
Quantum Complexity of
Testing Group Commutativity?

Frédéric Magniez1 and Ashwin Nayak2

1 CNRS–LRI, UMR 8623 Université Paris–Sud, France
2 University of Waterloo and Perimeter Institute for Theoretical Physics, Canada

Abstract. We consider the problem of testing the commutativity of a
black-box group specified by its k generators. The complexity (in terms
of k) of this problem was first considered by Pak, who gave a randomized
algorithm involving O(k) group operations. We construct a quite optimal
quantum algorithm for this problem whose complexity is in Õ(k2/3). The
algorithm uses and highlights the power of the quantization method of
Szegedy. For the lower bound of Ω(k2/3), we introduce a new technique
of reduction for quantum query complexity. Along the way, we prove the
optimality of the algorithm of Pak for the randomized model.

1 Introduction

A direction of research in quantum computation pioneered by Grover [1] around
search problems in unstructured, structured, or partially structured databases
has recently seen an extraordinary expansion. In contrast to problems based on
Hidden Subgroup Problem (HSP) (see for instance Ref. [2]), the speed up for
these search problems is often only polynomial.

Usually in search problems, the access to the input is done via an oracle
modeling access to the input. This leads to the notion of query complexity
which measures the number of accesses to the oracle. While no significant lower
bounds are known for quantum time complexity, the oracle constraint sometimes
enables us to prove such bounds in the query model. For promise problems quan-
tum query complexity indeed can be exponentially smaller than the randomized
one. A prominent example is the HSP. On the other hand, for total functions,
deterministic and quantum query complexities are polynomially related [3].

In the HSP, the group with its all structure is known to the algorithm de-
signer, and the group operations are generally efficiently computable. In the
event that the group is not explicitly known, or the group operations are not
efficient to implement, it is appropriate to model the group operations by an
oracle or a black-box. The notion of black-box groups was introduced by Babai
and Szemerédi [4]. In this model, the elements of a group are encoded by words
over a finite alphabet, and the group operations are performed by an oracle (the

? For their research support, F.M. thanks the EU 5th framework program RESQ and
the French Research Ministry, and A.N. thanks Canada’s NSERC and CIAR.

black-box). The groups are assumed to be specified by generators, and the en-
coding of group elements is not necessarily unique: different strings may encode
the same group element. Mosca [2] showed that one can learn in quantum poly-
nomial time the structure of any black-box abelian group. Such a task is known
to be hard classically. Then Watrous [5] pioneered the study of black-box group
properties in the quantum context.

In this context, we study the problem of testing commutativity of a black-box
group (Group Commutativity) given by its generators. The classical complex-
ity of this problem was first considered by Pak [6]. The straightforward algorithm
for the problem has complexity O(k2), where k is the number of generators, since
it suffices to check if every pair of generators commute. Pak presented a surpris-
ing randomized algorithm whose complexity is linear in k, and also showed that
the deterministic lower bound is quadratic. The linear upper bound on com-
plexity may also be obtained by applying quantum search [1] to locate a pair
of generators that do not commute. Using the quantization of random walks by
Szegedy [7], we instead present a sublinear algorithm in Õ(k2/3) (Theorem 3),
where the Õ notation means that logarithmic multiplicative factors are omitted.

Group Commutativity bears a deceptive resemblance to Element Dis-
tinctness. The aim in the former is to detect the presence of a pair of generators
which collide in the sense that they do not commute. However, since the group
structure is unknown, whether or not a pair of generators collide can only be
determined by invoking the group oracle. Moreover, the group oracle provides
access to elements from the entire group spanned by the given generators, which
may be used towards establishing commutativity.

These differences necessitate the use of ideas from Pak’s algorithm, the theory
of rapidly mixing Markov chains, and perhaps most remarkably, the Szegedy
quantization of walks. Group Commutativity appears to be the first natural
problem for which the approach of Szegedy has no equivalent using other known
techniques for constructing quantum algorithms—Grover search [1], or the type
of quantum walk introduced by Ambainis [8]. A recent result of Buhrman and
Spalek [9] on matrix product verification is in the same situation for its time
complexity but not for the query complexity, since the approach of Ambainis
gives an algorithm whose query complexity is the same in the worst case.

