
SEARCH VIA QUANTUM WALK∗
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Abstract. We propose a new method for designing quantum search algorithms for finding a “marked” element in the state
space of a classical Markov chain. The algorithm is based on a quantum walk à la Szegedy (2004) that is defined in terms of
the Markov chain. The main new idea is to apply quantum phase estimation to the quantum walk in order to implement an
approximate reflection operator. This operator is then used in an amplitude amplification scheme. As a result we considerably
expand the scope of the previous approaches of Ambainis (2004) and Szegedy (2004). Our algorithm combines the benefits of
these approaches in terms of being able to find marked elements, incurring the smaller cost of the two, and being applicable
to a larger class of Markov chains. In addition, it is conceptually simple and avoids some technical difficulties in the previous
analyses of several algorithms based on quantum walk.

1. Introduction.

1.1. Background. At an abstract level, many search problems may be cast as the problem of finding
a “marked” element from a set X with n elements. Let M ⊆ X be the set of the so called marked elements.
One approach to finding an element of M , if it is not empty, is to repeatedly sample from X uniformly until
a marked element is picked. A more cost-effective approach reuses resources expended in generating the first
sample (time, random bits, black-box queries, etc.) by simulating the steps of a Markov chain with state
space X to generate the next sample. This approach often takes advantage of some structure present in
the ground set X and the Markov chain, and leads to a more efficient algorithm. In this article, we study
quantum analogues of this randomized scheme.

There are several ways of defining quantum analogues of Markov chains, including both discrete and
continuous time versions (see, for example, Ref. [29] for a detailed introduction). We restrict our attention
to discrete time analogues.

Discrete time quantum walks emerged gradually in the field of quantum algorithms. On the line they are
related to the quantum cellular automaton model of Meyer [25]. Watrous [32] introduced quantum walks on
regular graphs, and used them to show that randomized logarithmic space is included in quantum logarithmic
space. Afterwards notions related to quantum walks, such as mixing time, and deviation from the starting
state, were studied for restricted graphs by several researchers [26, 5, 2, 27], suggesting the possibility of
speed-up of classical algorithms based on random walk.

Shenvi, Kempe, and Whaley [28] pointed out the algorithmic potential of quantum walks by designing
a walk based algorithm to emulate Grover Search [16]. The first algorithm using quantum walks that goes
beyond the capability of Grover Search is due to Ambainis [4] for Element Distinctness. In his seminal
paper he resolved the quantum query complexity of the problem, settling a difficult question that had been
open for several years [12, 1]. Finally Szegedy [29] developed a theory of quantum walk based algorithms.
He designed a quantum search algorithm based on any symmetric, ergodic Markov chain that detects the
presence of a marked element. He defined a notion of quantum hitting time that is quadratically smaller
than the classical average hitting time. Since then, in the framework of Ambainis or Szegedy, many new
algorithms with substantially better complexity emerged in a variety of contexts [6, 24, 13, 22, 15].

This work develops a new schema for quantum search algorithms, based on any ergodic Markov chain.
We adapt the quantum analogue of classical Markov chains due to Szegedy to possibly non-symmetric
Markov chains, but use it more in the style of the Ambainis algorithm. Departing from the two algorithms,
however, we use quantum walks only indirectly. In conjunction with the well known phase estimation
algorithm [19, 20, 14], the quantum walk helps us implement an approximate reflection operator. This
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operator may then be used within amplitude amplification algorithms [16, 10, 17] for search. As a result,
our work generalizes previous ones by extending the class of possible Markov chains, and improving the
complexity in terms of its relation with the eigenvalue or singular value gap of the related Markov chain.
In addition, our approach is conceptually simple, avoids several technical difficulties in the analysis of the
earlier approaches, and leads to improvements in various aspects of the algorithms.

1.2. Two subtly different search algorithms. We identify a Markov chain over state space X with
its transition matrix P = (pxy)x,y∈X , where pxy is the probability of transition from x to y. A chain is
irreducible if every state is reachable from every other state, and an irreducible chain is ergodic if it is
also aperiodic (equivalently, its reachability graph is non-bipartite). The eigenvalues of a Markov chain are
at most 1 in magnitude. By the Perron-Frobenius theorem, an irreducible chain has a unique stationary
distribution π = (πx), that is, a unique left eigenvector π with eigenvalue 1 and positive coordinates summing
up to 1. If the chain is ergodic, the eigenvalue 1 is the only eigenvalue of P with magnitude 1. We denote
by δ = δ(P ) the eigenvalue gap of P , that is 1 − λ, where λ = λ(P ) = maxν∈Λ |ν|, where Λ is the set
of eigenvalues of P different from 1. The time-reversed Markov chain P ∗ = (p∗xy) of P is defined by the
equations πxpxy = πyp

∗
yx. The chain P is said to be reversible if P ∗ = P . The Markov chain P is symmetric

if P = PT where PT denotes the matrix transpose of P . The stationary distribution of any symmetric chain
is the uniform distribution.

The optimal quantum algorithm for Element Distinctness discovered by Ambainis [4] recasts the problem
in terms of search for a marked state in a Johnson graph defined by the problem instance. The algorithm
may be viewed as a quantum analogue of the following search process, where P is a Markov chain defined
on state space X.

Search Algorithm 1
1. Initialize x to a state sampled from a probability distribution s over X.
2. Repeat for t2 steps

(a) If the state y reached in the previous step is marked, then stop and output y.
(b) Else, simulate t1 steps of the Markov chain P starting with the current state y.

3. If the algorithm has not terminated, stop, and output ‘no marked element exists’.

The parameters t1 and t2 in the algorithm are determined by the properties of the Markov chain and the
marked subset M . The idea behind this algorithm is illustrated by considering an ergodic Markov chain P .
When t1 is large enough, the state y in step (2a) above is distributed (approximately) according to the
stationary distribution of P . Then, the outer loop represents sampling from the stationary distribution until
a marked element is found. When t2 is chosen to be inversely proportional to the probability that a state is
marked according to the stationary distribution, the algorithm succeeds with high probability.

The analysis of the Ambainis quantum algorithm depends heavily on the form of marked states, and
was presented for subsets M arising out of k-Collision, a generalization of Element Distinctness, with the
assumption of a unique collision. Inspired by this algorithm, Szegedy [29] designed a quantum search
algorithm with uniform initial distribution, based on any symmetric, ergodic Markov chain. The Szegedy
algorithm may be viewed as a quantum analogue of a subtly different, but more natural, classical process.

Search Algorithm 2
1. Initialize x to a state sampled from a probability distribution s over X.
2. Repeat for t steps

(a) If the state y reached in the previous step is marked, then stop and output y.
(b) Else, simulate one step of the Markov chain P from the current state y.

3. If the algorithm has not terminated, stop, and output ‘no marked element exists’.

The parameter t is also determined by the Markov chain P , and the set M of marked states. This
algorithm is a greedy version of the first algorithm: a check is performed after every step of the Markov
chain to determine if a marked state has been reached, irrespective of whether the Markov chain has mixed.

Let us formally derive the complexity of the two algorithms to clarify their differences. Assume that the
search algorithms maintain a data structure d that associates some data d(x) with every state x ∈ X. From
d(x), we would like to determine if x ∈M . When operating with d, we distinguish three types of cost.
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Set-up cost S: The cost of sampling x ∈ X according to the initial distribution s and of constructing
the data structure d(x) for the state x.
Update cost U: The cost of simulating a transition from x to y for a state x ∈ X according to the
Markov chain P and of updating d(x) to d(y).
Checking cost C: The cost of checking if x ∈M using d(x).

These costs may be thought of as vectors listing all the measures of complexity of interest, such as query and
time complexity. We may now state generic bounds on the efficiency of the two search algorithms in terms
of our cost parameters. Note that throughout this paper, we say that an event happens with high probability
if it happens with probability at least some universal constant. All the search algorithms (classical and
quantum) we discuss have one-sided error. The algorithms may fail with some probability to report any
marked element even when they exist. This error probability may be driven down to the desired level in the
standard manner by sequential repetition of the algorithms.

Proposition 1.1. Let δ > 0 be the eigenvalue gap of an ergodic, symmetric Markov chain P on a state

space X of size n, and let |M ||X| ≥ ε > 0 whenever M ⊂ X is non-empty. For the uniform initial distribution s,

1. Search Algorithm 1 determines if a marked element exists and finds one such element with high
probability if t1 ∈ O( 1

δ ) and t2 ∈ O( 1
ε ) are chosen to be suitably large. The cost incurred is of order

S + 1
ε

(
1
δU + C

)
.

