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ABSTRACT
We propose a new method for designing quantum search al-
gorithms for finding a “marked” element in the state space
of a classical Markov chain. The algorithm is based on a
quantum walk à la Szegedy [25] that is defined in terms of
the Markov chain. The main new idea is to apply quantum
phase estimation to the quantum walk in order to imple-
ment an approximate reflection operator. This operator is
then used in an amplitude amplification scheme. As a re-
sult we considerably expand the scope of the previous ap-
proaches of Ambainis [6] and Szegedy [25]. Our algorithm
combines the benefits of these approaches in terms of being
able to find marked elements, incurring the smaller cost of
the two, and being applicable to a larger class of Markov
chain. In addition, it is conceptually simple, avoids several
technical difficulties in the previous analyses, and leads to
improvements in various aspects of several algorithms based
on quantum walk.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms,Theory
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1. INTRODUCTION

1.1 Background
At an abstract level, any search problem may be cast as

the problem of finding a “marked” element from a set X
with n elements. Let M ⊆ X be the set of marked elements.
One approach to finding from M , if it is not empty, is to
repeatedly sample from X uniformly until a marked element
is picked. A more cost-effective approach re-uses resources
expended in generating the first sample (time, random bits,
black-box queries, etc.) by simulating the steps of a Markov
chain with state space X to generate the next sample. This
approach often takes advantage of some structure present
in the ground set X and the Markov chain, and leads to a
more efficient algorithm. In this article, we study quantum
analogues of this randomized scheme.

Discrete time quantum walks emerged gradually in the
field of quantum algorithms (see [25] for a detailed intro-
duction.) On the line they are related to the quantum
cellular automaton model of Meyer [21]. Watrous [27] in-
troduced quantum walks on regular graphs, and used them
to show that randomized logarithmic space is included in
quantum logarithmic space. Afterwards notions related to
quantum walks, such as mixing time, and deviation from
starting state, were studied for restricted graphs by several
researchers [22, 7, 3, 23], suggesting the possibility of speed-
up of classical algorithms based on random walk.

Shenvi, Kempe, and Whaley [24] pointed out the algorith-
mic potential of quantum walks by designing a walk based
algorithm to emulate Grover Search [16]. The first algo-
rithm using quantum walks that goes beyond the capability
of Grover Search is due to Ambainis [6] for Element Distinct-
ness. In his seminal paper he resolved the quantum query
complexity of the problem, settling a difficult question that
had been open for several years [12, 1]. Finally Szegedy [25]
developed a theory of quantum walk based algorithms. He
designed a quantum search algorithm based on any sym-
metric, ergodic Markov chain that detects the presence of
a marked element. He defined a notion of quantum hitting
time that is quadratically smaller than the classical average
hitting time. Since then, in the framework of Ambainis or
Szegedy, numerous new algorithms emerged with substan-
tially better complexity in a variety of contexts [5, 20, 13,



19].
This work develops a new schema for quantum search al-

gorithms, based on any ergodic Markov chain. We extend
the Szegedy quantization of classical Markov chains to pos-
sibly non-symmetric Markov chains, but its use is more in
the style of the Ambainis algorithm. Departing from the two
algorithms, however, we use quantum walks only indirectly.
In conjunction with the well known phase estimation algo-
rithm [18, 15], the quantum walk helps us implement an
approximate reflection operator. This operator may then
be used within amplitude amplification algorithms [16, 10,
17] for search. As a result, our work generalizes previous
ones by extending the class of possible Markov chains, and
improving the complexity in terms of its relation with the
eigenvalue or singular value gap of the related Markov chain.
In addition, our approach is conceptually simple, avoids sev-
eral technical difficulties in the analysis of the earlier ap-
proaches, and leads to improvements in various aspects of
the algorithms.

1.2 Two subtly different search algorithms
The optimal quantum algorithm for Element Distinctness

discovered by Ambainis [6] recasts the problem in terms of
search for a marked state in a Johnson graph defined by
the problem instance. The algorithm may be viewed as a
quantum analogue of the following search process, where P
is the transition matrix of a Markov chain defined on state
space X.

Search Algorithm 1
1. Initialize x to a state sampled from a probability

distribution s over X.
2. Repeat for t2 steps

(a) If the state y reached in the previous step is
marked, then stop and output y.

(b) Else, simulate t1 steps of the Markov chain P
starting with the current state y.

3. If the algorithm has not terminated, stop, and out-
put ‘no marked element exists’.

The parameters t1 and t2 in the algorithm are determined
by the properties of the Markov chain and the marked sub-
set M . The idea behind this algorithm is illustrated by
considering an ergodic Markov chain P . If t1 is chosen large
enough, the state y in step (2a) above will be distributed (ap-
proximately) according to the stationary distribution of P .
Then, the outer loop represents sampling from the station-
ary distribution until a marked element is found. If t2 is
chosen to be inversely proportional to the probability that
a state is marked according to the stationary distribution,
the algorithm will succeed with high probability.

The analysis of the Ambainis quantum algorithm depends
heavily on the form of marked states, and was presented for
subsets M arising out of k-Collision, a generalization of Ele-
ment Distinctness, with the assumption of a unique collision.
Inspired by this algorithm, Szegedy [25] designed a quantum
search algorithm with uniform initial distribution, based on
any symmetric, ergodic Markov chain. The Szegedy algo-
rithm may be viewed as a quantum analogue of a subtly
different, but more natural, classical process.

Search Algorithm 2
1. Initialize x to a state sampled from a probability

distribution s over X.
2. Repeat for t steps

(a) If the state y reached in the previous step is
marked, then stop and output y.

(b) Else, simulate one step of the Markov chain P
from the current state y.

3. If the algorithm has not terminated, stop, and out-
put ‘no marked element exists’.

The parameter t is also determined by the Markov chain
P , and the set M of marked states. This algorithm is a
greedy version of the first algorithm: a check is performed
after every step of the Markov chain to determine if a marked
state has been reached, irrespective of whether the Markov
chain has mixed.

Let us formally derive the complexity of the two algo-
rithms to clarify their differences. Assume that the search
algorithms maintain a data structure d that associates some
data d(x) with every state x ∈ X. From d(x), we would
like to determine if x ∈ M . When operating with d, we
distinguish three types of cost.

Setup cost S: The cost to sample x ∈ X according
to the initial distribution s, and to construct the data
structure d(x) for the state x.
Update cost U: The cost to simulate a transition
from x to y for a state x ∈ X according to the Markov
chain P , and to update d(x) to d(y).
Checking cost C: The cost of checking if x ∈ M
using d(x).