We also prove that our algorithm is almost optimal by giving an Ω(k2/3)
lower bound for the quantum query complexity of Group Commutativity
(Theorem 6). Simultaneously, we give an Ω(k) lower bound for its randomized
query complexity (Theorem 5). This lower bound shows that the algorithm of
Pak [6] is optimal, and to our knowledge is new. We first state an easier lower
bound using a simple reduction from the problem of detecting a unique collision
pair of a function, which is a special case of Element Distinctness, when one
allows non-unique encoding of the black-box group (Theorem 4). For the lower
bound for uniquely encoded black-box groups, the proof gets more complex.
The randomized case relies upon an adversary argument. The quantum case is
subtle. We show the said lower bound for the number of accesses to the given
generators. The lower bound also holds for the number of group operations in

generic quantum algorithms (see Section 4 for a definition). This is shown using
a new kind of reduction based on approximation degree of the problem.

2 Preliminaries

2.1 Black-box groups

We will suppose that the elements of the group G are encoded by binary strings
of length n for some fixed integer n, which we call the encoding length. The
groups will be given by generators, and therefore the input size of a group is the
product of the encoding length and the number of generators. For simplicity,
we also assume that the identity element of the group is given. Note that the
encoding of group elements need not be unique, a single group element may be
represented by several strings. If the encoding is not unique, one also needs an
oracle for identity tests. Unless otherwise specified, we assume that the encoding
is unique in this paper. All of our results apply when the encoding is not unique
if one is given an oracle for identity tests.

Since we will deal with black-box groups we shall shortly describe them in the
framework of quantum computing (see also [2] or [5]). For a general introduction
to quantum computing the reader might consult [10, 11]. We will work in the
quantum circuit model. For a group G of encoding length n, the black-box will
be given by two oracles OG and its inverse O−1

G , both operating on 2n qubits.
For any group elements g, h ∈ G, the effect of the oracles is the following:
OG|g〉|h〉 = |g〉|gh〉, and O−1

G |g〉|h〉 = |g〉|g−1h〉.
In this notation we implicitly use the encoding of a group element. We will do
that everywhere in the paper when there is no ambiguity. Also, not every binary
string of length n necessarily corresponds to a group element. In this case, the
behavior of the black box can be arbitrary.

2.2 Query model

The quantum query model was explicitly introduced by Beals, Buhrman, Cleve,
Mosca, and de Wolf [3]. In this model, as in its classical counterpart, we pay for
accessing the oracle, but unlike the classical case, the machine can use the power
of quantum parallelism to make queries in superposition.

The state of the computation is represented by three registers, the query
register g, the answer register h, and the work register z. The computation takes
place in the vector space spanned by all basis states |g, h, z〉. In the quantum
model the state of the computation is a complex combination of all basis states
which has unit length in the `2 norm.

For a black-box group the query operator will be OG together with its inverse
O−1

G . For oracle function F : X → Y the query operator is OF : |g〉|h〉 7→
|g〉|h⊕ F (g)〉, where ⊕ denotes the bitwise xor operation.

Non-query operations are independent of the oracle. A k-query algo-
rithm is a sequence of (k + 1) operations (U0, U1, . . . , Uk) where each Ui

is unitary. Initially the state of the computation is set to some fixed
value |0̄, 0̄, 0̄〉. In case of an oracle function, the sequence of operations
U0, OF , U1, OF , . . . , Uk−1, OF , Uk is applied. For black-box groups, the modi-
fied sequence of operations U0, O

b1
G , U1, O

b2
G , . . . , Uk−1, O

bk

G , Uk is applied, where
bi = ±1. Finally, one or more qubits designated as output bits are measured to
get the outcome of the computation. The quantum algorithms we consider might
give an erroneous answer, but the probability of making an error is bounded by
some fixed constant γ < 1/2.