2. Search Algorithm 2 determines if a marked element exists and finds one such element with high
probability if t ∈ O( 1

δε ) is chosen to be suitably large. The cost incurred is of order S + 1
δε (U + C) .

Proof. The stopping time of Search Algorithm 2 is the average hitting time of the set M for the
Markov chain P . We may therefore take t to be a constant factor more than this hitting time. As mentioned
before, this time is bounded above by the stopping time for the first algorithm. Therefore part 2 of the
proposition follows from part 1.

In the first algorithm, we may take t2 to be proportional to the average hitting time of the set M for the
Markov chain P t1 . The quantity λ(P ) is bounded by 1 − δ by hypothesis. The analogous quantity λ(P t1)
is therefore bounded by (1− δ)t1 ≤ e−δt1 . Taking t1 = 1/δ, we get a spectral gap δ̃ of at least 1/2 for P t1 .
We may now bound the average hitting time of M for P t1 by, for example, Equation (15) in Ref. [29] and
Lemma 1 in Ref. [11] (also stated as Lemma 10 in Ref. [29]). This bound evaluates to 1

εδ̃
≤ 2

ε . The expression
for the cost of the algorithm now follows. For special classes of graphs, for example for the 2-d toroidal
grid, the hitting time may be significantly smaller than the generic bound t = O(1/δε) given in part 2 (see
Ref. [3, Page 11, Chapter 5]).

1.3. Quantum analogues. As in the classical case, the quantum search algorithms look for a marked
element in a finite set X, where a data structure d is maintained during the algorithm. Let Xd be the set of
items along with their associated data, that is Xd = {(x, d(x)) : x ∈ X}. For convenience we suppose that
0̄ ∈ X and that d(0̄) = 0̄.

The quantum walks due to Ambainis and Szegedy, as in our work, may be thought of as walks on edges
of the original Markov chain, rather than its vertices. Thus, the associated state space is a linear subspace
of the vector space H = CX×X , or Hd = CXd×Xd when we also include the data structure. For the sake
of elegance in the mathematical analyses, our data structure keeps the data for both vertices of an edge,
whereas in previous works the data was kept only for one of them.

There is a natural isomorphism |ψ〉 7→ |ψ〉d between H and Hd, where on basis states |x〉d = |x, d(x)〉.
This isomorphism maps a unitary operation U on H into Ud on Hd defined by Ud|ψ〉d = (U |ψ〉)d. Our walks
are discussed in the space Hd when, for implementation and cost considerations, it is important to properly
deal with the data structure. However, for convenience, we analyze the mathematical properties of the walks
without the data structure, in the space H. This is justified by the isomorphism between Hd and H.

The initial state of the algorithm is explicitly related to the stationary distribution π of P . At each step,
the right end-point of an edge (x, y) is “mixed” over the neighbors of x, and then the left end-point is mixed
over the neighbors of the new right end-point. We again distinguish three types of cost generalizing those
of the classical search. They are of the same order as the corresponding costs in the algorithms of Ambainis
and Szegedy. Some operations of the algorithms not entering into these costs are not taken into account.
This is justified by the fact that in all quantum search algorithms the overall complexity is of the order of
the accounted part, which is expressed in terms of the costs below.
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(Quantum) Set-up cost S: The cost of constructing the state
∑
x

√
πx|x〉d|0̄〉d from |0̄〉d|0̄〉d.

(Quantum) Update cost U: The cost of realizing any of the unitary transformations

|x〉d|0̄〉d 7→ |x〉d
∑
y

√
pxy|y〉d,

|0̄〉d|y〉d 7→
∑
x

√
p∗yx|x〉d|y〉d,

and their inverses, where P ∗ = (p∗xy) is the time-reversed Markov chain defined in Section 1.2.

(Quantum) Checking cost C: The cost of realizing the following conditional phase flip

|x〉d|y〉d 7→
{
−|x〉d|y〉d if x ∈M,
|x〉d|y〉d otherwise.

The quantum search algorithms due to Ambainis and Szegedy give a quadratic speed up in the times t1, t2
and t, with respect to the classical algorithms. Let us recall that for integers 0 < r < m and 0 < l < r
the vertices of the Johnson graph with parameters m, r, l are the subsets of size r of a universe of size m,
and there is an edge between two vertices if the size of their intersection is l. The eigenvalue gap δ of the
symmetric walk on the Johnson graph with l = r−1, and r < m/2 is in Θ(1/r). If the set of marked vertices

consists of vertices that contain a fixed subset of constant size k ≤ r, then their fraction ε is in Ω( r
k

mk ).
Theorem 1.2 (Ambainis [4]). Let P be the random walk on the Johnson graph on r-subsets of a universe

of size m, where r = o(m), and with intersection size r − 1. Let M be either empty, or the class of all r
subsets that contain a fixed subset of constant size k ≤ r. Then, there is a quantum algorithm that with high
probability, determines if M is empty or finds the k-subset, with cost of order S + 1√

ε
( 1√

δ
U + C).

Theorem 1.3 (Szegedy [29]). Let δ > 0 be the eigenvalue gap of an ergodic, symmetric Markov chain P ,

and let |M ||X| ≥ ε > 0 whenever M is non-empty. There exists a quantum algorithm that determines, with

high probability, if M is non-empty with cost of order S + 1√
δε

(U + C).

If the checking cost C is substantially greater than that of performing one step of the walk, an algorithm
with the cost structure of the Ambainis algorithm would be more efficient. Moreover, the algorithm would find
a marked element if one exists. These advantages are illustrated by the algorithm for Triangle Finding [24].
This algorithm uses two quantum walks à la Ambainis recursively; the Szegedy framework seems to give a
less efficient algorithm. Nonetheless, the Szegedy approach has other advantages—it applies to a wider class
of Markov chains and for arbitrary sets of marked states. Moreover, the quantity 1/

√
δε in Theorem 1.3

may be replaced by the square-root of the classical hitting time [29]. These features make it more suitable
for applications such as the near-optimal algorithm for Group Commutativity [22] which has no equivalent
using the Ambainis approach.

1.4. Contribution, relation with prior work, and organization. We present an algorithm that
is a quantum analogue of Search Algorithm 1 and works for any ergodic Markov chain. It is most easily
described for reversible Markov chains.

Theorem 1.4. Let δ > 0 be the eigenvalue gap of a reversible, ergodic Markov chain P , and let ε > 0
be a lower bound on the probability that an element chosen from the stationary distribution of P is marked
whenever M is non-empty. Then, there is a quantum algorithm that with high probability, determines if
M is empty or finds an element of M , with cost of order S + 1√

ε
( 1√

δ
U + C). This algorithm considerably

expands the scope of the approaches embodied in Theorems 1.2 and 1.3 above. It combines the benefits
of the two approaches in terms of being able to find marked elements, incurring the smaller cost of the
two, and being applicable to a larger class of Markov chains. In addition, it is conceptually simple, avoids
several technical difficulties in the analysis of the earlier approaches, and leads to improvements in various
aspects of algorithms for Element Distinctness, Matrix Product Verification, Triangle Finding, and Group
Commutativity. Namely, we give a single-shot method for any algorithm à la Ambainis in presence of multiple
solutions, without the need for a reduction to special cases such as that of a unique solution. This applies
to Element Distinctness and Triangle Finding. For Element Distinctness, Matrix Product Verification, and
Group Commutativity, where an algorithm à la Szegedy only detects the existence of a solution, we find one
with the same time and query complexity. Finally, we improve the query complexity of the best previously
known algorithm for Triangle Finding by a polylog(n) factor.

In Section 2, we describe a quantum analogue of a Markov chain based on the work of Szegedy [29] who
defined such a quantum process W (P,Q) for a classical bipartite walk (P,Q). By letting Q = P , he related
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the spectrum of the quantum walk W (P ) to that of P for symmetric Markov chains. Using an absorbing
version of P as in Search Algorithm 2, he designed a quantum analogue of this classical scheme. Even
when P is not symmetric, letting Q = P ∗, the time-reversed Markov chain corresponding to P , leads to a
natural connection between P and W (P ). If P is reversible, then the eigenvalues of W (P ) are closely related
to those of P , as in the symmetric case. For an arbitrary, possibly non-reversible, ergodic Markov chain, this
connection relates the eigenvalues of W (P ) to the singular values of a “discriminant” matrix D(P ) associated
with P .