The cost may be thought of as a vector listing all the mea-
sures of complexity of interest, such as query and time com-
plexity. We may now state generic bounds on the efficiency
of the two search algorithms in terms of our cost parameters.

Proposition 1. Let δ > 0 be the eigenvalue gap of an
ergodic, symmetric Markov chain P on a state space X of

size n, and let |M|
|X| ≥ ε > 0 whenever M ⊂ X is non-empty.

For the uniform initial distribution s,
1. Search Algorithm 1 determines if a marked element

exists and finds one such element with high probability
if t1 = O( 1

δ
) and t2 = O( 1

ε
). The cost incurred is of

order S + 1
ε

`
1
δ
U + C

´
.

2. Search Algorithm 2 determines if a marked element
exists and finds one such element with high probabil-
ity if t = O( 1

δε
). The cost incurred is of order S +

1
δε

(U + C) .

Proof. The stopping time of Search Algorithm 2 is
the average hitting time of the setM for the Markov chain P .
We may therefore take t to be a constant factor more than
this hitting time. As mentioned before, this time is bounded
above by the stopping time for the first algorithm. Therefore
part 2 of the proposition follows from part 1.

In the first algorithm, we may take t2 to be proportional
to the average hitting time of the set M for the Markov
chain P t1 . The quantity λ∗(P ), the magnitude of the eigen-
value of P with maximum absolute value among the eigen-
values different from 1, is bounded by 1 − δ by hypothe-
sis. The analogous quantity λ∗(P t1) is therefore bounded



by (1 − δ)t1 ≤ e−δt1 . Taking t1 = 1/δ, we get a spec-

tral gap δ̃ of at least 1/2 for P t1 . We may now bound the
average hitting time of M for P t1 by, for example, Equa-
tion 15 in Ref. [25] and Lemma 1 in Ref. [11] (also stated as
Lemma 10 in Ref. [25]). This bound evaluates to 1

εδ̃
≤ 2

ε
.

The expression for the cost of the algorithm now follows.

For special classes of graph, for example for the 2-d toroidal
grid, the hitting time may be significantly smaller than the
generic bound t = O(1/δε) given in part 2 (see [4, Page 11,
Chapter 5]).

1.3 Quantum analogues
As in the classical case, the quantum search algorithms

look for a marked element in a finite set X, where a data
structure d is maintained during the algorithm. Let Xd be
the set of items along with their associated data, that is
Xd = {(x, d(x)) : x ∈ X}. For simplicity we suppose that
0̄ ∈ X and that d(0̄) = 0̄.

The quantum walks of Ambainis and Szegedy, and also
ours, may be thought of as a walk on edges of the original
Markov chain, rather than its vertices. Thus, that state
space is a linear subspace of the vector space H = CX×X ,
or Hd = CXd×Xd when we also include the data structure.
For the sake of elegance in the mathematical analyses, our
data structure keeps the data for both vertices of an edge,
whereas in previous works the data was kept alternately only
for one of them. There is a natural isomorphism |ψ〉 7→ |ψ〉d
between H and Hd, where on basis states |x〉d = |x, d(x)〉.
This isomorphism maps a unitary operation U on H into Ud
on Hd defined by Ud|ψ〉d = (U |ψ〉)d.

Our walks will be discussed in the space Hd when, for im-
plementation and cost considerations, it will be important
to deal properly with the data structure. However, for con-
venience, we will analyze the mathematical properties of the
walks without the data structure, in the space H. This is
legitimate because of the isomorphism between Hd and H.

The initial state of the algorithm is explicitly related to
the stationary distribution π of P . At each step, the right
end-point of an edge (x, y) is “mixed” over the neighbours
of x, and then the left end-point is mixed over the neigh-
bours of the new right end-point. We will distinguish again
three types of cost generalizing those of the classical search.
They are of the same order as the corresponding costs in
the algorithms of Ambainis and Szegedy. Some operations
of the algorithms not entering into these costs will not be
accounted for. This is justified by the fact that in all quan-
tum search algorithms the overall complexity is of the order
of the accounted part expressed in the specific costs.

(Quantum) Setup cost S: The cost for constructing
the state

P
x

√
πx|x〉d|0̄〉d

(Quantum) Update cost U: The cost to realize any
of the unitary transformations and inverses

|x〉d|0̄〉d 7→ |x〉d
P
y

√
pxy|y〉d,

|0̄〉d|y〉d 7→
P
x

√
p∗yx|x〉d|y〉d,

where P ∗ = (p∗xy) is the time-reversed Markov chain

defined by the equations πxpxy = πyp
∗
yx.

(Quantum) Checking cost C: The cost to real-
ize the unitary transformation that maps |x〉d|y〉d to
−|x〉d|y〉d if x ∈M , and leaves it unchanged otherwise.

The quantum search algorithms of Ambainis and Szegedy

give a quadratic speed up in the times t1, t2 and t, with
respect to the classical algorithms.

Theorem 1 (Ambainis [6]). Let P be the random walk
on the Johnson graph on r-subsets of a universe of size m,
with intersection size r − 1, where r = o(m). Let M be
either empty, or the class of all r subsets that contain a
fixed subset of size a constant k ≤ r. The eigenvalue gap
of P is δ ∈ Ω( 1

r
), and the fraction of marked elements is

either 0 or ε = Ω( r
k

mk ). Then, there is a quantum algorithm
that determines, with high probability, if M is non-empty or
finds the k-subset with cost of order S + 1√

ε
( 1√

δ
U + C).

Theorem 2 (Szegedy [25]). Let δ > 0 be the eigen-
value gap of an ergodic, symmetric Markov chain P , and let
|M|
|X| ≥ ε > 0 whenever M is non-empty. There exists a

quantum algorithm that determines, with high probability, if
M is non-empty with cost of order S + 1√

δε
(U + C).

If the checking cost C is substantially greater than that
of performing one step of the walk, an algorithm with the
cost structure of the Ambainis algorithm would be more
efficient. Moreover, the algorithm would find a marked ele-
ment if one exists. These advantages are illustrated by the
algorithm for Triangle Finding [20]. This algorithm uses
two quantum walks à la Ambainis recursively; the Szegedy
framework seems to give a less efficient algorithm. Nonethe-
less, the Szegedy approach has other advantages—it applies
to a wider class of Markov chain and for arbitrary sets of
marked state. Moreover, the quantity 1/

√
δε in Theorem 2

may be replaced by the square-root of the classical hitting
time [25]. These features make it more suitable for appli-
cations such as the near-optimal algorithm for Group Com-
mutativity [19] which has no equivalent using the Ambainis
approach.

1.4 Contribution, relation with prior work,
and organization

Our algorithm is a quantum analogue of Search Algo-
rithm 1 and works for any ergodic Markov chain. It is most
easily described for reversible Markov chains.