In the query model of computation each query adds one to the query complex-
ity of an algorithm, but all other computations are free. The time complexity of
the algorithm is usually measured in terms of the total circuit size for the unitary
operations Ui. We will however take a more coarse grained view of time com-
plexity, and assume that operations such as accessing qubits containing group
encodings or updating them, take unit time.

2.3 Quantum walks

We state a simple version of the recent result of Szegedy [7]. Let P be an ergodic
and symmetric Markov chain on a graph G = (V,E) on N vertices. We denote
by P [u, v] the transition probability from u to v. Let M be a set of marked nodes
of V . Assume, one is given a database D that associates some data D(v) to every
node v ∈ V . From D(v) we would like to determine if v ∈ M . We expedite this
using a quantum procedure Φ. When operating with D three types of cost are
incurred. The cost might denote any measure of complexity such as query or
time complexities.
Setup cost S: The cost to set up D(v) for a v ∈ V .
Update cost U: The cost to update D(v) for a v ∈ V , i.e. moving from D(v)
to D(v′), where the transition from v to v′ is allowed by the Markov chain P .
Checking cost C: The query complexity of Φ(D(v)) for a v ∈ V .

Concerning the quantization of the walk P , one needs to consider the quan-
tum time complexity of its implementation in terms of the following parameters.
Initialization time I: The time complexity for constructing the superposition

1√
N

∑
u,v

√
P [u, v]|u, v〉.

Transition time T: The time complexity of realizing the transformation
|u, v〉 7→ 2

√
P [u, v]

∑
v′

√
P [u, v′]|u, v′〉 − |u, v〉.

In the following theorem, the notation O(·) denotes the existence of a univer-
sal constant so that the expression is an upper bound. We now state the main
result of [7].

Theorem 1 (Szegedy [7]). Let δ be the eigenvalue gap of P , and let |M |
|V | ≥ ε >

0 whenever M is non-empty. There exists a quantum algorithm that determines if
M is non empty with cost S+O((U + C)/

√
δε), and an additional time complexity

of I + O(T/
√

δε).
Moreover, if P is state transitive then the cost of finding a marked element

of M is the same as above.

Note that in this theorem, when the cost denotes the time complexity, we need
to add to it the additional time complexity term given in the theorem.

2.4 The Problems

Here we define the problems we are dealing with. The focus of the paper is on

Group Commutativity
Oracle: Group operations OG and O−1

G for an encoding in {0, 1}n

Input: The value of n and the encoding of generators g1, . . . , gk of G
Output: Yes if G is commutative, and No otherwise (if there are two
indices i, j such that gigj 6= gjgi)

The next problem is a special instance of a well-studied problem, Element
Distinctness.

Unique Collision
Oracle: A function F from {1, . . . , k} to {1, . . . , k}
Input: The value of k
Output: Yes if there exists a unique collision pair x 6= y ∈ {1, . . . , k}
such that F (x) = F (y), and No if the function is a permutation

This is a promise problem (or a relation) since we do not require a definite
output for certain valid oracle functions. We will also use a further specialization
of the problem when k is even, Unique Split Collision, where one element
of the colliding pair has to come from {1, . . . , k/2} and the other from {k/2 +
1, . . . , k}. We call this a split collision. Note that in the positive instances of
this problem, the restriction of the function to the two intervals {1, . . . , k/2}
and {k/2 + 1, . . . , k} is injective.

2.5 Approximation degree

We describe the notion of approximation degree for oracle decision problems.
Let S be the set of functions from {1, . . . , k} to {1, . . . , k}. An oracle decision
problem is a boolean function on the set S. For every function F ∈ S, we define
the variables xij which are 1 if F (i) = j and 0 otherwise.

Definition 1 ([3, 12]). Let Φ : S → {0, 1} be an oracle decision problem. Then
the approximation degree of Φ is the lowest degree of real multivariate polyno-
mials P in variables xij, such that |P (x)− Φ(F)| ≤ 1/3, for every F ∈ S

The following powerful result relates approximation degree to quantum query
complexity.