In Section 3, we use the quantum walk W (P ) associated with the unperturbed walk P in a completely
different way, more in the style of the Ambainis approach. Ambainis directly uses a power of W (P ) to replace
the “diffusion” operator in the Grover search algorithm. The beauty of this step, and the difficulty of proving
its correctness, lies in the fact that even if no power of W (P ) closely approximates the diffusion operator,
some powers have sufficient properties to mimic its essential features (see Lemma 3 in Ref. [4]). While
this lemma is sufficient to prove Theorem 1.2, it alone is not powerful enough to imply Theorem 1.4. The
spectral gap of classical Markov chains and that of some special cases of quantum walks (such as the quantum
walk on Johnson graphs proposed by Ambainis) may be amplified by sequential repetition. Nevertheless,
this method and its obvious variants break down when we consider the walk W (P ) for arbitrary chains P ,
and arbitrary sets of marked elements. Instead, we introduce a novel way to approximate the diffusion
operator. Our approach is both conceptually simpler, and more general. We observe that W (P ) amplifies
the spectral gap of a reversible Markov chain quadratically. We translate this to an efficient approximation
to the Grover diffusion operator (Theorem 3.2), using the well known phase estimation algorithm. We
then begin an exposition of our algorithm by considering reversible Markov chains. To explain the basic idea
of our approach, we first prove our main result with an additional logarithmic factor (Theorem 3.3).

In Section 4, using a technique developed by Høyer, Mosca, and de Wolf [17] we show how to eliminate
the logarithmic factor in the previous theorem, thus proving Theorem 1.4.

In Section 5, we extend the algorithm to a possibly non-reversible Markov chain whose discriminant has
non-zero singular value gap (Theorem 5.2). The complexity of the algorithm in the general case is similar
to the one for reversible Markov chains. The sole difference is that the singular value gap of the discriminant
matrix D(P ) takes the place of the spectral gap of P . While the eigenvalues of Markov chains are well
studied, we are not aware of a similar theory for singular values of this matrix. Nonetheless, such a general
result may prove useful for future applications.

1.5. Subsequent work. Since our work first appeared, much progress has been made on a question
we had left unresolved. For any symmetric Markov chain, Szegedy [29] gave a procedure that detects the
existence of marked elements in time of the order of the square-root of the classical hitting time. This result
does not carry over to the potentially harder problem of finding a marked element. The latter (finding)
problem has received particular attention in the case of the

√
N ×

√
N grid. The classical hitting time for

this graph is in O(N logN) for any (non-zero) number of marked elements. Algorithms due to Ambainis,
Kempe, and Rivosh [6] and Szegedy [29] find a unique marked state in time O(

√
N logN), a

√
logN factor

larger than the detection time. In a recent paper, Tulsi [30] finally shows how we may find a unique marked
element in time O(

√
N logN).

Magniez, Nayak, Richter, and Santha [23] define new, Monte Carlo type classical and quantum hitting
times that are potentially smaller than the existing notion of (Las Vegas type) hitting times. They also
present new quantum algorithms for the detection and finding problems whose complexities are related to
the Monte Carlo quantum hitting time. The detection algorithm is based on phase estimation, and the finding
algorithm combines a similar phase estimation based procedure with an idea introduced by Tulsi. Extending
Tulsi’s result for the 2D grid, they show that for any state-transitive Markov chain with a unique marked
state, the quantum hitting time is of the same order for both the detection and finding problems. Krovi,
Magniez, Ozols, and Roland [21] make a significant improvement to this result by presenting a quantum
algorithm for finding multiple marked elements in any reversible Markov chain. Taking a new, simpler,
and more general approach, they introduce a notion of interpolation between any reversible chain and a
perturbed version of this chain, in which the marked states are absorbing. The quantum analogue of the
interpolated walk not only detects but also finds marked states with a quadratic speed-up over the classical
hitting time.
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2. Quantum analogue of a classical Markov chain. Let P = (pxy) be the transition matrix of
any irreducible Markov chain on a finite space X with |X| = n. We define a quantum analogue of P , based
on and extending the notion of quantum Markov chain due to Szegedy [29]. The latter was inspired by an
earlier notion of quantum walk due to Ambainis [4]. We also point out that a similar process on regular
graphs was studied by Watrous [32]. Recall that P ∗ denotes the time-reversed Markov chain of P .

For a state |ψ〉 ∈ H, let Πψ = |ψ〉〈ψ| denote the orthogonal projector onto Span(|ψ〉), and let ref(ψ) =
2Πψ − Id denote the reflection through the line generated by |ψ〉, where Id is the identity operator on H.
For a subspace K of H spanned by a set of mutually orthogonal states {|ψi〉 : i ∈ I}, let ΠK =

∑
i∈I Πψi be

the orthogonal projector onto K, and let ref(K) = 2ΠK − Id be the reflection through K.
Let A = Span(|x〉|px〉 : x ∈ X) and B = Span(|p∗y〉|y〉 : y ∈ X) be vector subspaces of H = CX×X , where

|px〉 =
∑
y∈X
√
pxy |y〉 and |p∗y〉 =

∑
x∈X

√
p∗yx |x〉.

Definition 2.1 (Quantum walk). The unitary operation W (P ) defined on H by W (P ) = ref(B) ·ref(A)
is called the quantum walk based on the classical chain P . This quantum walk extends to a walk W (P )d
on the space H augmented with data structures, as explained in Section 1.3. Recall that U is the quantum
update cost as defined in the same section.

Proposition 2.2. The quantum walk with data, W (P )d, can be implemented at cost 4U.
Proof. Recall that W (P )d = ref(B)d · ref(A)d. The reflection ref(A)d is implemented by mapping

states |x〉d|px〉d to |x〉d|0̄〉d, applying ref(|0̄〉d) on the second register, and inverting the first transformation.
While the first and last steps each have cost U, we only charge unit cost for the second step since it does
not depend on the data structure (|0̄〉d = |0̄, 0̄〉 by definition). Therefore the implementation of ref(A)d is of
cost 2U. The reflection ref(B)d may be implemented similarly.

The eigen-spectrum of the transition matrix P plays an important role in the analysis of a classical
Markov chain. Similarly, the behavior of the quantum process W (P ) may be inferred from its spectral
decomposition. We consider the discriminant matrix D(P ) = (

√
pxyp∗yx). Since

√
pxyp∗yx =

√
πxpxy/

√
πy,

the discriminant matrix is equal to

D(P ) = diag(π)1/2 · P · diag(π)−1/2,

where diag(π) is the invertible diagonal matrix with the coordinates of the distribution π in its diagonal. Since
the singular values of D(P ) all lie in the range [0, 1], we may express them as cos θ, for some angles θ ∈ [0, π2 ].
(Note that this is a second type of use of the Greek letter ‘π’ in this article, and it denotes the usual
Mathematical constant. A third type of use occurs later in the article. The meaning of the letter can be
inferred from the context in which it is used.) For later reference, we rewrite Theorem 1 due to Szegedy [29]
which relates the singular value decomposition of D(P ) to the spectral decomposition of W (P ). This theorem
is a variant of a result due to Jordan [18] (see also Ref. [8, Section VII.1, page 201]), and may be derived
from it.

Theorem 2.3 (Szegedy [29]). Let P be an irreducible Markov chain, and let cos θ1, . . . , cos θl be an
enumeration of those singular values (possibly repeated) of D(P ) that lie in the open interval (0, 1). Then:

1. On A+B those eigenvalues of W (P ) that have non-zero imaginary part are exactly e±2iθ1 , . . . , e±2iθl ,
with the same multiplicity.

2. On A ∩ B the operator W (P ) acts as the identity Id. The linear subspace A ∩ B is spanned by the
left (and right) singular vectors of D(P ) with singular value 1.

3. On A ∩ B⊥ and A⊥ ∩ B the operator W (P ) acts as −Id. The linear subspace A ∩ B⊥ (respectively,
A⊥ ∩ B) is spanned by the set of left (respectively, right) singular vectors of D(P ) with singular
value 0.