Theorem 3 (This paper). Let δ > 0 be the eigen-
value gap of a reversible, ergodic Markov chain P , and let
ε > 0 be a lower bound on the probability that an element
chosen from the stationary distribution of P is marked when-
ever M is non-empty. Then, there is a quantum algorithm
that with high probability, determines if M is empty or finds
an element of M , with cost of order S + 1√

ε
( 1√

δ
U + C).

Our algorithm considerably expands the scope of the ap-
proaches embodied in Theorems 1 and 2 above. It combines
the benefits of both approaches in terms of being able to find
marked elements, incurring the smaller cost of the two, and
being applicable to a larger class of Markov chain. In addi-
tion, it is conceptually simple, avoids several technical diffi-
culties in the analysis of the earlier approaches, and leads to
improvements in various aspects of algorithms for Element
Distinctness, Matrix Product Verification, Triangle Finding,
and Group Commutativity. Namely, we give a single-shot
method for any algorithm à la Ambainis in presence of mul-
tiple solutions, without the need for a reduction to special
cases such as that of a unique solution. This applies to



Element Distinctness and Triangle Finding. For Element
Distinctness, Matrix Product Verification, and Group Com-
mutativity, where an algorithm à la Szegedy only detects
the existence of a solution, we find one with the same time
and query complexity. Finally, we improve the complexity
of the best previous known algorithm for Triangle Finding
from O(n1.3polylog(n)) to O(n1.3).

In Section 2, we describe a quantum analogue of a Markov
chain based on the work of Szegedy [25] who defined such
a quantum process W (P,Q) for a classical bipartite walk
(P,Q). By letting Q = P , he related the spectrum of the
quantum walk W (P ) to that of P for symmetric Markov
chains. Using an absorbing version of P as in Search Al-
gorithm 2, he designed a quantum analogue of this classical
scheme. Even when P is not symmetric, letting Q = P ∗, the
time-reversed Markov chain corresponding to P , leads to a
natural connection between P and W (P ). If P is reversible,
then the eigenvalues of W (P ) are closely related to those of
P , as in the symmetric case. For an arbitrary, possibly non-
reversible, ergodic Markov chain, this connection relates the
eigenvalues of W (P ) to the singular values a “discriminant”
matrix D(P ) associated with P .

In Section 3, we use the quantum walk W (P ) with the
unperturbed walk P in a completely different way, more in
the style of the Ambainis approach. Ambainis directly uses
a power of W (P ) to replace the “diffusion” operator in the
Grover search algorithm. The beauty of this step, and the
difficulty of proving its correctness, lies in the fact that even
if no power of W (P ) closely approximates the diffusion op-
erator, some powers have sufficient properties to mimic its
essential features. We introduce a novel way to approximate
the diffusion operator. Our approach is both conceptually
simpler, and more general. We observe that W (P ) ampli-
fies the spectral gap of a reversible Markov chain quadrat-
ically. We translate this to an efficient approximation to
the Grover diffusion operator (Theorem 6), using the well
known phase estimation algorithm. We then begin an ex-
position of our algorithm by considering reversible Markov
chains. To explain the basic idea of our approach, we first
prove our main result with an additional logarithmic factor
(Theorem 7).

In Section 4, using a technique developed by Høyer, Mosca,
and de Wolf [17] we show how to eliminate the logarithmic
factor in the previous theorem, thus proving Theorem 3.

In Section 5, we extend the algorithm to a possibly non-
reversible Markov chain whose discriminant D(P ) has non-
zero singular value gap (Theorem 9). The complexity of
the algorithm in the general case is similar to the one for
reversible Markov chains. The sole difference is that the
singular value gap of D(P ) takes the place of the spectral
gap of P . While the eigenvalues of Markov chains are well
studied, we are not aware of a similar theory for singular
values of this matrix. Nonetheless, we believe that such a
general result may prove useful for future applications.

For simplicity, in our algorithms we assume that the num-
ber of marked elements is known in advance. This assump-
tion may be removed using standard techniques, without
increasing the asymptotic complexity of the algorithms [9].

2. QUANTUM ANALOGUE OF A CLASSI-
CAL MARKOV CHAIN

Let P = (pxy) be the transition matrix of any irreducible

Markov chain on a finite space X with |X| = n. By the
Perron-Frobenius theorem, the chain has a unique stationary
distribution π = (πx), that is a unique left eigenvector π
with eigenvalue 1 and positive coordinates summing up to 1.
Since we will only consider irreducible Markov chains in this
paper, from now on we may omit the term ‘irreducible’ in
our discussions. We will also often identify a Markov chain
with its transition matrix P .

Let P ∗ = (p∗yx) be the time-reversed Markov chain defined
by the equations πxpxy = πyp

∗
yx. We will define a quantum

analogue of an arbitrary irreducible Markov chain P , based
on and extending the notion of quantum Markov chain due
to Szegedy [25]. The latter was inspired by an earlier no-
tion of quantum walk due to Ambainis [6]. We also point
out that a similar process on regular graphs was studied by
Watrous [27].

For a state |ψ〉 ∈ H, let Πψ = |ψ〉〈ψ| denote the or-
thogonal projector onto Span(|ψ〉), and let ref(ψ) = 2Πψ −
Id denote the reflection through the line generated by |ψ〉,
where Id is the identity operator on H. If K is a sub-
space of H spanned by a set of mutually orthogonal states
{|ψi〉 : i ∈ I}, then let ΠK =

P
i∈I Πψi be the orthogonal

projector onto K, and let ref(K) = 2ΠK−Id be the reflection
through K.

Let A = Span(|x〉|px〉 : x ∈ X) and B = Span(|p∗y〉|y〉 : y ∈
X) be vector subspaces of H = CX×X , where

|px〉 =
P
y∈X

√
pxy |y〉 and |p∗y〉 =

P
x∈X

√
p∗yx |x〉.

Definition 1 (Quantum walk). The unitary opera-
tion W (P ) defined on H by W (P ) = ref(B) · ref(A) is called
the quantum walk based on the classical chain P .

This quantum walk extends to a walkW (P )d on the spaceH
augmented with data structures, as explained in Section 1.3.
Recall that U is the quantum update cost as defined in the
same section.

Proposition 2. The quantum walk with data W (P )d can
be implemented at cost 4U.

Proof. The reflection ref(A)d is implemented by map-
ping states |x〉d|px〉d to |x〉d|0̄〉d, applying ref(Hd ⊗ |0̄〉d),
and undoing the first transformation. In our accounting we
charge unit cost for the second step since it does not depend
on the database. Therefore the implementation of ref(A)d
is of cost 2U. The reflection ref(B) may be implemented
similarly.