Proposition 1 ([3, 12]). If the quantum query complexity of Φ is T , then the
approximation degree of Φ is at most 2T .

A beautiful application of the polynomial method gives us the optimal query
complexity of Unique Collision.

Theorem 2 ([12–14]). The approximation degree of Unique Collision, and
hence its quantum query complexity, is Ω(k2/3).

The original result of the works cited above refer to the more general problem
Element Distinctness, which requires the detection of one or more colliding
pairs. This was proven by a randomized reduction from the problem Collision
which detects between a bijection and a two-to-one function. However, the re-
duction is still valid for the special case we consider. As noticed by Ambainis [14],
this reduction also implies the lower bound on the approximation degree.

3 A quantum algorithm for Group Commutativity

We are given a black-box group G with generators g1, . . . , gk. The problem is
to decide if G is abelian. For technical reasons (see the proof of Lemma 1), and
without loss of generality, we assume that g1 is the identity element.

We denote by Sl the set of all l-tuples of distinct elements of {1, . . . , k}.
For any u = (u1, . . . , ul) ∈ Sl, we denote by gu the group element gu1 . . . gul

.
Our algorithm is based on the quantization of a random walk on S2

l . We will
also adapt an approach due to [6]. For this we generalize Lemma 1.3 of [6] for
random elements from Sl. Then we show how to walk on S2

l for finding a non
commutative element in G, if there is any. We will conclude using Theorem 1.

In this section, we let p = l(l−1)+(k−l)(k−l−1)
k(k−1) . Observe that when k = 2l,

then p = l−1
2l−1 ≤

1
2 . Moreover, when l = o(k), then 1− p = Θ(l/k).

Lemma 1. Let K 6= G be a subgroup of G. Then Pru∈Sl
[gu 6∈ K] ≥ 1−p

2 .

Proof. First we fix a total order (equivalently, a permutation) σ of {1, . . . , k},
and we denote by Sσ

l that subset of l-tuples in Sl which respect the total order σ.
In other words, u = (u1, . . . , ul) ∈ Sσ

l iff σ−1(ui) < σ−1(ui+1) for all 1 ≤ i < l.
Since (Sσ

l)σ is an equitable partition of Sl, picking a random element from Sl is
the same as first picking a random permutation σ, and then picking a random
element u ∈ Sσ

l . Therefore it is enough to prove the theorem for any fixed order
σ. The reader may find it helpful to take σ to be the identity permutation to
understand the idea behind the proof.

We denote g′j = gσ(j) for every j = 1, . . . , k. Let i be the smallest index such
that g′i 6∈ K. Such an i exists since K 6= G. Let j be such that g′j = g1, the
identity element.

Fix an ordered l-tuple u such that g′i 6∈ u and g′j ∈ u. We denote by v
the ordered l-tuple where g′j has been deleted from u, and g′i has been inserted
into it at the appropriate position (that respects the total order). Formally,
if u = (u1, . . . , um, um+1, . . . , ul) such that σ−1(um) < i < σ−1(um+1), then v is
obtained by deleting g′j from the (l + 1)-tuple (u1, . . . , um, σ(i), um+1, . . . , ul).

Let a = gu1gu2 · · · gum , and b = gum+1 · · · gul
. Then gu = ab and gv = ag′ib.

Note that because of the choice of i, a ∈ K. If gu = ab ∈ K so that b ∈ K as
well, then gv 6∈ K. Therefore Pru∈Sσ

l
[gu ∈ K|i ∈ u xor j ∈ u] ≤ 1

2 .
Since Pru∈Sσ

l
[i, j ∈ u or i, j 6∈ u] = p, we conclude that Pru∈Sσ

l
[gu ∈ K] ≤

(1− p)× 1
2 + p× 1. ut

With the approach of [6] and from Lemma 1, we can generalize easily Lemma 1.1
of [6].

Lemma 2. If G is non commutative then Pru,v∈Sl
[gugv 6= gvgu] ≥ (1−p)2

4 .