4. W (P ) has no other eigenvalues on A+ B; on A⊥ ∩ B⊥ the operator W (P ) acts as Id.
We define ∆(P ), the phase gap of W (P ) as 2θ, where θ is the smallest angle in (0, π2 ) such that cos θ is

a singular value of D(P ). This definition is motivated by the previous theorem: in the complex plane, the
angular distance of 1 from any other eigenvalue is at least ∆(P ).

3. From quantum walk to search.

3.1. Outline of search algorithm. We now describe a search algorithm that may be viewed as a
quantum analogue of Search Algorithm 1 of Section 1.2. Consider the following quantum state in the
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Hilbert space H:

|π〉 =
∑
x∈X

√
πx |x〉|px〉 =

∑
y∈X

√
πy |p∗y〉|y〉.

(Note that its use as a label for the quantum state above is the third type of use of the letter ‘π’ in this
article.) This state serves as the initial state for our algorithm, and corresponds to starting in the stationary
distribution π in the classical search algorithms. Taking into account the data structure, preparing |π〉d from
|0̄〉d|0̄〉d has cost S + U as it requires one set-up operation to prepare

∑
x∈X
√
πx |x〉d|0̄〉d, followed by one

update operation to map this state to |π〉d. Assume that M 6= ∅. LetM = CM×X denote the subspace with
marked items in the first register. We would like to transform the initial state |π〉 to the target state |µ〉,
which is the (normalized) projection of |π〉 onto the “marked subspace” M:

|µ〉 =
ΠM|π〉
‖ΠM|π〉‖

=
1
√
pM

∑
x∈M

√
πx |x〉|px〉,

where pM = ‖ΠM|π〉‖2 =
∑
x∈M πx is the probability of a set M of marked states under the stationary

distribution π. Roughly speaking, we effect this transformation by implementing a rotation à la Grover [16]
in the two-dimensional real subspace S = Span(|π〉, |µ〉) generated by the states.

Ideally, we would like to effect the rotation ref(π)d ·ref(µ⊥)d in Sd, where |µ⊥〉 is the state in S orthogonal
to |µ〉 which makes an acute angle with |π〉. The angle ϕ between |π〉 and |µ⊥〉 is given by sinϕ = 〈µ|π〉 =√
pM . The product of the two reflections above is a rotation by an angle of 2ϕ within the space S. Therefore,

after O(1/ϕ) = O(1/
√
pM ) iterations of this rotation starting with the state |π〉, we would have approximated

the target state |µ〉.
Restricted to the subspace S, the operators ref(µ⊥) and −ref(M) are identical. Therefore, if we ensure

that the state of the algorithm remain close to the subspace S throughout, we would be able to implement
ref(µ⊥)d. This involves checking at cost C whether an item in the first register is marked.

The reflection ref(π)d is computationally harder to perform. The straightforward strategy would be to
rotate |π〉d to the state |0̄〉d|0̄〉d, use ref(|0̄〉d|0̄〉d), and then undo the first rotation. However, rotating |π〉d
to |0̄〉d|0̄〉d is exactly the inverse operation of the preparation of the initial state |π〉d from |0̄〉d|0̄〉d, and
therefore requires the same cost S+U. This may be much more expensive than the update cost 4U incurred
by the walk W (P )d. To use W (P )d instead, our idea is to apply phase estimation to it, and exploit this
procedure to approximate the required diffusion operator on Ad + Bd which contains the subspace Sd.

The above approach is only valid when the probability pM is known in advance. This assumption may
be removed using standard techniques, without increasing the asymptotic complexity of the algorithms [9].
Indeed, if only a lower bound ε > 0 on pM is known for non-empty M , then the above argument can be
modified in order to determine if M is empty or find an element of M . We first sample from the stationary
distribution a few times to accommodate the case that pM > 1/4. If no marked element is found, we proceed
as if pM ≤ 1/4. Following [9, Lemma 2], we iterate the rotation ref(π)d · ref(µ⊥)d a total of T times on the
initial state, where T is chosen uniformly at random in [0, 1/

√
ε ]. If M is not empty, a marked element is

found with probability at least 1/4, and otherwise no marked element is found. We refer to this version of
the Grover algorithm as the randomized Grover algorithm.

3.2. Diffusion operator from quantum walk. To explain our approach, in the rest of this section,
and in the next one, we assume that the classical Markov chain P is ergodic and reversible. For a reversible
chain the corresponding discriminant D(P ) is symmetric. Symmetry implies that the singular values of D(P )
equal the absolute values of its eigenvalues. Since D(P ) = diag(π)1/2 · P · diag(π)−1/2 is similar to the
matrix P , their spectra are the same. Therefore, we only study the spectrum of P . The Perron-Frobenius
theorem and the ergodicity of P imply that the eigenvalue 1 has multiplicity 1, and is the only eigenvalue
of P with absolute value 1. The corresponding eigenvector of D(P ) is (

√
πx ), and every singular (or eigen-)

vector of D(P ) orthogonal to this has singular value strictly less than 1. Transferring this property to the
quantum walk W (P ) via Theorem 2.3, |π〉 is the unique eigenvector of the unitary operator W (P ) in A+B
with eigenvalue 1, and the remaining eigenvalues in A+B are bounded away from 1. We use this observation
to identify the component of any state |ψ〉 ∈ S perpendicular to |π〉.
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The main idea in our implementation of the above approach is to use phase estimation [19, 20, 14].

Theorem 3.1 (Phase estimation; Cleve, Ekert, Macchiavello, and Mosca [14]). For every pair of integers
m, s ≥ 1, and a unitary operator U of dimension 2m × 2m, there exists a quantum circuit C(U) that acts
on m+ s qubits and satisfies the following properties:

1. The circuit C(U) uses 2s Hadamard gates, O(s2) controlled phase rotations, and makes 2s+1 calls
to the controlled unitary operator c-U .

2. For any eigenvector |ψ〉 of U with eigenvalue 1, i.e., if U |ψ〉 = |ψ〉, then C(U)|ψ〉|0s〉 = |ψ〉|0s〉.
3. If U |ψ〉 = e2iθ|ψ〉, where θ ∈ (0, π), then C(U)|ψ〉|0s〉 = |ψ〉|ω〉, where |ω〉 is an s-qubit state such

that |〈0s|ω〉| = sin(2sθ)/(2s sin θ).

Moreover the family of circuits C parametrized by m and s is uniform. This circuit is called phase estimation
because measuring the state |ω〉 in the computational basis yields an approximation to θ/π. In our case we
only need to discriminate between the eigenvalue 1 and the remaining eigenvalues. In the following theorem
we show how phase estimation is used to design a quantum circuit R(P ) which implements an operation
that is close to the reflection ref(π).

Theorem 3.2. Let P be an ergodic Markov chain on a state space of size n ≥ 2, such that the phase
gap of the quantum walk W (P ) based on P is ∆(P ). Then for any integer k there exists a quantum circuit
R(P ) that acts on 2dlog2 ne+ ks qubits, where s ∈ log2( 1

∆(P ) ) + O(1), and satisfies the following properties:

1. The circuit R(P ) uses 2ks Hadamard gates, O(ks2) controlled phase rotations, and makes at most
k 2s+1 calls to the controlled quantum walk c-W (P ) and its inverse c-W (P )†.

2. If |π〉 is the unique 1-eigenvector of W (P ) as defined above, then R(P )|π〉|0ks〉 = |π〉|0ks〉.
3. If |ψ〉 lies in the subspace of A+ B orthogonal to |π〉, then ‖(R(P ) + Id)|ψ〉|0ks〉‖ ≤ 21−k.

Moreover the family of circuits R(P ) parametrized by n and k is uniform.

Proof. We describe the circuit R(P ). Let m = n2 and s =
⌈
log2( 2π

∆(P ) )
⌉
. We start by applying the phase

estimation circuit C(U) to the quantum walk W (P ), a unitary operator of dimension m ×m. To increase
the accuracy of the phase estimation, we repeat the circuit k times, creating k identical copies of the s-qubit
state |ω〉 holding estimates of the phase. Observe that only the number of ancillary qubits increases from s
to ks in this process. Since C(U) leaves the eigenvectors of W (P ) in the first register unchanged, we do not
need additional copies of the state |ψ〉.

The above operations approximately resolve any state |ψ〉 in A+ B along the eigenvectors of W (P ) by
labeling them with estimates of the corresponding eigenvalue phases. We now flip the phase (i.e., multiply
it by −1) of all computational basis states with a non-zero estimate of the phase in any of the k copies. Our
intention is to flip the phase of all eigenvectors other than |π〉. Finally, we reverse the phase estimation. All
these operations together constitute R(P ).