The eigen-spectrum of the transition matrix P plays an
important role in the analysis of a classical Markov chain.
Similarly, the behaviour of the quantum process W (P ) may
be inferred from its spectral decomposition. For this, mo-
tivated by Szegedy [25], we consider the discriminant ma-
trix D(P ) = (

√
pxyp∗yx). Since

√
pxyp∗yx =

√
πxpxy/

√
πy,

the discriminant matrix is equal to

D(P ) = diag(π)1/2 · P · diag(π)−1/2,

where diag(π) is the invertible diagonal matrix with the co-
ordinates of the distribution π in its diagonal. Since the
singular values of D(P ) all lie in the range [0, 1], we may ex-
press them as cos θ, for some angles θ ∈ [0, π

2
]. For later ref-

erence, we rewrite Theorem 1 of Szegedy [25] which relates
the singular value decomposition of D(P ) to the spectral
decomposition of W (P ).



Theorem 4 (Szegedy [25]). Let P be an irreducible
Markov chain, and let cos θ1, . . . , cos θl be an enumeration
of those singular values (possibly repeated) of D(P ) that lie
in the open interval (0, 1). Then:

1. On A + B those eigenvalues of W (P ) that have non-
zero imaginary part are exactly e±2iθ1 , . . . , e±2iθl , with
the same multiplicity.

2. On A ∩ B the operator W (P ) acts as the identity Id.
A∩B coincides with the left (and right) singular vectors
of D(P ) with singular value 1.

3. On A ∩ B⊥ and A⊥ ∩ B the operator W (P ) acts as
−Id. A∩B⊥ (respectively, A⊥ ∩B) coincides with the
set of left (respectively, right) singular vectors of D(P )
with singular value 0.

4. W (P ) has no other eigenvalues on A+B; on A⊥∩B⊥
the operator W (P ) acts as Id.

We define ∆(P ), the phase gap of W (P ) as 2θ, where θ
is the smallest angle in (0, π

2
) such that cos θ is a singular

value of D(P ). This definition is motivated by the previous
theorem: the angular distance of 1 from any other eigenvalue
is at least ∆(P ).

3. FROM QUANTUM WALK TO SEARCH

3.1 Outline of search algorithm
We now describe a search algorithm that may be viewed as

a quantum analogue of Search Algorithm 1 of Section 1.2.
Consider the following quantum state in the Hilbert spaceH:

|π〉 =
X
x∈X

√
πx |x〉|px〉 =

X
y∈X

√
πy |p∗y〉|y〉.

This state will serve as the initial state for our algorithm,
and corresponds to starting in the stationary distribution π
in the classical search algorithms. Assume that M 6= ∅. Let
M = CM×X denote the subspace with marked items in the
first register. We would like to transform the initial state |π〉
to the target state |µ〉, which is the (normalized) projection
of |π〉 onto the “marked subspace” M:

|µ〉 =
ΠM|π〉
‖ΠM|π〉‖

=
1√
ε

X
x∈M

√
πx |x〉|px〉,

where ε = ‖ΠM|π〉‖2 =
P
x∈M πx is the probability of

a set M of marked states under the stationary distribu-
tion π. Roughly speaking, we will effect this transformation
by implementing a rotation à la Grover [16] in the two-
dimensional real subspace S = Span(|π〉, |µ〉) generated by
the states.

Ideally, we would like to effect the rotation ref(π)d·ref(µ⊥)d
in Sd, where |µ⊥〉 is the state in S orthogonal to |µ〉 which
makes an acute angle with |π〉. The angle ϕ between |π〉
and |µ⊥〉 is given by sinϕ = 〈µ|π〉 =

√
ε. The product of

the two reflections above is a rotation by an angle of 2ϕ
within the space S. Therefore, after O(1/ϕ) = O(1/

√
ε) it-

erations of this rotation starting with the state |π〉, we will
have approximated the target state |µ〉.

Restricted to the subspace S, the operators ref(µ⊥) and
−ref(M) are identical. Therefore, if we ensure that the state
of the algorithm remains close to the subspace S through-
out, we would be able to implement ref(µ⊥)d: it involves
checking at cost C whether an item in the first register is
marked.

The reflection ref(π)d is computationally harder to per-
form. The straightforward strategy would be to rotate |π〉d
to the state |0̄〉d|0̄〉d, use ref(|0̄〉d|0̄〉d), and then undo the
first rotation. However, rotating |π〉d to |0̄〉d|0̄〉d is exactly
the inverse operation of the preparation of the initial state
|π〉d from |0̄〉d|0̄〉d, and therefore requires the same cost S+U.
This may be much more expensive than the update cost 4U
incurred by the walk W (P )d. To use W (P )d instead, our
idea is to apply phase estimation to it, and exploit this pro-
cedure to approximate the required diffusion operator on
Ad + Bd which contains the subspace Sd.

3.2 Diffusion operator from quantum walk
To explain our approach, in the rest of this section, and

in the next one, we assume that the classical Markov chain
P is ergodic and reversible. Let us recall that a finite Markov
chain is ergodic if it is irreducible and aperiodic. The Markov
chain P is said to be reversible if P = P ∗, where P ∗ is the
time reversed chain. For a reversible chain the correspond-
ing discriminantD(P ) is symmetric. Symmetry implies that
the singular values of D(P ) equal the absolute values of its

eigenvalues. Since D(P ) = diag(π)1/2 ·P ·diag(π)−1/2 is sim-
ilar to the matrix P , their spectra are the same. Therefore,
we only study the spectrum of P . The Perron-Frobenius the-
orem and the ergodicity of P imply that the eigenvalue 1 is
the only eigenvalue of P with absolute value 1 and has multi-
plicity 1. The corresponding eigenvector of D(P ) is (

√
πx ),

and every singular (or eigen-) vector of D(P ) orthogonal
to this has singular value strictly less than 1. Transferring
this property to the quantum walk W (P ) via Theorem 4,
|π〉 is the unique eigenvector of the unitary operator W (P )
in A+ B with eigenvalue 1, and the remaining eigenvalues
in A+B are bounded away from 1. We use this observation
to identify the component of any state |ψ〉 ∈ S perpendicu-
lar to |π〉.

The main idea in our implementation of the above ap-
proach is to use phase estimation [18, 15].

Theorem 5 (Phase estimation, Cleve et al. [15]).
For every pair of integers m, r ≥ 1, and a unitary operator U
of dimension m × m, there exists a quantum circuit C(U)
that acts on m + s qubits, where s = r + O(1) and satisfies
the following properties:

1. The circuit C(U) uses 2s Hadamard gates, O(s2) con-
trolled phase rotations, and makes 2s+1 calls to the
controlled unitary operator c−U .