Proof. If G is non-commutative, then the centre C(G) of G is a proper sub-
group. With probability at least (1 − p)/2, gu does not belong to C(G) for a
random u ∈ Sl (Lemma 1). Conditioned upon this event, the probability that
for a random v ∈ Sl, gv does not belong to the centralizer of gu is also at
least (1− p)/2. ut

Let tu be the balanced binary tree with l leaves, whose leaves are from left
to right the elements gui

, for i = 1, . . . , l, and such that each internal node is the
group product of its two successors. If l is not a power of 2, we put the deepest
leaves to the left.

The random walk on S2
l that forms the basis of our quantum algorithm will

consist of two independent simultaneous walks on Sl. For a pair (u, v) of l-tuples,
we will maintain the binary trees tu, tv as described above as the data.

The random walk on Sl

Suppose the current state is u ∈ Sl.
With probability 1/2 stay at u; with probability 1/2, do the following:
– Pick a uniformly random position i ∈ {1, . . . , l}, and a uniformly ran-
dom index j ∈ {1, . . . , k}.
– If j = um for some m, then exchange ui and um, else, set ui = j.
– Update the tree tu (using O(log l) group operations).

Lemma 3. The spectral gap of the walk described above is at least c
l log l , for a

universal constant c ≥ 1
8e , provided l ≤ k/2.

Proof. First, we will show that the random walk mixes rapidly using a “coupling
argument”. Then, using a relation between mixing time and the second largest
eigenvalue, we will get a bound on the spectral gap.

Note that the walk is ergodic and has the uniform distribution on Sl as its
stationary distribution π. Thus π(u) = (k−l)!

k! for all u. Moreover, because of the
self-loops, all the eigenvalues of the walk are non-negative.

Let P t
x be the probability distribution on Sl obtained by performing t steps of

the walk starting at x. Let ∆(t) be the maximum over all starting states x ∈ Sl

of the total variation distance ‖P t
x−π‖. Let τ (the mixing time) be the smallest t

such that ∆(t′) ≤ 1
2e for all t′ ≥ t.

A coupling for a Markov chain is a stochastic process on pairs of states (Ut, Vt)
such that Ut and Vt, viewed marginally, each evolve according to the Markov
chain, and if Ut = Vt, then Ut+1 = Vt+1. The coupling time T is the maxi-
mum expected time (over all pairs of initial states (u, v)) for the states Ut, Vt to
coincide: T = maxu,v E[argmint{Ut = Vt, U0 = u, V0 = v}].

We will use the following facts about mixing of Markov chains:

1. [15, Proposition 2.2, Chapter 2] For walks with only non-negative eigenval-
ues, λt ≤ ∆(t) ·(minu π(u))−1, where λ is the second largest eigenvalue. This
bounds the second largest eigenvalue in terms of the total variation distance.

2. (see e.g., Ref. [16]) ∆(t) ≤ 2 exp(−b t
τ c). This relates the total variation

distance at any time t to the mixing time τ .
3. [17] τ ≤ 2eT . This bounds the mixing time τ in terms of the coupling time T .

Combining all three relations, taking t-th roots, and letting t → ∞, we see
that λ ≤ exp(− 1

2eT) ≤ 1− 1
4eT . Thus, the spectral gap is 1− λ ≥ 1

4eT .
A coupling for which T ≤ l log l is the obvious one: for any pair u, v ∈ Sl,

follow one step of the random walk with the same choice of random position i
and index j. This is clearly a valid coupling.

Let d be the hamming distance between the two tuples u, v. This distance
never increases during the process described above. Moreover, in one step of the
process, the distance goes down by 1 with probability at least d

2l . This is because
with probability d/l, the position i is one where u and v are different, and with
probability at least (k − l)/k, the index j is not one from the positions where u
and v are the same. Since l ≤ k/2, the net probability that the distance decreases
by 1 is at least d/2l.

By a straightforward calculation, the expected time T for the distance to
go to zero is at most 2l log l (since d ≤ l). Using the relation described above
between λ and T , we get our bound on the spectral gap. ut

Theorem 3. There is a quantum algorithm that solves Group Commutativ-
ity problem with O(k2/3 log k) queries and time complexity O(k2/3 log2 k).