The state |π〉|0ks〉 stays unchanged under the action of R(P ). When |ψ〉 is orthogonal to |π〉 it is a linear
combination of eigenvectors of W (P ) whose eigenvalues are of the form e±2iθ, where ∆(P )/2 ≤ θ < π/2. By
definition of s, the state |ω〉 holding the estimate for any phase θ 6= 0 then satisfies |〈0s|ω〉| ≤ 1/2. With k
repetitions of the phase estimation, we can therefore decompose |ψ〉|0ks〉 into a sum |ψ0〉 + |ψ1〉, such that
the phase estimate is zero in each of the k copies of |ω〉 on the state |ψ0〉, is non-zero in at least one copy on
the state |ψ1〉, and ‖ψ0‖ ≤ 2−k. Then R(P )|ψ〉|0ks〉 = |ψ0〉 − |ψ1〉, and (R(P ) + Id)|ψ〉|0ks〉 = 2|ψ0〉, whose
norm is at most 21−k.

3.3. The search algorithm for reversible Markov chains. Let us consider the following quantum
procedure.
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Quantum Search(P, ε)
1. Repeat 5 times:

(a) Sample a state x from the stationary distribution π of P .
(b) If x ∈M , output x and stop.

2. Choose T uniformly at random in [0, 1/
√
ε ], let k ∈ log2(T ) + O(1), and let s be as

given by Theorem 3.2.
3. Prepare the initial state |π〉d|0Tks〉.
4. Repeat T times:

(a) For any basis vector |x〉d|y〉d|z〉 of Hd and the ancillary (Tks)-qubit space, flip
the phase if x ∈M :

|x〉d|y〉d|z〉 7→
{
−|x〉d|y〉d|z〉, if x ∈M
|x〉d|y〉d|z〉, otherwise.

(b) Apply circuit R(P )d of Theorem 3.2 with k as above, using a fresh set of ancilla
qubits |0ks〉 in each iteration.

5. Observe the first register.
6. Output x if x ∈M , otherwise output ‘no marked element exists’.

Theorem 3.3. Let δ > 0 be the eigenvalue gap of a reversible, ergodic Markov chain P , and let ε > 0
be a lower bound on the probability that an element chosen from the stationary distribution of P is marked
whenever M is non-empty. Then, with high probability, the procedure Quantum Search(P, ε) determines

if M is empty or else finds an element of M with cost of order S + 1√
ε

[(
1√
δ

log 1√
ε

)
U + C

]
.

Proof. For convenience, we reason in the Hilbert space H, without the data structures, and also omit
the ancilla qubits used by the circuit R(P ). Between applications of R(P ) the ancilla qubits remain in a
state close to |0Tks〉.

First observe that if M is empty then no marked element is found by Quantum Search(P, ε). We
assume now that M is non-empty. When pM > 1/4, we detect a marked element in Step 1 with probability
at least 1 − (3/4)5 > 3/4. In analyzing the correctness of the remaining steps, we may therefore assume
that pM ≤ 1/4. Let S be the two-dimensional subspace S = Span(|π〉, |µ〉). Recall that the randomized
Grover algorithm consists in T iterations of ref(π) · ref(µ⊥), where T is chosen uniformly at random from
[0, 1/

√
ε ]. Since ε ≤ pM ≤ 1/4, with constant probability the randomized Grover algorithm rotates the

vector |π〉 in the space S into a state whose inner product with |µ〉 is a constant. Using a hybrid argument
as in Refs. [7, 31], we prove that the algorithm Quantum Search(P, ε) simulates, with an arbitrarily small
constant probability of error, the randomized Grover algorithm, and therefore finds a marked element with
high probability, whenever such an element exists.

For i ≥ 0, we define |φi〉 as the result of i Grover iterations applied to |π〉, and |ψi〉 as the result
of i iterations of step (4) in Quantum Search(P, ε) applied to |π〉. We show by induction on i, that
‖|ψi〉 − |φi〉‖ ≤ i21−k. Indeed, we can write |ψi〉 as |φi〉+ (|ψi〉 − |φi〉). The actions of ref(µ⊥) and −ref(M)
are identical on |φi〉 since the state is in S. Set |τ〉 = |φi+1〉−R(P )·ref(M)|φi〉. Since ref(M)|φi〉 is in S, and
S is a subspace of A+B, conclusion (3) of Theorem 3.2 can be applied, which implies that ‖τ‖ ≤ 21−k. Using
‖|ψi+1〉 − |φi+1〉‖ ≤ ‖|τ〉‖+ ‖|ψi〉 − |φi〉‖, the statement follows. For k ∈ log2(T ) + c, where c is a constant,
this implies that ‖|ψT 〉 − |φT 〉‖ ≤ 21−c, which can be made arbitrarily small by choosing c sufficiently large.

Let us now turn to the cost of the procedure. Since measuring |π〉 gives us a sample from the stationary
distribution π, the cost of Step 1 is of the order of S. Preparing |π〉d costs S + U, and in each iteration
the single phase flip costs C. In the circuit R(P )d, the controlled quantum walk and its inverse can be
implemented with four update operations, each of cost U. Indeed, the implementation of W (P ), described
in the proof of Proposition 2.2 works also for the controlled quantum walk if we replace ref(|0̄〉d) by the
controlled operator c-ref(|0̄〉d). Since the controlled reflection is also of unit cost, this change does not alter
the cost of the implementation.

In R(P )d the number of controlled quantum walks and its inverse is in O((1/∆(P )) log(1/
√
ε)). We claim

that ∆(P ) = Ω(
√
δ). Let λ0, ..., λn−1 be the eigenvalues of P , possibly with repetitions, such that 1 = λ0 >

|λ1| ≥ . . . ≥ |λn−1|. Since the discriminant D(P ) is similar to P , their spectra are the same, and therefore
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the singular values of D(P ) are |λ0| , |λ1| , . . . , |λn−1|. By definition, ∆(P ) = 2θ1, where cos θ1 = |λ1|. The

following straightforward (in)equalities relate ∆(P ) to δ(P ): ∆(P ) ≥
∣∣1− e2iθ1

∣∣ = 2

√
1− |λ1|2 ≥ 2

√
δ. This

finishes the cost analysis.
Let us observe that the origin of the quadratic speed-up due to quantum walks may be traced to the

quadratic relationship between the phase gap ∆(P ) of the quantum walk W (P ) and the eigenvalue gap δ of
the classical Markov chain P , observed at the end of the above proof.

4. Search with approximate reflection operators. In this section, we describe how our approxi-
mate reflection operator may be incorporated into a search algorithm without incurring additional cost for
reducing its error. The basic idea is to adapt the recursive amplitude amplification (RAA) algorithm due to
Høyer, Mosca, and de Wolf [17] to our setting. To describe it, we use the notation from Section 3.1 where
we discussed how the Grover algorithm works to rotate a starting state |π〉 into a target state |µ〉, where
〈µ|π〉 = sinϕ =

√
pM . We define procedures Ai recursively, for i ≥ 0. Let the procedure A0 be the identity

map Id, and for i > 0, let

Ai = Ai−1 · ref(π) ·A†i−1 · ref(µ⊥) ·Ai−1.

We define the states |πi〉 as Ai|π〉. Then |πi〉 forms an angle 3iϕ with |µ⊥〉, and therefore the state |πt〉 is
close to |µ〉 when t = log3

1
ϕ + O(1). The final recursive algorithm is thus At.

We may estimate the cost Cost(t) of this search algorithm in terms of the cost c of implementing the
two original reflections, ref(π) and ref(µ⊥). We have Cost(0) = 0, and for i ≥ 1, Cost(i) = 3 ·Cost(i− 1) + c,
and therefore the cost of At is O(c/

√
ε).

The RAA algorithm is more suitable for situations where we have imperfect procedures that implement
the basic reflections ref(π), ref(µ⊥). Høyer et al. [17] demonstrated this when there is an ideal (error-free)
procedure for ref(π), and a procedure for ref(µ⊥) that has ideal behavior only with high probability. Here,
we adapt their approach to the case where it is the first reflection ref(π) which may only be approximated (it
is probably possible to deal with the case where both reflections are imperfect, but for the sake of simplicity,
we only deal with the case when the implementation of ref(µ⊥) is ideal since this is sufficient for our purpose).
In the context of quantum walk based search, an imperfection appears in the form given by Theorem 3.2.
The basic idea is to create an analogue of the recursive algorithms Ai when ref(π) is replaced by increasingly
fine approximations based on Theorem 3.2.