2. For any eigenvector |ψ〉 of U with eigenvalue 1, i.e., if
U |ψ〉 = |ψ〉, then C(U)|ψ〉|0s〉 = |ψ〉|0s〉.

3. If U |ψ〉 = eiθ|ψ〉, where θ ∈ (0, 2π), then rounding off
the number in the last s qubits of the state C(U)|ψ〉|0s〉
to the r most significant bits gives the best r-bit approx-
imation to θ/2π with probability at least 2/3.

Moreover the family of circuits C parametrized by m and s
is uniform.

In the following theorem we show how phase estimation
can be used to design a quantum circuit R(P ) which imple-
ments an operation that is close to the reflection ref(π).

Theorem 6. Let P be an ergodic Markov chain on a state
space of size n, and let m = n2. Then there is a constant c >
0 such that for any integer k, there exists a quantum circuit
R(P ) that acts on m + ks qubits, where s = log2(

1
∆(P )

) +

O(1), and satisfies the following properties:



1. The circuit R(P ) uses 2ks Hadamard gates, O(ks2)
controlled phase rotations, and makes at most k 2s+1

calls to the controlled quantum walk c−W (P ), and its
inverse c−W (P )†.

2. If |π〉 is the unique 1-eigenvector of W (P ) as defined
above, then R(P )|π〉|0ks〉 = |π〉|0ks〉.

3. If |ψ〉 lies in the subspace of A+ B orthogonal to |π〉,
then ‖(R(P ) + Id)|ψ〉|0ks〉‖ ≤ 21−ck.

Moreover the family of circuits R(P ) parametrized by n and
k is uniform.

Proof. We describe the circuit R(P ). We start by ap-
plying the phase estimation theorem to the quantum walk
W (P ), a unitary operator of dimension m × m. Then us-
ing standard methods, we amplify the success probability
of the resulting algorithm. We repeat it k times and take
the median of the answers, increasing the success probabil-
ity to 1− 2−ck, for some constant c > 0. Observe that only
the number of ancillary qubits increase from s to ks in this
process; we do not need additional copies of the eigenvec-
tor |ψ〉.

This approximately resolves any state |ψ〉 in A+ B along
the eigenvectors of W (P ) by labeling them with the corre-
sponding eigenvalue phases. We now flip the phase of all
states with a non-zero estimate of the phase, that is flip the
phase of all eigenvectors other than |π〉. Finally, we reverse
the phase estimation.

The state |π〉|0ks〉 stays unchanged. When |ψ〉 is orthog-
onal to |π〉 then it is the linear combination of eigenvec-
tors of W (P ) whose eigenvalues are of the form e±2iθ, where
∆(P )/2 ≤ θ < π/2. Since 2θ/2π > ∆(P )/8, the
(log2(1/∆(P )) + 3)-bit phase estimation is non-zero with
probability at least 1 − 2−ck. We can therefore decompose
|ψ〉|0ks〉 into the sum |ψ0〉+|ψ1〉, where the phase estimation
is zero on |ψ0〉, non-zero on |ψ1〉, and ‖|ψ0〉‖ ≤ 2−ck. Then
R(P )|ψ〉|0ks〉 = |ψ0〉−|ψ1〉, and (R(P )+Id)|ψ〉|0ks〉 = 2|ψ0〉
whose norm is at most 21−ck.

3.3 The search algorithm for reversible
Markov chains

Let us consider the following quantum procedure.

Quantum Search(P )
1. Start from the initial state |π〉d.
2. Repeat O(1/

√
ε)–times:

(a) For any basis vector |x〉d|y〉d, flip the phase if
x ∈M .

(b) Apply circuit R(P )d of Theorem 6 with k =
O(log(1/

√
ε)).

3. Observe the first register.
4. Output x if x ∈ M , otherwise output ‘no marked

element exists’.

Theorem 7. Let δ > 0 be the eigenvalue gap of a re-
versible, ergodic Markov chain P , and let ε > 0 be a lower
bound on the probability that an element chosen from the
stationary distribution of P is marked whenever M is non-
empty. Then, with high probability, the procedure Quantum
Search(P ) determines if M is empty or finds an element of

M with cost of order S + 1√
ε

h“
1√
δ

log 1√
ε

”
U + C

i
.

Proof. For the mathematical analysis we reason in the
Hilbert space H, without the data structures, and also sup-
press the ancilla qubits used by the circuit R(P ). We know

that in the two-dimensional subspace S = Span(|π〉, |µ〉),
the Grover algorithm, consisting in O(1/

√
ε) iterations of

ref(π) · ref(µ⊥), turns the vector |π〉 into a state whose in-
ner product with |µ〉 is 1 − O(

√
ε). Using a hybrid argu-

ment as in [8, 26], we prove that the algorithm Quantum
Search(P ) simulates, with an arbitrarily small error, the
Grover algorithm, and therefore finds a marked element with
high probability, whenever such an element exists.

For i ≥ 0, we define |φi〉 as the result of i Grover it-
erations applied to |π〉, and |ψi〉 as the result of i itera-
tions of step (2) in Quantum Search(P ) applied to |π〉.
We show by induction on i, that ‖|ψi〉 − |φi〉‖ ≤ i21−ck,
where c is the constant of Theorem 6. Indeed, we can
write |ψi〉 as |φi〉 + (|ψi〉 − |φi〉). The action of ref(µ⊥)
and −ref(M) are identical on |φi〉 since it is in S. Set
|τ〉 = |φi+1〉+ R(P ) · ref(M)|φi〉. Since ref(M)|φi〉 is in S,
and S is a subspace of A+ B, conclusion (3) of Theorem 6
can be applied, which implies that ‖|τ〉‖ ≤ 21−ck. Using
that ‖|ψi+1〉− |φi+1〉‖ ≤ ‖|τ〉‖+‖|ψi〉− |φi〉‖, the statement
follows. This implies that ‖|ψk〉 − |φk〉‖ is an arbitrarily
small constant when k is chosen to be O(c−1 log(1/

√
ε)).

Let us now turn to the cost of the procedure. Initializa-
tion costs S + U, and in each iteration the single phase flip
costs C. In the circuit R(P )d, the controlled quantum walk
and its inverse can be implemented with four update opera-
tions, each of cost U. Indeed, the implementation of W (P ),
described in the proof of Proposition 2 works also for the
controlled quantum walk if we replace ref(Hd⊗ |0̄〉d) by the
controlled operator c−ref(Hd ⊗ |0̄〉d). Since the controlled
reflection is also of unit cost, this change does not alter the
cost of the implementation.

