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Abstract

We show that the quantum query complexity of detecting if an n-vertex graph contains a triangle
is O(n9/7). This improves the previous best algorithm of Belovs [2] making O(n35/27) queries. For the
problem of determining if an operation ◦ : S × S → S is associative, we give an algorithm making
O(|S|10/7) queries, the first improvement to the trivial O(|S|3/2) application of Grover search.

Our algorithms are designed using the learning graph framework of Belovs. We give a family of
algorithms for detecting constant-sized subgraphs, which can possibly be directed and colored. These
algorithms are designed in a simple high-level language; our main theorem shows how this high-level
language can be compiled as a learning graph and gives the resulting complexity.

The key idea to our improvements is to allow more freedom in the parameters of the database kept
by the algorithm. As in our previous work [9], the edge slots maintained in the database are specified
by a graph whose edges are the union of regular bipartite graphs, the overall structure of which mimics
that of the graph of the certificate. By allowing these bipartite graphs to be unbalanced and of variable
degree we obtain better algorithms.

1 Introduction

Quantum query complexity is a black-box model of quantum computation, where the resource measured is
the number of queries to the input needed to compute a function. This model captures the great algorithmic
successes of quantum computing like the search algorithm of Grover [5] and the period finding subroutine of
Shor’s factoring algorithm [12], while at the same time is simple enough that one can often show tight lower
bounds.

Recently, there have been very exciting developments in quantum query complexity. Reichardt [11]
showed that the general adversary bound, formerly just a lower bound technique for quantum query com-
plexity [7], is also an upper bound. This characterization opens a new avenue for designing quantum query
algorithms. The general adversary bound can be written as a relatively simple semidefinite program, thus
by providing a feasible solution to the minimization form of this program one can upper bound quantum
query complexity.

This plan turns out to be quite difficult to implement as the minimization form of the adversary bound
has exponentially many constraints. Even for simple functions it can be challenging to directly write down
a feasible solution, much less worry about finding a solution with good objective value.

To surmount this problem, Belovs [2] introduced the beautiful model of learning graphs, which can be
viewed as the minimization form of the general adversary bound with additional structure imposed on the
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form of the solution. This additional structure makes learning graphs easier to reason about by ensuring
that the constraints are automatically satisfied, leaving one to worry about optimizing the objective value.

Learning graphs have already proven their worth, with Belovs using this model to give an algorithm
for triangle finding with complexity O(n35/27), improving the quantum walk algorithm [10] of complexity
O(n1.3). Belovs’ algorithm was generalized to detecting constant-sized subgraphs [13, 9], giving an algorithm
of complexity o(n2−2/k) for determining if a graph contains a k-vertex subgraph H, again improving the [10]
bound of O(n2−2/k). All these algorithms use the most basic model of learning graphs, that we also use in
this paper. A more general model of learning graphs (introduced, though not used in Belovs’ original paper)
was used to give an o(n3/4) algorithm for k-element distinctness, when the inputs are promised to be of a
certain form [3]. Recently, Belovs further generalized the learning graph model and removed this promise to
obtain an o(n3/4) algorithm for the general k-distinctness problem [1].

In this paper, we continue to show the power of the learning graph model. We give an algorithm for
detecting a triangle in a graph making O(n9/7) queries. This lowers the exponent of Belovs algorithm from
about 1.296 to under 1.286. For the problem of testing if an operation ◦ : S × S → S is associative, where
|S| = n, we give an algorithm making O(n10/7) queries, the first improvement over the trivial application
of Grover search making O(n3/2) queries. Previously, Dörn and Thierauf [4] gave a quantum walk based
algorithm to test if ◦ : S × S → S′ is associative that improved on Grover search but only when |S′| < n3/4.

More generally, we give a family of algorithms for detecting constant-sized subgraphs, which can possibly
be directed and colored. Algorithms in this family can be designed using a simple high-level language. Our
main theorem shows how to compile this language as a learning graph, and gives the resulting complexity.
We now explain in more detail how our algorithms improve over previous work.

Our contribution. We will explain the new ideas in our algorithm using triangle detection as an
example. We first review the quantum walk algorithm of [10], and the learning graph algorithm of Belovs [2].
For this high-level overview we just focus on the database of edge slots of the input graph G that is maintained
by the algorithm. A quantum walk algorithm explicitly maintains such a database, and the nodes of a learning
graph are labeled by sets of queries which we will similarly interpret as the database of the algorithm.

In the quantum walk algorithm [10] the database consists of an r-element subset of the n-vertices of G
and all the edge slots among these r-vertices. That is, the presence or absence of an edge in G among a
complete r-element subgraph is maintained by the database. In the learning graph algorithm of Belovs, the
database consists of a random subgraph with edge density 0 ≤ s ≤ 1 of a complete r-element subgraph. In
this way, on average, O(sr2) many edge slots are queried among the r-element subset, making it cheaper to
set up this database. This saving is what results in the improvement of Belovs’ algorithm. Both algorithms
finish by using search plus graph collision to locate a vertex that is connected to the endpoints of an edge
present in the database, forming a triangle.

Zhu [13] and Lee et al. [9] extended the triangle finding algorithm of Belovs to finding constant sized
subgraphs. While the algorithm of Zhu again maintains a database of a random subgraph of an r-vertex
complete graph with edge density s, the algorithm of Lee et al. instead used a more structured database.
Let H be a k-vertex subgraph with vertices labeled from [k]. To determine if G contains a copy of H, the
database of the algorithm consists of k − 1 sets A1, . . . , Ak−1 of size r and for every {i, j} ∈ H − {k} the
edge slots of G according to a sr-regular bipartite graph between Ai and Aj . Again both algorithms finish
by using search plus graph collision to find a vertex connected to edges in the database to form a copy of H.