We now state this precisely in full generality for potential further applications. Assume that for any
β > 0, we have a quantum circuit R(β) acting on H ⊗ K, where K is an extra register of s(β) qubits. For
a given integer t, and a precision parameter γ, the quantum circuit consists of t induction steps and acts

on H ⊗
[⊗t

i=1Ki
]
, where Ki is an extra register used at step i. Let si = s(βi) be the size of register Ki,

Let S =
∑t
i=1 si. We use |π〉d|0S〉 as the initial state of the algorithm.

The quantum circuit follows exactly the RAA algorithm explained above. We essentially replace ref(π)
at step i by an approximation R(βi), acting on H⊗Ki, and Id on the rest. Here is now one explicit step of
the induction, where the basis case Approximate RAA(0, γ) is simply the identity map :

Approximate RAA(i, γ)
1. Apply Approximate RAA(i− 1, γ).
2. For any basis vector (|x〉d|y〉d)⊗ |z〉, where |x〉|y〉 ∈ H, flip the phase if x ∈M .
3. Undo Approximate RAA(i− 1, γ).
4. If any of the registers Kj , with j < i, are not in state |0sj 〉, respectively, then flip

the phase of the state. Otherwise, apply R(βi) on H⊗Ki, where βi = 18
4π3 γ/i

2.
5. Apply Approximate RAA(i− 1, γ).

We now prove that this algorithm can be used to find a marked element when pM is known. We will
later show how to modify the algorithm when only a lower bound on pM is known.

Lemma 4.1. Assume that for any β > 0, we have a quantum circuit R(β) acting on H⊗K, where K is
an extra register of s qubits (s = s(β) may depend on β), with the following properties:

1. The circuit R(β) has cost c1 log 1
β .
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2. R(β)|π〉|0s〉 = |π〉|0s〉.
3. ‖(R(β) + Id)|ψ〉|0s〉‖ ≤ β when |ψ〉 is orthogonal to |π〉.

Further, assume that we are able to apply −ref(M) with cost c2, and let t be the smallest non-negative
integer such that 3t sin−1√pM ∈ [π/4, 3π/4]. Then, for every real γ > 0, Approximate RAA(t, γ)

maps |π〉|0S〉 to a state that has projection of length at least ( 1√
2
− γ) in M⊗

[⊗t
i=1Ki

]
, and incurs a cost

of order 3t · (c1 log 1
γ + c2).

Proof. For simplicity, we omit the data structure in our error analysis, but take it into account in bound-
ing the complexity of the algorithm. Let si = s(βi) be the size of register Ki. Let S =

∑t
i=1 si. Recall that we

use |φ0〉 = |π〉|0S〉 as the initial state. We also denote by |φi〉 the output state of Approximate RAA(i, γ)
on input |φ0〉. Note that the component of |φi〉 on Kj is |0sj 〉, for all j > i. Define the reflection operator Ri
as the product of the recursive steps 3-5 of Approximate RAA(i, γ).

In order to understand the behavior of Ri, let us examine the action of R(βi) in step 4. At the beginning
of that step, the algorithm state still has component |0sj 〉 on Kj , for all j ≥ i. Therefore the conditioning,
and the fact that R(βi) is an approximation to ref(π), directly gives that Ri behaves on the current state
as an approximation to ref(φi−1). To be more precise, let Ei = Ri − ref(φi−1) be the error made in our
implementation of ref(φi−1). We state the following fact without proof since it directly derives from the
hypothesis on R(βi).

Fact 1. Ei satisfies the following properties:
1. Ei|φi−1〉 = 0, and

2. ‖Ei|ψ〉|0Si〉‖ ≤ βi, for all |ψ〉 ∈ H ⊗
[⊗i−1

j=1Kj
]

such that |ψ〉|0Si〉 ⊥ |φi−1〉, where Si =
∑t
j=i sj.

To analyze this algorithm, we keep track of the projection of |φi〉 on the marked subspace. The marked

subspace corresponds toM⊗
[⊗

j Kj
]
; it consists of states in which the first register of the H-part is marked.

We denote this space by M̃. Define the normalized projections of |φi〉 on the marked subspace M̃ and on
its orthogonal complement as:

|µi〉 =
ΠM̃|φi〉
‖ΠM̃|φi〉‖

|µ⊥i 〉 =
(Id−ΠM̃)|φi〉
‖(Id−ΠM̃)|φi〉‖

.

We thus have

|φi〉 = sinϕi |µi〉+ cosϕi |µ⊥i 〉. (4.1)

where sin2 ϕi = ‖ΠM̃|φi〉‖2 is the probability of finding a marked item by measuring the first register
according to {ΠM̃, Id−ΠM̃}. For later use, let us also define |φ⊥i 〉 as the state in the 2-dimensional subspace
spanned by |µi〉 and |µ⊥i 〉 that is orthogonal to |φi〉:

|φ⊥i 〉 = cosϕi |µi〉 − sinϕi |µ⊥i 〉.

For the initial state |φ0〉, we have sin2 ϕ0 = pM . If all the errors βi were zero, Approximate RAA
would implement the RAA algorithm in the subspace spanned by |µi〉 = |µ0〉 and |µ⊥i 〉 = |µ⊥0 〉, with the
angles ϕi+1 = 3ϕi, that is ϕi = 3iϕ0. Therefore by recursively iterating our procedure for a total number of
t steps, we would end up with a state whose inner product with |µ0〉 is at least 1√

2
.

Analysis of the errors — We show that Approximate RAA still works when the errors βi are
sufficiently small. In that case, the 2-dimensional subspace Span(|µi〉, |µ⊥i 〉) may drift away from the initial
subspace Span(|µ0〉, |µ⊥0 〉), and the angles ϕi may be different from the ideal value ϕ̄i = 3iϕ0. We derive
bounds on the error ei:

ei = |sinϕi − sin ϕ̄i| , (4.2)

the difference between the amplitude sinϕi of the marked part of the state |φi〉 and the ideal amplitude, sin ϕ̄i.
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We assume without loss of generality that 0 < γ < 1√
2

since the case γ ≥ 1√
2

is vacuous. We prove that

after t steps et ≤ γ. This will conclude the error analysis since 1√
2
≤ sin ϕ̄t ≤ 1.

We have

|φi+1〉 = Ri+1 · ref(M̃⊥) |φi〉
= ref(φi) · ref(M̃⊥) |φi〉+ Ei+1 · ref(M̃⊥) |φi〉
= sin 3ϕi |µi〉+ cos 3ϕi |µ⊥i 〉+ |ωi+1〉, (4.3)

where we used the fact that ref(φi) · ref(M̃⊥) implements a perfect amplitude amplification step, and we
introduced an error state |ωi〉, defined as

|ωi+1〉 = Ei+1 · ref(M̃⊥) |φi〉
= Ei+1 · ref(M̃⊥)

(
sinϕi |µi〉+ cosϕi |µ⊥i 〉

)
= Ei+1

(
− sinϕi |µi〉+ cosϕi |µ⊥i 〉

)
= Ei+1

(
cos 2ϕi |φi〉 − sin 2ϕi |φ⊥i 〉

)
= − sin 2ϕi Ei+1 |φ⊥i 〉,

where we used Fact 1, property 1. Moreover, |φ⊥i 〉 ⊥ |φi〉, so ‖ωi+1‖ ≤ βi+1 |sin 2ϕi| by Fact 1, property 2.
Finally, comparing Eq. (4.1) and Eq. (4.3), we get

| sinϕi+1 − sin 3ϕi| ≤ βi+1 |sin 2ϕi| .

