions. Therefore the number of insertions is also at least
n− k −m. Thus the length of the sequence is at least 2(n− k −m) + m > n− k when m < n− k, and we
can conclude that dist(T1, T2) > n− k.

In order to generalize the result to 2-ranked trees, i.e. trees with at most two successors, we consider a
variation of the binary encoding of the two previous trees. Notice that the basic operations on a 2-ranked
tree keep the tree 2-ranked. For example, if u is a node with two successor leaves u1 and u2, the removal of
u1 transforms u2 from the second successor to the first successor.

Theorem 3. EDM is NP-complete on 2-ranked trees.

Proof. Consider a similar reduction from BP to EDM on binary trees. Given X, B such that
∑n

i=1 xi = k×B,
for some integer k, we construct (see Figure 6) a tree T1 of size k×B+n+1 and a tree T2 of size k×B+k+1.
For T1 we start with a single branch of length n + 1. Then we add bottom-up a left branch of length xi

to the i-th node of the initial branch. The tree T2 is similarly constructed starting with a branch of length
k + 1 and adding k left branches of length B. Last, the distance parameter is p = 2(n − k). Note that T1

and T2 look like the binary encoding of their analogous unranked versions except for the last node on the
right branch, which is a leaf. Therefore all other nodes on the right branch have degree 2.

2

x1

x

B

B

n

(a) Binary tree T made of n branches each of length x (b) Binary tree T made of k branches of length Bi1

Figure 6: Binary Trees T1 and T2.

Since T1 has n− k more nodes than T2, one needs to delete at least n− k nodes from T1. Note that the
out-degree of all these additional nodes is 2. In order to delete each of these nodes, one needs to perform

14

at least one operation on one of its ancestor. Such an operation has to decrease the out-degree of the
ancestor to 1. Last, a single operation can decrease the out-degree of only one node. Therefore, we have
dist(T1, T2) ≥ 2(n− k).

If the input X, B satisfies BP, we proceed similarly as for the unranked case. There exists a partition
X1, ...Xk which satisfies the BP condition, and therefore defines n−k moves of some branches of T1 into the
remaining k branches. We then need to remove the (n− k) nodes where the moves originated, i.e. the roots
of the moved branches, so that EDM(T1, T2) ≤ 2(n− k).

If the input X, B does not satisfy BP, then for any partition X1, ...Xk, the BP condition is not satisfied.
First, assume that there is a sequence of transformations from T1 to T2 that consists in n − k moves and
n− k deletions. Then necessarily, the moves are used to decrease the degree of the deleted 2-degree nodes.
Moreover, since they must not increase any out-degree, they have to move some left branches to the leaves
of other left branches. This means that if we get T2 in this way, the moves define a partition that satisfies
the BP condition, which is a contradiction.

Now we want to prove that the length of any sequence that modify T1 to T2 is greater than 2(n− k). As
in the unranked case, the number of deletions equals the number of insertions plus n− k, that is the size of
T1 minus the size of T2. Let m be the number of moves. If m > n − k then the sequence is long enough.
If m = n − k, there is no insertion and we are in the first case. Assume that m < n − k, then there are
n − k − m branches that need to be deleted, which requires at least n − k − m insertions. Therefore the
length of the sequence is m+(n−k−m)+ (n−k−m+n−k) > 2(n−k) when m < n−k, and we conclude
that dist(T1, T2) > 2(n− k).

7 Conclusion

We proved that ranked and unranked regular tree languages have testers for the tree edit distance with
moves. We first gave a tester simpler than the [AKNS00] tester for regular languages when the edit distance
with moves replaces the standard edit distance. Then we extended the construction to ranked trees. As
a corollary, unranked trees are also testable because we can use an encoding into extended 2-ranked trees
where the distances are close. Although the distance problem between two ordered trees is P computable
for the classical tree edit distance, it is NP-complete for the tree edit distance with moves.

Acknowledgment

We thank Dana Shapira for sending us a preliminary version of [SS06], and the anonymous referees for their
constructive remarks that improved the presentation of the paper, and for having pointed out a mistake in
the original proof of Proposition 3.

References

[AFKS00] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. Combina-
torica, 20:451–476, 2000.

[AG97] A. Apostolico and Z. Galil. Pattern Matching Algorithms, chapter 14: Approximate Tree Pattern
Matching. Oxford University Press, 1997.

[AKNS00] N. Alon, M. Krivelich, I. Newman, and M. Szegedy. Regular languages are testable with a constant
number of queries. SIAM Journal on Computing, 30(6), 2000.

[BK95] M. Blum and S. Kannan. Designing programs that check their work. Journal of the ACM,
42(1):269–291, 1995.

[BKW98] A. Bruggemann-Klein and D. Wood. One-unambiguous regular languages. Information and
Computation, 142:182–206, 1998.

15

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

[CK04] H. Chockler and O. Kupferman. ω-regular languages are testable with a constant number of
queries. Theoretical Computer Science, 329(1-3):71–92, 2004.

[Cor03] G. Cormode. Sequence Distance Embeddings. PhD thesis, University of Warwick, 2003.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4):653–750, 1998.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of Np-
Completeness. Bell Laboratories Murry Hill, NJ, 1979.

[RS96] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to program
testing. SIAM Journal on Computing, 25(2):23–32, 1996.

[Rub99] R. Rubinfeld. On the robustness of functional equations. SIAM Journal on Computing,
28(6):1972–1997, 1999.

[SS06] D. Shapira and J. Storer. Edit distance with move operations. Journal of Algorithms, 2006. To
appear.

[Tai79] K. C. Tai. The tree-to-tree correction problem. Journal of the ACM, 26:422–433, 1979.

[Tha67] J. Thatcher. Characterizing derivation trees of context-free grammars through a generalization
of finite automata theory. Journal of Computer and System Sciences, 1(4):317–322, 1967.

16