Proof. The walk is the above described walk on S2
l . The database associated

with a tuple u ∈ Sl is the binary tree tu. Using Szegedy’s theorem 1, we need
only compute the eigenvalue gap of the random walk and the initial success
probability (in the uniform distribution).

The stationary distribution for the walk is the uniform distribution on Sl×Sl.
So, from Lemma 2 above, the success probability is at least (1 − p)2/4. The
spectral gap for the walk is the same as that on Sl, i.e. c/(l log l), from Lemma 3.

Since we start with a uniform distribution over |u, tu〉|v, tv〉, where u, v ∈ Sl.
The setup cost is at most 2(l− 1) and the updating cost of the walk is O(log l).
We will choose l = o(k) so that 1− p = Θ(l/k). The total query cost is then

2(l − 1) + O
(

1
1−p

√
l log l · log l

)
= 2(l − 1) + O

(
k√
l
log3/2 l

)
.

This expression is minimized when l = k2/3 log k, and the cost is O(k2/3 log k).
The time complexity overhead comes from the initialization and transition

times that are both essentially equal to the time complexity of performing a
Grover diffusion operation. For the initialization, we use a diffusion over S2

l ,
whose time complexity is O(log(|Sl|2)) = O(l log k). For the transition, we use a
diffusion over a set of size 2 tensor product with a diffusion over a set of size kl,
therefore the corresponding time complexity is O(log(kl)) = O(log k). ut

4 Reduction from Unique Split Collision

We begin our presentation of the lower bound by considering the complexity
of Unique Split Collision. This problem is at least as hard as Unique Col-
lision in its query complexity since any bounded-error algorithm for the former
can be used to detect an arbitrary collision. The proof is omitted due to the lack
of space.

Proposition 2. The approximation degree and the quantum query complexity of
Unique Split Collision are both Ω(k2/3). The randomized query complexity
of this problem is Ω(k).

We conclude by proving the same lower bound for Group Commutativity
as well. We thus show that the algorithm described in the previous section is
almost optimal.

The group involved in the proof of the lower bound will be a subgroup G
of U(2k), the group (under matrix multiplication) of 2k × 2k unitary matrices.
The generators of G will be block diagonal, each with k blocks of dimension 2×2.
Each block will be one of the following three (Pauli) matrices:

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
.

The group may also involve the remaining Pauli matrix Y = XZ =
(

0 −1
1 0

)
.

No pair of matrices amongst X, Y and Z commute. An encoding of the group
consists in words σ1 . . . σk of length k over the alphabet {I,X, Y, Z} together with
a sign vector s = (s1, s2, . . . , sk) in {+1,−1}k. A tuple (s, σ1, . . . σk) represents
the matrix diag(s1σ1, . . . , skσk). We will call this encoding the explicit encoding.

Let aj and bj be generators that have the identity matrix in all their blocks
except for the j-th. The j-th block is Z in aj and X in bj .

We describe a connection between Unique Split Collision and Group
Commutativity. Suppose the oracle for the problem Unique Split Collision
computes the function F : {1, . . . , k} → {1, . . . , k}. We associate a generator gi

of the type described above with each element i in the domain. The generator gi

is aF (i) if i ≤ k/2, and it is bF (i) if i > k/2. As long as the function F is injective
on the two intervals {1, . . . , k/2} , {k/2 + 1, . . . , k}, the set of generators {gi}
consists of k distinct elements. None of these generators is contained in the span
of the remaining generators.

It is straightforward to check that there is a collision in F (with one point
on either side of k/2) iff the group generated by {gi} is non-commutative. We
use this connection for proving our lower bound. While the main result uses a
non-standard method, we first prove a weaker result which explains the intuition
behind the final proof to the reader.

Theorem 4. If non-unique encoding of group elements is allowed, the random-
ized and the quantum query complexity of Group Commutativity are respec-
tively Ω(k) and Ω(k2/3).