In R(P )d the number of controlled quantum walks and its
inverse is O((1/∆(P )) log(1/

√
ε)). We claim that ∆(P ) =

Ω(
√
δ). Let λ0, ..., λn−1 be the eigenvalues, with multi-

plicity, of P such that 1 = λ0 > |λ1| ≥ . . . ≥ |λn−1|.
Since the discriminant D(P ) is similar to P , their spec-
tra are the same, and therefore the singular values of D(P )
are |λ0| , |λ1| , . . .. By definition, ∆(P ) = 2θ1, where cos θ1 =
|λ1|. The following (in)equalities can easily be checked:

∆(P ) ≥
˛̨
1− e2iθ1

˛̨
= 2

q
1− |λ1|2 ≥ 2

p
δ(P ). This finishes

the cost analysis.

Let us observe that the origin of the quadratic speed-
up due to quantum walks may be traced to the quadratic
relationship between the phase gap ∆(P ) of the quantum
walk W (P ) and the eigenvalue gap δ of the classical Markov
chain P , observed at the end of the previous proof.

4. SEARCH WITH APPROXIMATE
REFLECTION OPERATORS

In this section, we describe how our approximate reflection
operator may be incorporated into a search algorithm with-
out incurring additional cost for reducing its error. The
basic idea is to adapt the recursive amplitude amplification
algorithm of Høyer, Mosca, and de Wolf [17] to our setting.
To describe it, we use the notation from Section 3.1 where
we discussed how the Grover algorithm works to rotate a
starting state |π〉 into a target state |µ〉, where 〈µ|π〉 =
sinϕ =

√
ε. We define procedures Ai recursively. Let the

procedure A0 be the identity map Id, and for i > 0, let

Ai = Ai−1 · ref(π) ·A†i−1 · ref(µ
⊥) ·Ai−1.



We define the states |πi〉 as Ai|π〉. Then |πi〉 forms an angle
3iϕ with |µ⊥〉, and therefore the state |πt〉 is close to |µ〉
when t = log3

1
ϕ

+ O(1). The final recursive algorithm is
thus At.

We may estimate the cost Cost(t) of this search algo-
rithm in terms of the cost c of implementing the two orig-
inal reflections. We have Cost(0) = 0, and for i ≥ 1,
Cost(i) = 3 · Cost(i − 1) + c, and therefore the cost of At
is O(c/

√
ε).

The recursive amplitude amplification algorithm is more
suitable for situations where we have imperfect procedures
that implement the basic reflections ref(π), ref(µ⊥). Høyer
et al. [17] demonstrated this when there is an ideal (error-
free) procedure for ref(π), and a procedure for ref(µ⊥) that
has ideal behaviour only with high probability. We extend
this to the case where the first reflection may also be im-
perfect. In the context of quantum walk based search, an
imperfection appears in the form given by Theorem 6. The
basic idea is to create an analogue of the recursive algorithms
Ai when ref(π) is replaced by increasingly fine approxima-
tions based on Theorem 6. For the sake of simplicity, we
only deal with the case when the implementation of ref(µ⊥)
is ideal.

Theorem 8. Let |π〉 be some state in a Hilbert space H,
let M⊆ H be a subspace of H, and let ε = ‖ΠM|π〉‖2, where
ΠM is the projector onto M. Assume that for any β > 0,
we have a quantum circuit R(β) acting on H⊗K, where K
is an extra register of s qubits (s = s(β) may depend on β),
with the following properties:

1. The circuit R(β) has a cost of order O(c1 log 1
β
).

2. R(β)|π〉|0s〉 = |π〉|0s〉.
3. ‖(R(β)+Id)|ψ〉|0s〉‖ ≤ β when |ψ〉 is orthogonal to |π〉.

Further, assume that we are able to apply −ref(M) with
a cost O(c2). Then, for any γ > 0, there exists a quan-
tum circuit that maps |π〉 to a state that has projection of
length at least 1√

2
− γ in M, and incurs a cost of order

1√
ε
· (c1 log 1

γ
+ c2).

Proof. Let t be the smallest non-negative integer such
that 3t sin−1√ε ∈ [π/4, 3π/4]. We have t = log3

1√
ε

+

O(1). The quantum circuit consists in t recursive amplitude
amplification steps and acts on H ⊗

ˆNt
i=1Ki

˜
, where Ki

is an extra register used at step i. Let si = s(βi) be the
size of register Ki, where βi will be specified later. Let S =Pt
i=1 si.
The quantum circuit follows exactly the recursive am-

plitude amplification algorithm explained above. We use
|φ0〉 = |φ〉 = |π〉|0S〉 as the initial state and essentially re-
place ref(φ) at step i by an approximation R(βi), acting
on H⊗Ki, and Id on the rest. The precise definition of the
algorithm Ai in terms of the reflection operator Ri used in
this recursive step is as follows. Let A0 = Id. For i ≥ 1:

Approximate reflection Ri

The algorithm acts on H⊗
hNt

j=1Kj
i
.

1. Apply A†i−1.

2. If the registers corresponding to
Nt

j=1Kj are in

state |0s〉, apply R(βi) on H⊗Ki.
3. Otherwise apply −Id.
4. Apply Ai−1.

Further, define

Ai = Ri · ref(M) ·Ai−1

|φi〉 = Ai |φ0〉

Since R(βi) is an approximation to ref(φ0), we see that Ri
is an approximation to ref(φi−1). Let Ei = Ri − ref(φi−1)
be the error made in our implementation of ref(φi−1).

Fact 1. Ei satisfies the following properties:
1. Ei|φi−1〉 = 0, and
2. ‖Ei|ψ〉‖ ≤ βi, for all |ψ〉 ⊥ |φi−1〉 within the subspace

(A+ B)⊗
hNt

j=1Kj
i
.

To analyze this algorithm, we keep track at all steps of
the projection of |φi〉 on the marked subspace. The marked

subspace corresponds to M⊗
hN

j Kj
i
; it consists of states

in which the H-part is marked. For ease of notation, we will
denote this space by M. Define the normalized projections
of |φi〉 on the marked subspace M and on its orthogonal
complement as:

|µi〉 =
ΠM|φi〉
‖ΠM|φi〉‖

|µ⊥i 〉 =
(Id−ΠM)|φi〉
‖(Id−ΠM)|φi〉‖

.