We may now bound the error defined in Eq. (4.2) as:

ei+1 ≤ | sinϕi+1 − sin 3ϕi|+ | sin 3ϕi − sin ϕ̄i+1|
≤ βi+1 |sin 2ϕi|+ | sin 3ϕi − sin 3ϕ̄i|
≤ βi+1(sin 2ϕ̄i + | sin 2ϕi − sin 2ϕ̄i|)

+ | sin 3ϕi − sin 3ϕ̄i|
≤ βi+1(sin 2ϕ̄i + 2ei) + 3ei

≤ 2βi+1(ϕ̄i + ei) + 3ei, (4.4)

where we have used the triangle inequality and the following trigonometric inequalities

| sin 2A− sin 2B| ≤ 2| sinA− sinB|
| sin 3A− sin 3B| ≤ 3| sinA− sinB|

sinA ≤ A

that hold for any angles A,B ∈ [0, π/4].
We define a quantity ẽi, intended to be an upper bound on ei (it would be if ẽi ≤ ϕ̄i). Let

ẽ0 = 0

ẽi+1 = 4βi+1ϕ̄i + 3ẽi.

We show that ẽi ≤ γ for every i ≤ t. Indeed, let us define ui as

ẽi = γ ϕ̄i ui.

We therefore have the following recursion for ui

u0 = 0

ui+1 = ui +
4

3γ
βi+1, (∀i ≥ 0)
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so that

ui =
4

3γ

i∑
j=1

βj .

Recall that we have chosen βi = 18
4π3 γ/i

2, so that {βi} define a convergent series and the non-decreasing
sequence (ui) tends to 1/π when i→∞. We therefore have ẽi ≤ γϕ̄i/π ≤ γ since 0 ≤ ϕ̄t ≤ π for i ≤ t.

Since 0 < γ ≤ 1, we have ẽi ≤ ϕ̄i, and we can show by induction that ei ≤ ẽi for all i ≤ t. This finishes
the error analysis.

Complexity — We now evaluate the complexity of our algorithm. We know from the hypotheses of
the theorem that applying R(βi) costs c1 log 1

βi
, while applying ref(M̃⊥) = −ref(M) ⊗ Id⊗

j Kj
costs c2.

Moreover, by definition of Approximate RAA, applying Approximate RAA(i, γ) requires 3 calls to
Approximate RAA(i− 1, γ), one call to R(βi) and one call to ref(M). Hence, if we denote by Cost(i) the
cost of applying Approximate RAA(i, γ), we have

Cost(0) = 0

Cost(i) = 3Cost(i− 1) + c1 log
1

βi
+ c2.

Since we have fixed βi = 18
4π2 γ/i

2, we find that Cost(i) equals

c1

i∑
j=1

3i−j
(

2 log j + log
1

γ
+ O(1)

)
+ c2

i∑
j=1

3i−j

= 3i

(c1 log
1

γ
+ c2 + O(1)

) i∑
j=1

1

3j
+ 2c1

i∑
j=1

log j

3j


where both sums converge as i→∞. After t steps we have Cost(t) ∈ O

(
3t · (c1 log 1

γ + c2)
)

.

If the cost refers to time complexity, then there is an additional term pertaining to the reflection Ri. This
arises from the check to see if the ancilla are in state |0S〉. This does not change the asymptotic complexity
of the algorithm.

Note that Lemma 4.1 requires knowledge of pM to infer the necessary number of iterations t. When
only a lower bound ε on pM is known, we can use the algorithm Tolerant RAA(t, γ), which only adds a
constant factor overhead with respect to Approximate RAA(t, γ).

Tolerant RAA(tmax, γ)
1. Sample a state x from the stationary distribution π of P .
2. if x ∈M , output x, and stop.
3. Prepare the initial state |π〉d|0S〉 and set i = 0.
4. Increment i. Apply Approximate RAA(i, γ).
5. Measure the first register according to ΠM.

If successful, observe and output the first register, and stop.
6. If i < tmax go back to Step 4, otherwise output “No marked element”.

Lemma 4.2. Assume that for any β > 0, we have a quantum circuit R(β) acting on H⊗K, where K is
an extra register of s qubits (s = s(β) may depend on β), with the following properties:

1. The circuit R(β) has cost c1 log 1
β .

2. R(β)|π〉|0s〉 = |π〉|0s〉.
3. ‖(R(β) + Id)|ψ〉|0s〉‖ ≤ β when |ψ〉 is orthogonal to |π〉.

Further, assume that we are able to apply −ref(M) with cost c2, and let tmax be the smallest non-negative
integer such that 3tmax sin−1√ε ∈ [π/4, 3π/4], where pM ≥ ε > 0 whenever pM > 0. Then, for every
real γ such that 0 < γ ≤ 1

40 , Tolerant RAA(tmax, γ) always outputs “No marked element” if M is empty,
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otherwise it ends with a marked element with probability at least 1/12 − 3γ, and incurs a cost of order
3tmax · (c1 log 1

γ + c2).
Proof. First, if M is empty then clearly the algorithm always outputs “No marked element”. We now

assume that M is non-empty and pM ≥ ε. If pM ≥ 1/2, the first two steps of the algorithm succeed with
probability at least 1/2. So in the analysis of the remaining steps, we additionally assume that pM < 1/2.

We will use the notations of Lemma 4.1, together with the following ones. For i ≥ 1, define |ψi〉 as the
state after Step 4, sin2 θi = ‖ΠM̃|ψi〉‖2 the probability to project |ψi〉 onto the marked subspace M, and

the normalized projections |νi〉 = ΠM̃|ψi〉/ sin θi and |ν⊥i 〉 = ΠM̃⊥ |ψi〉/ cos θi, where M̃⊥ is the orthogonal

complement of M̃. Initially, we set |ν⊥0 〉 = |φ0〉 = |π〉|0S〉.
Let us denote by Ai the unitary operator corresponding to circuit Approximate RAA(i, γ), and let t

be the smallest positive integer such that 3t sin−1√pM ∈ [π/4, 3π/4]. By Lemma 4.1, Applying At on

|φ0〉 = |π〉|0S〉 prepares a state |φt〉 that has projection at least 1/
√

2− γ on M.
Since we do not know t, we will apply Ai for all possible values i ∈ [1, tmax]. To avoid having to prepare a

fresh copy of |φ0〉 for each attempt, which would incur an additional cost, for i > 1 we apply Ai on the state
|ν⊥i−1〉 left over from the previous attempt, which produces the state |ψi〉 = Ai|ν⊥i−1〉 instead of |φi〉 = Ai|φ0〉.

Analysis of the errors — Let δi = ‖|ψi〉 − |φi〉‖ = ‖|ν⊥i−1〉 − |φ0〉‖ denote the error at step i. By
construction, we have δ1 = 0 and, for i ≥ 1,

δi+1 = ‖|ν⊥i 〉 − |φ0〉‖ ≤ ‖|ν⊥i 〉 − |µ⊥i 〉‖+

i−1∑
k=0

‖|µ⊥k+1〉 − |µ⊥k 〉‖+ ‖|µ⊥0 〉 − |φ0〉‖. (4.5)

Let us evaluate the first term. By definition we have

|ψi〉 = sin θi|νi〉+ cos θi|ν⊥i 〉, (4.6)

|φi〉 = sinϕi|µi〉+ cosϕi|µ⊥i 〉.

Since ‖|ψi〉 − |φi〉‖ = δi we also have

|ψi〉 = sinϕi|µi〉+ cosϕi|µ⊥i 〉+ |ξi〉, (4.7)

where ‖ξi‖ ≤ δi. Projecting Equations (4.6) and (4.7) onto M̃⊥, we obtain

cos θi|ν⊥i 〉 = cosϕi|µ⊥i 〉+ ΠM̃⊥ |ξi〉,

which implies that | cos θi − cosϕi| ≤ δi and in turn

‖|ν⊥i 〉 − |µ⊥i 〉‖ ≤
2δi

cosϕi
≤ 3δi,

for any i < t. For the last inequality, we have used the fact that ϕ̄i <
π
4 , and therefore cosϕi ≥ cos ϕ̄i− ei ≥√

2
2 − γ ≥

2
3 , since γ ≤ 1

40 .
Let us now evaluate the second term in Equation (4.5). Recall that

|φk+1〉 = sinϕk+1 |µk+1〉+ cosϕk+1 |µ⊥k+1〉
= sin 3ϕk |µk〉+ cos 3ϕk |µ⊥k 〉+ |ωk+1〉,

where ‖ωk+1‖ ≤ βk+1 sin 2ϕ̄k ≤ 4βk+1ϕ̄k, by the calculations leading to Eq. (4.4), and the bound ek ≤ ẽk ≤
ϕ̄k. Projecting this equation onto M̃⊥, we obtain | cos 3ϕk − cosϕk+1| ≤ ‖ωk+1‖ and in turn

‖|µ⊥k+1〉 − |µ⊥k 〉‖ ≤
2‖ωk+1‖
cosϕk+1

≤ 12βk+1ϕ̄k = 12βk+13kϕ0,

for any k < t− 1, where we have used the fact that cosϕk+1 ≥ 2
3 .
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For the last term of Equation (4.5), since 〈µ⊥0 |φ0〉 = cosϕ0, we have

‖|µ⊥0 〉 − |φ0〉‖ =
√

2− 2 cosϕ0 = 2 sin(ϕ0/2) ≤ ϕ0.