Proof. Suppose we allow non unique encoding of the group G. We show that any
algorithm A solving Group Commutativity may be adapted to solve Unique
Split Collision, with at most four times the query complexity of A. We then
conclude our theorem using Proposition 2.

We construct a black-box group which may invoke the oracle for Unique
Split Collision to implement group operations. The encoding of the group
elements will be either the explicit encoding defined above, or an element of
{1, . . . , k}. When the encoding is an integer i ∈ {1, . . . , k}, it represents the
generator gi. When an integer i is involved in a group operation, we query the
oracle for F at i, and construct gi as defined above. One more query to F is
required to erase the value of the function. Group operations can be performed
without incurring any further calls to F . Operations on previously computed
products also do not cost any queries. Therefore a group operation involves F at
most four times, when both of the elements are encoded by integers. The oracle
hides the group G with this non-unique encoding, and the input is the sequence
of encodings 1, 2, . . . , k. ut

In the case of unique encoding of group elements by the black-box, the reduc-
tion above is not guaranteed to work. The reason is that non-trivial products of
generators may evaluate to the value of a generator. These products are repre-
sented in explicit form, and therefore our simulation possibly uses two different
representations for the generators. We can nevertheless modify our simulation
to work, while maintaining essential properties of the algorithm. In the classical
model, our simulation preserves the number of oracle queries. In the quantum
model, our simulation will produce a polynomial that approximates Unique
Split Collision and has degree of the order of the number of queries made by
the commutativity algorithm.

In our arguments, we assume that the algorithm never queries the black-box
with encodings that did not result from previous queries to the oracle. This family
of algorithm are usually called generic algorithms. This notion was introduced
to cryptography by Nechaev [18] and Shoup [19]. By suitably randomizing the
encoding such as in [20], we can ensure that the probability that the algorithm
chances upon a valid pair of encoded group elements is o(1), if this input does not
result from previous queries. If we choose n, the encoding length, to be Ω(log |G|),
this probability would be exponentially small in n. We can therefore assume in
the black-box group setting that a correct algorithm is always generic, and we
make this assumption until the end of this section. These arguments do not
generalize easily to the quantum setting; we leave a proof to a more complete
version of this paper. We start with the classical simulation.

Theorem 5. With unique encoding of group elements, the randomized query
complexity of Group Commutativity is Ω(k).

Proof. Our reduction from Unique Split Collision works essentially because
all the generators are distinct, and because no generator is contained in the span
of the remaining k − 1 generators. We modify the simulation in the proof of
Theorem 4 so that we record the value of the function F at any point which is

queried. We retain the explicit encoding for all group elements except the gen-
erators as the encoding for the black-box group. The generators are represented
by integers 1, . . . , k. A non-trivial product may equal a generator gi only if the
product contains this generator. The value of F at point i would necessarily have
been queried for the algorithm to have computed this product. The index i can
therefore be located by examining the record of all queries made thus far in the
algorithm, and used to encode the generator. ut

For the modified simulation in the quantum case, we introduce another
implicit encoding of elements of G as tuples (s, x1, x2, . . . , xk), where s ∈
{+1,−1}k, and xi ∈ {0, 1}. A word in this implicit encoding represents the
group element diag(s1I, s2I, . . . , skI) · gx1

1 gx2
2 · · · gxk

k . This is a unique encoding
of elements in G.

As in the proof of the classical lower bound, we restrict ourselves to generic
algorithms. In a generic quantum black-box group algorithm, along every com-
putational path, the queries to the oracle involve either a generator, or a product
that was previously computed along that path.

Theorem 6. With unique encoding of group elements, any generic quantum
algorithm for Group Commutativity performs Ω(k2/3) group operations
(queries to the group oracle).

Proof. In using a generic algorithm for Group Commutativity to solve
Unique Split Collision we now use the implicit encoding of group elements.
The generators are specified in this notation, and we will maintain this represen-
tation for all the intermediate products that are computed during the algorithm.
The query cost of simulating a group operation is no longer O(1). Indeed, we
may need up to O(k) queries to F to implement a multiplication of two elements.
Nevertheless, we argue that the degree of the polynomial that results from this
simulation is of the order of the query cost of the commutativity algorithm.