We thus have

|φi〉 = sinϕi |µi〉+ cosϕi |µ⊥i 〉, (1)

where sin2 ϕi = ‖ΠM|φi〉‖2 is the success probability at step
i, that is the probability of finding a marked item by measur-
ing the first register according to {ΠM, Id−ΠM}. For later
use, let us also define |φ⊥i 〉 as the state in the 2-dimensional
subspace spanned by |µi〉 and |µ⊥i 〉 that is orthogonal to
|φi〉:

|φ⊥i 〉 = cosϕi |µi〉 − sinϕi |µ⊥i 〉.
For the initial state |φ0〉, we have sin2 ϕ0 = ε, by the hy-

pothesis of the theorem. If all the errors βi were zero, our
recursive algorithm would implement an amplitude amplifi-
cation in the subspace spanned by |µi〉 = |µ0〉 and |µ⊥i 〉 =
|µ⊥0 〉, with the angles ϕi+1 = 3ϕi, that is ϕi = 3iϕ0. There-
fore by recursively iterating our procedure for a total number
of t steps, we would end up with a state whose inner product
with |µ0〉 is at least 1√

2
.

Analysis of the errors — We show that the algorithm
still works when the errors βi are sufficiently small. In that
case, the 2-dimensional subspace Span(|µi〉, |µ⊥i 〉) may drift
away from the initial subspace Span(|µ0〉, |µ⊥0 〉), and the an-
gles ϕi may be different from the ideal value ϕ̄i = 3iϕ0. We
derive bounds on the error ei:

ei = |sinϕi − sin ϕ̄i| , (2)

the difference between the amplitude sinϕi of the marked
part of the state |φi〉 and the ideal amplitude, sin ϕ̄i.

We assume without loss of generality that 0 < γ ≤ 1√
2

since the case γ > 1√
2

is vacuous. We prove that after t

steps et ≤ γ. This will conclude the error analysis since
1√
2
≤ sin ϕ̄t ≤ 1.

We have

|φi+1〉 = Ri+1 · ref(M) |φi〉
= ref(φi) · ref(M) |φi〉+ Ei+1 · ref(M) |φi〉
= sin 3ϕi |µi〉+ cos 3ϕi |µ⊥i 〉+ |ωi+1〉, (3)



where we used the fact that ref(φi) · ref(M) implements a
perfect amplitude amplification step, and we introduced an
error state |ωi〉, defined as

|ωi+1〉 = Ei+1 · ref(M) |φi〉

= Ei+1 · ref(M)
“
sinϕi |µi〉+ cosϕi |µ⊥i 〉

”
= Ei+1

“
− sinϕi |µi〉+ cosϕi |µ⊥i 〉

”
= Ei+1

“
cos 2ϕi |φi〉 − sin 2ϕi |φ⊥i 〉

”
= − sin 2ϕi Ei+1 |φ⊥i 〉,

where we used Fact 1, property 1. Moreover, |φ⊥i 〉 ⊥ |φi〉,
so ‖|ωi+1〉‖ ≤ βi+1 sin 2ϕi. Finally, comparing Eq. (1) and
Eq. (3), we get

| sinϕi+1 − sin 3ϕi| ≤ βi+1 sin 2ϕi.

We may now bound the error defined in Eq. (2) as:

ei+1 ≤ | sinϕi+1 − sin 3ϕi|+ | sin 3ϕi − sin ϕ̄i+1|
≤ βi+1 sin 2ϕi + | sin 3ϕi − sin 3ϕ̄i|
≤ βi+1(sin 2ϕ̄i + | sin 2ϕi − sin 2ϕ̄i|)

+ | sin 3ϕi − sin 3ϕ̄i|
≤ βi+1(sin 2ϕ̄i + 2ei) + 3ei

≤ 2βi+1(ϕ̄i + ei) + 3ei,

where we have used the triangle inequality and the following
trigonometric inequalities

| sin 2A− sin 2B| ≤ 2| sinA− sinB|
| sin 3A− sin 3B| ≤ 3| sinA− sinB|

sinA ≤ A

that hold for any angles A,B ∈ [0, π/4].
We define a quantity ẽi, intended to be an upper bound

on ei (it would be if ẽi ≤ ϕ̄i). Let

ẽ0 = 0

ẽi+1 = 4βi+1ϕ̄i + 3ẽi.

We show that ẽi ≤ γ for every i ≤ t, if we take {βi} so that
they define a convergent series. Indeed, let us define ui as

ẽi = γ ϕ̄i ui.

We therefore have the following recursion for ui

u0 = 0

ui+1 = ui +
4

3γ
βi+1, (∀i ≥ 0)

so that

ui =
4

3γ

iX
j=1

βj .

Since we assumed that {βi} define a convergent series, the
non-decreasing sequence (ui) tends to some real u∞ when
i→∞. We therefore have ẽi ≤ γu∞ϕi.

We now set βi = 18
4π3 γ/i

2. Then u∞ = 1/π and we
have ẽi ≤ γϕ̄i/π ≤ γ since 0 ≤ ϕ̄t ≤ π for i ≤ t.

Since 0 < γ ≤ 1, we have ẽi ≤ ϕ̄i, and we can show by
induction that ei ≤ ẽi for all i ≤ t. This finishes the error
analysis.

Complexity — We now evaluate the complexity of our
algorithm. We know from the hypotheses of the theorem

that applying R(βi) has a cost c1 log 1
βi

, while applying

ref(M) has a cost c2. Moreover, we see from Eq. (1) that
applying Ai requires 3 calls to Ai−1, one call to R(βi) and
one call to ref(M). Hence, if we denote Cost(i) the cost of
applying Ai, we have

Cost(0) = 0

Cost(i) = 3 Cost(i− 1) + c1 log
1

βi
+ c2.

Since we have fixed βi = 18
4π2 γ/i

2, we find that Cost(i) equals„
c1

„
2 log

1

γ
+ O(1)

«« iX
j=1

3i−j(log j) + c2

iX
j=1

3i−j

= 3i
 „

c1

„
2 log

1

γ
+ O(1)

«« iX
j=1

log j

3j
+ c2

iX
j=1

1

3j

!

where both sums converge as i→∞. After t steps we have

Cost(t) = O
“

1√
ε
· (c1 log 1

γ
+ c2)

”
.

If the cost refers to time complexity, then there is an ad-
ditional term pertaining to the reflection Ri. This arises
from the check to see if the ancilla used are in state |0S〉.
This does not change the asymptotic complexity of the al-
gorithm.

We now have all the elements to prove Theorem 3.