Putting everything back together, we have

δi+1 ≤ 3δi + 12ϕ0

i−1∑
k=0

3kβk+1 + ϕ0,

which, from δ1 = 0, implies

δt ≤ ϕ0

t−2∑
k=0

3k + 12ϕ0

t−2∑
k=0

t−k−2∑
j=0

3j

 3kβk+1

≤ 1

2
3t−1ϕ0 + 12ϕ0

t−2∑
k=0

(
1

2
3t−k−1

)
3kβk+1

≤ 1

2
3t−1ϕ0 + 2 · 3tϕ0

t−2∑
k=0

βk+1

≤ π

8
+

9γ

8
.

Since the projection of |φt〉 onto M̃ has length at least 1√
2
− γ, the projection of |ψt〉 onto M̃ has length

at least 1√
2
− γ − δt ≥ 1√

12
− 3γ, which means that the next measurement projects this state onto M̃ with

probability at least 1
12 − 3γ.

Complexity — As for the complexity analysis, note that we apply Ai for all i ∈ [1, tmax]. From
Lemma 4.1, the cost ofAi is of order Cost(i) ∈ O(3i·(c1 log 1

γ+c2)), therefore the cost of Tolerant RAA(tmax, γ)
is dominated by

tmax∑
i=1

Cost(i) ∈ O(3tmax · (c1 log 1
γ + c2)), (4.8)

since this defines a geometric sum.
We now have all the elements to prove Theorem 1.4 (stated in Section 1.4).
Proof of Theorem 1.4. The algorithm consists in Tolerant RAA(tmax,

1
72 ) from Lemma 4.2, using for

the approximate reflections R(β) the quantum phase estimation circuit R(P ) from Theorem 3.2.
First, no marked element is found if M is empty. Assume for now that M is non empty. We will

prove that the assumptions of Lemma 4.2 are satisfied. Therefore the probability of finding an element for
Tolerant RAA(tmax,

1
72 ) is at least 1/24.

Setting k =
⌈
log2( 1

β ) + 1
⌉

in Theorem 3.2, R(P ) simulates a reflection with an error upper bounded

by 21−k ≤ β. Implementing R(P )d then requires k 2s+1 calls to the controlled quantum walk c-W (P )d
or its inverse, where s ∈ log2( 1√

δ
) + O(1). Since implementing c-W (P )d or its inverse has a cost 4U, the

cost of implementing the circuit R(P )d for a given error β is c1 log 1
β , with c1 of order 1√

δ
U. Furthermore,

preparing the initial state |π〉d has a cost S + U, and implementing −ref(M)d has a cost c2 = C. Finally,
since tmax ∈ log3

1√
ε

+ O(1), the total cost of Tolerant RAA(tmax,
1
72 ) is of order S + 1√

ε
( 1√

δ
U + C).

5. Non-reversible Markov chains. In this section, we discuss the performance of the search algo-
rithm presented earlier for any ergodic, but possibly non-reversible Markov chain P . For the analysis of
the quantum walk W (P ) we directly examine the singular value decomposition of the discriminant ma-
trix D(P ) = diag(π)1/2 ·P ·diag(π)−1/2. This matrix has the same eigenvalues as P , but the singular values
of D(P ) may be different from the eigenvalues of P . The singular values of D(P ) lie in the interval [0, 1].
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The vector v = (
√
πx ) is both a left and a right eigenvector of D(P ) with eigenvalue 1. Therefore, Span(v)

and Span(v)⊥ are invariant subspaces of D(P ), and we may choose v to be a left and right singular vector. If
every singular vector orthogonal to v has a singular value strictly smaller than 1, that is D(P ) has a non-zero
singular value gap, then Theorem 1.4 and its proof stay valid when the eigenvalue gap of P is replaced by
the singular value gap of D(P ).

The discriminant of an irreducible walk does not necessarily have non-zero singular value gap, even if
it is ergodic. Ergodicity implies a non-zero eigenvalue gap for P , but there are examples of ergodic Markov
chains whose discriminants have 0 singular value gap. In the next proposition we show that if every state
in the Markov chain has a transition to itself with non-zero probability, then its discriminant has non-zero
singular value gap (the proof is given in the appendix). There is a standard and simple modification to any
Markov chain P such that the resulting chain has this property: with some probability α ∈ (0, 1), stay at
the current state, and with probability 1− α, make a transition according to P .

Proposition 5.1. Let P = (pxy) be an irreducible Markov chain on a finite state space X, such that
pxx > 0, for every x ∈ X. Then, the discriminant matrix D(P ) has exactly one singular value equal to 1.

Finally, we state the theorem on the performance of the quantum search algorithm presented in Section 4
when the underlying Markov chain is not necessarily reversible.

Theorem 5.2. Let P = (pxy) be an irreducible Markov chain on a finite state space X, such that D(P )
has exactly one singular value equal to 1. Let δ > 0 be the singular value gap of D(P ), and let ε > 0 be
a lower bound on the probability that an element chosen from the stationary distribution of P is marked
whenever M is non-empty. Then, there is a quantum algorithm that with high probability, determines if M
is empty or finds an element of M , with cost of order S + 1√

ε
( 1√

δ
U + C).
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Appendix A. We first state and prove that all the singular values of D(P ) lie in [0, 1].

Lemma A.1. Let P = (pxy)x,y∈X be an irreducible Markov chain with stationary distribution π =
(πx)x∈X . Then the singular values of the matrix D(P ) given by

D(P ) = diag(π)1/2 · P · diag(π)−1/2

all lie in the interval [0, 1].

Proof. Singular values are by convention taken to be non-negative real. To verify that ‖D(P )‖, the
largest singular value of D(P ) is at most 1, consider the inner product u†D(P )v, for some unit vectors u, v.
The maximum absolute value that this inner product achieves is the norm of D(P ). By the Cauchy-Schwarz
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inequality, the inner product may be bounded as∣∣u†D(P )v
∣∣

=

∣∣∣∣∣∑
xy

ūxvy

√
πx
πy

pxy

∣∣∣∣∣
≤

(∑
xy

|ux|2 pxy

)1/2(∑
xy

|vy|2
πx
πy

pxy

)1/2

(A.1)

≤ 1,

since
∑
x πxpxy = πy.

Proof of Proposition 5.1. From Lemma A.1, we know that the singular values of D(P ) all lie in [0, 1].
Further v = (

√
πx ) is a left (and right) singular vector with singular value 1. We show below that for any

left and right singular vectors u,w ∈ CX , if u†D(P )w = 1, then u = w = v (modulo an overall phase). This
establishes the uniqueness of the singular value 1 and a non-zero singular value gap in D(P ).

Suppose u†D(P )w = 1. This implies that the Cauchy-Schwarz inequality in Equation (A.1) in the proof
of Lemma A.1 is tight. Then necessarily, the two unit vectors u′, w′ ∈ CX×X given by u′ = (ux

√
pxy)x,y∈X

and
w′ = (wy

√
πxpxy/πy)x,y∈X are parallel. Ignoring an overall phase, we may assume that they are in fact equal.

This means that for every pair x, y ∈ X such that pxy > 0, ux = wy
√
πx/πy. In particular, since pxx > 0,

ux = wx for every x, and so ux = uy
√
πx/πy for every neighbor y of x in the graph underlying the Markov

chain P .
Furthermore, for any path x1, x2, . . . , xk in the graph, chaining together the equations

uxi+1 = uxi

√
πxi+1

πxi

,

for i = 1, . . . , k − 1, we get that

uxi
= ux1

√
πxi

πx1

,

for every i. Since the chain P is irreducible, i.e., the underlying graph is strongly connected, there is a path
from x1 to y for every y ∈ X. Thus,

uy = ux1

√
πy
πx1

,

for every y. Since the vector u is a unit vector, this implies that u = w = (
√
πx)x∈X = v (up to an

unimportant global phase).
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