We refine the proof of Proposition 1 due to [3, 12] to claim that after t queries:

– The amplitude of any basis state is a polynomial of degree at most O(t) in
the variables xij .

– Fix a classical basis state. If a generator gi occurs in the implicit encoding
of group elements stored in the special registers, then a variable xij (for
some j) is a factor of the polynomial that gives the amplitude of that state.

This ensures that in our simulation, the degree of the polynomial corresponding
to a basis state does not increase as we query F to implement a group operation
involving a previously computed product. In making this claim, we rely on the
fact that xij ∈ {0, 1} for inputs of interest to us, so xijxij′ = δjj′xij . (The degree
goes up by O(1) when at least one of the operands is a fresh generator.)

As a consequence, we derive a polynomial of degree of the order of the num-
ber of queries made by the commutativity algorithm, and this approximates
Unique Split Collision. We can thus conclude the same lower bound as in
Proposition 2 for testing commutativity as well. ut

Note that the complications due to the unique encoding requirement do not
arise if we are concerned with the number of accesses to the input generators.
For arbitrary (possibly non-generic) quantum algorithms, the same reduction
also directly gives a bound on this notion of complexity.
Proposition 3. The lower bound of Ω(k2/3) above also holds for the query com-
plexity of any quantum algorithm, if the generators to a possibly known group
are specified by an input oracle.

References

1. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proc.
of 28th ACM STOC. (1996) 212–219

2. Mosca, M.: Quantum Computer Algorithms. PhD thesis, Univ. of Oxford (1999)
3. Beals, R., Buhrman, H., Cleve, R., Mosca, M., Wolf, R.: Quantum lower bounds

by polynomials. J. of the ACM 48 (2001) 778–797
4. Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Proc.

of 25th IEEE FOCS. (1984) 229–240
5. Watrous, J.: Quantum algorithms for solvable groups. In: Proceedings of 33rd

Symposium on Theory of Computing, ACM (2001) 60–67
6. Pak, I.: Testing commutativity of a group and the power of randomization. Elec-

tronic version at http://www-math.mit.edu/∼pak/research.html (2000)
7. Szegedy, M.: Quantum speed-up of markov chain based algorithms. In: Proc. of

45th IEEE FOCS. (2004) 32–41 Also arXiv.org report quant-ph/0401053.
8. Ambainis, A.: Quantum walk algorithm for Element Distinctness. In: Proceedings

of 45th IEEE FOCS. (2004) 22–31
9. Buhrman, H., Spalek, R.: Quantum verification of matrix products. Technical

Report quant-ph/0409035, arXiv archive (2004)
10. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-

bridge University Press (2000)
11. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. Volume 47

of Graduate Studies in Mathematics. AMS (2002)
12. Aaronson, S., Shi, Y.: Quantum lower bound for the collision problem. J. of the

ACM 51 (2004) 595–605
13. Kutin, S.: A quantum lower bound for the collision problem. Technical Report

quant-ph/0304162, arXiv archive (2003)
14. Ambainis, A.: Quantum lower bounds for collision and element distinctness with

small range. Technical Report quant-ph/0305179, arXiv archive (2003)
15. Sinclair, A.: Algorithms for Random Generation and Counting: A Markov Chain

Approach. Progress in theoretical computer science. Birkhäuser, Boston (1993)
16. Aldous, D.: Random walks on finite groups and rapidly mixing Markov chains. In:

Séminaire de Probabilités XVII. Volume 986 of Lecture Notes in Mathematics.,
Springer-Verlag (1981–82) 243–297

17. Griffeath, D.: Coupling methods for Markov processes. In Rota, G.C., ed.: Studies
in Probability and Ergodic Theory. Academic Press (1978) 1–43

18. Nechaev, V.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55 (1994) 165–172

19. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Proc.
of Eurocrypt. (1997) 255–266

20. Schnorr, C., Jakobsson, M.: Security of signed ElGamal encryption. In: Proc. of
6th Asiacrypt. (2000) 73–89