Proof of Theorem 3. The algorithm consists in the re-
cursive quantum search from Theorem 8, using for the ap-
proximate reflections R(β) the quantum phase estimation

circuit R(P ) from Theorem 6. Setting k =
l
((log 1

β
) + 1)/c

m
in Theorem 6, R(P ) simulates a reflection with an error up-
per bounded by 21−ck ≤ β. Implementing R(P )d then re-
quires k 2s+1 calls to the controlled quantum walk c−W (P )d
or its inverse, where s = log( 1√

δ
)+O(1). Since implementing

c−W (P )d or its inverse has a cost 4U, the cost of implement-
ing the circuit R(P )d for a given error β is c1 log 1

β
, with c1 of

order 1√
δ
U. Furthermore, preparing the initial state |π〉d has

a cost S+U, and implementing −ref(M)d has a cost c2 = C.
Therefore total cost of the recursive search algorithm from
Theorem 8 is of order S + 1√

ε
( 1√

δ
U + C).

5. NON-REVERSIBLE MARKOV CHAINS
In this section, we discuss the performance of the search

algorithm presented earlier for any ergodic, but possibly
non-reversible Markov chain P . For the analysis of the quan-
tum walk W (P ) we directly examine the singular value de-

composition of the discriminant matrix D(P ) = diag(π)1/2 ·
P ·diag(π)−1/2. This matrix has the same eigenvalues as P ,
but the singular values of D(P ) may be different from the
eigenvalues of P . The singular values of D(P ) lie in the
interval [0, 1]. The vector v = (

√
πx ) is both a left and

a right eigenvector of D(P ) with eigenvalue 1. Therefore,
Span(v) and Span(v)⊥ are invariant subspaces of D(P ), and
we may choose v to be a left and right singular vector. If
every singular vector orthogonal to v has a singular value
strictly smaller than 1, that is D(P ) has a non-zero singular
value gap, then Theorem 3 and its proof stay valid when the
eigenvalue gap of P is replaced by the singular value gap of
D(P ).



The discriminant of an irreducible walk does not necessar-
ily have non-zero singular value gap, even if it is ergodic. Er-
godicity implies a non-zero eigenvalue gap for P , but there
are examples of ergodic Markov chain whose discriminant
has 0 singular value gap. In the next proposition we show
that if for every state, the Markov has a transition to itself
with non-zero probability, then its discriminant has non-zero
singular value gap. There is a standard and simple modifi-
cation to any Markov chain P such that the resulting chain
has this property: with some probability α ∈ (0, 1), stay
at the current state, and with probability 1 − α, make a
transition according to P .

Proposition 3. Let P = (pxy) be an irreducible Markov
chain on a finite state space X, such that pxx > 0, for ev-
ery x ∈ X. Then, the discriminant matrix D(P ) has exactly
one singular value equal to 1.

We first state and prove that all the singular values of
D(P ) lie in [0, 1].

Lemma 1. Let P = (pxy)x,y∈X be an irreducible Markov
chain with stationary distribution π = (πx)x∈X . Then the
singular values of the matrix D(P ) given by

D(P ) = diag(π)1/2 · P · diag(π)−1/2

all lie in the interval [0, 1].

Proof. Singular values are by convention taken to be
non-negative real. To verify that ‖D(P )‖, the largest sin-
gular value of D(P ) is at most 1, consider the inner prod-
uct u†D(P )v, for some unit vectors u, v. The maximum ab-
solute value that this inner product achieves is the norm
of D(P ). By the Cauchy-Schwartz inequality, the inner
product may be bounded as˛̨̨

u†D(P )v
˛̨̨

=

˛̨̨̨
˛X
xy

ūxvy

r
πx
πy

pxy

˛̨̨̨
˛

≤

 X
xy

|ux|2 pxy

!1/2 X
xy

|vy|2
πx
πy

pxy

!1/2

(4)

≤ 1,

since
P
x πxpxy = πy.

Proof of Proposition 3. From Lemma 1, we know that
the singular values of D(P ) all lie in [0, 1]. Further v =
(
√
πx ) is a left (and right) singular vector with singular

value 1. We show below that for any left and right sin-
gular vectors u,w ∈ CX , if u†D(P )w = 1, then u = w = v
(modulo an overall phase). This establishes the uniqueness
of the singular value 1 and a non-zero singular value gap
in D(P ).

Suppose u†D(P )w = 1. This implies that the Cauchy-
Schwartz inequality in Equation (4) in the proof of Lemma 1
is tight. Then necessarily, the two unit vectors u′, w′ ∈
CX×X given by u′ = (ux

√
pxy)x,y∈X and

w′ = (wy
p
πxpxy/πy)x,y∈X are equal. This means that for

every pair x, y ∈ X such that pxy > 0, ux = wy
p
πx/πy.

In particular, since pxx > 0, ux = wx for every x, and
so ux = uy

p
πx/πy for every neighbour y of x in the graph

underlying the Markov chain P .

Furthermore, for any path x1, x2, . . . , xk in the graph,
chaining together the equations

uxi+1 = uxi

r
πxi+1

πxi

,

for i = 1, . . . , k − 1, we get that

uxi = ux1

r
πxi

πx1

,

for every i. Since the chain P is irreducible, i.e., the under-
lying graph is strongly connected, there is path from x1 to y
for every y ∈ X. Thus,

uy = ux1

r
πy
πx1

,

for every y. Since the vector u is a unit vector, this implies
that u = w = (

√
πx)x∈X = v (up to an unimportant global

phase).

Let us finally state the theorem on our quantum search al-
gorithm when the underlying Markov chain is not necessary
reversible.

Theorem 9. Let P = (pxy) be an irreducible Markov
chain on a finite state space X, such that D(P ) has exactly
one singular value equal to 1. Let δ > 0 be the singular value
gap of D(P ), and let ε > 0 be a lower bound on the probabil-
ity that an element chosen from the stationary distribution
of P is marked whenever M is non-empty. Then, there is
a quantum algorithm that determines, with high probability,
if M is empty or finds an element of M with cost of order
S + 1√

ε
( 1√

δ
U + C).

6. CONCLUSION
We proposed a new method for designing quantum search

algorithms for finding a “marked” element in the state space
of a classical Markov chain. Our algorithm expands the
scope of earlier work due to Ambainis [6] and Szegedy [25]
and combines their advantages into a unified approach. An
upshot is the improvement in various aspects of many known
algorithms based on quantum walk. The method is also con-
ceptually and technically simpler, and thus seems to demys-
tify the role of quantum walks in search algorithms.

Theorem 2 of Szegedy may be strengthened to give a
quadratic relationship between a notion of quantum hitting
time and the classical hitting time [25] (cf. the remarks at
the end of Section 1.3). Our schema trades this relation-
ship with classical hitting time for a form of run time that
is more conducive to composition of algorithms. As a re-
sult, a direct application of our schema to search in special
classes of graph such as the d-dimensional toroidal grid (for
any constant d) leads to algorithms that are asymptotically
slower than known ones [2, 5, 14, 25]. We believe that these
results could be recast in our framework, but leave it open
for the moment.
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