In this work, our database is again the edge slots of G queried according according to the union of regular
bipartite graphs whose overall structure mimics the structure of H. Now, however, we allow optimization
over all parameters of the database—we allow the size of the set Ai to be a parameter ri that can be
independently chosen; similarly, we allow the degree of the bipartite graph between Ai and Aj to be a
variable dij . This greater freedom in the parameters of the database allows the improvement in triangle
finding from O(n35/27) to O(n9/7). Instead of an r-vertex graph with edge density s, our algorithm uses as a
database a complete unbalanced bipartite graph with left hand side of size r1 and right hand side of size r2.
Taking r1 < r2 allows a more efficient distribution of resources over the course of the algorithm. As before,
the algorithm finishes by using search plus graph collision to find a vertex connected to endpoints of an edge
in the database.
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The extension to functions of the form f : [q]n×n → {0, 1}, like associativity, comes from the fact that the
basic learning graph model that we use depends only on the structure of a 1-certificate and not on the values
in a 1-certificate. This property means that an algorithm for detecting a subgraph H can be immediately
applied to detecting H with specified edge colors in a colored graph.

If an operation ◦ : S×S → S is non-associative, then there are elements a, b, c such that a◦(b◦c) 6= (a◦b)◦c.
A certificate consists of the 4 (colored and directed) edges b ◦ c = e, a ◦ e, a ◦ b = d, and d ◦ c such that
a ◦ e 6= d ◦ c. The graph of this certificate is a 4-path with directed edges, and using our algorithm for this
graph gives complexity O(|S|10/7).

We provide a high-level language for designing algorithms within our framework. The algorithm begins
by choosing size parameters for each Ai and degree parameters for the bipartite graph between Ai and Aj .
Then one can choose the order in which to load vertices ai and edges (ai, aj) of a 1-certificate, according to
the rules that both endpoints of an edge must be loaded before the edge, and at the end all edges of the
certificate must be loaded. Our main theorem Theorem 8 shows how to implement this high-level algorithm
as a learning graph and gives the resulting complexity.

With larger subgraphs, optimizing over the set size and degree parameters to obtain an algorithm of
minimal complexity becomes unwieldy to do by hand. Fortunately, this can be phrased as a linear program
and we provide code to compute a set of optimal parameters1.

2 Preliminaries

The quantum query complexity of a function f , denoted Q(f), is the number of input queries needed to
evaluate f with error at most 1/3. We refer the reader to the survey [6] for precise definitions and background.

For any integer q ≥ 1, let [q] = {1, 2, . . . , q}. We will deal with boolean functions of the form f : [q]n×n →
{0, 1}, where the input to the function can be thought of as the complete directed graph (possibly with self-
loops) on vertex set [n], whose edges are colored by elements from [q]. When q = 2, the input is of course just
a directed graph (again possibly with self-loops). A partial assignment is an element of the set ([q]∪{?})n×n.
For partial assignments α1 and α2 we say that α1 is a restriction of α2 (or alternately α2 is an extension of
α1) if whenever α1(i, j) 6= ? then α1(i, j) = α2(i, j). A 1-certificate for f is a partial assignment α such that
f(x) = 1 for every extension x ∈ [q]n×n of α. If α is a 1-certificate and x ∈ [q]n×n is an extension of α, we
also say that α is a 1-certificate for f and x. A 1-certificate α is minimal if no proper restriction of α is a
1-certificate. The index set of a 1-certificate α for f is the set Iα = {(i, j) ∈ [n]× [n] : α(i, j) 6= ?}. Besides
these standard notions, we will also need the notion of the graph of a 1-certificate. For a graph G, let V (G)
denote the set of vertices, and E(G) the set of edges of G.

Definition 1 (Certificate graph). Let α be a 1-certificate for f : [q]n×n → {0, 1}. The certificate graph Hα

of α is defined by E(Hα) = Iα, and V (Hα) is the set of elements in [n] which are adjacent to an edge in Iα.
The size of a certificate graph is the cardinality of its edges. A minimal certificate graph for x, such that
f(x) = 1, is the certificate graph of a minimal 1-certificate for f and x. The 1-certificate complexity of f is
the size of the biggest minimal certificate graph for some x such that f(x) = 1.

Intuitively, if x ∈ [q]n×n is an extension of a 1-certificate α, the certificate graph of α represents queries
that are sufficient to verify f(x) = 1.

Vertices of our learning graphs will be labeled by sets of edges coming from the union of a bunch of
bipartite graphs. We will specify these bipartite graphs by their degree sequences, the number of vertices on
the left hand side and right hand side of a given degree. The following notation will be useful to do this.

Definition 2 (Type of bipartite graph). A bipartite graph between two sets Y1 and Y2 is of type
({(n1, d1), . . . , (nj , dj)}, {(m1, g1), . . . , (m`, g`)}) if Y1 has ni vertices of degree di for i = 1, . . . , j, and Y2
has mi vertices of degree gi for i = 1, . . . , `, and this is a complete listing of vertices in the graph, i.e.
|Y1| =

∑j
i=1 ni and |Y2| =

∑`
i=1mi. Note also that

∑j
i=1 nidi =

∑`
i=1migi.

1code is available at https://github.com/troyjlee/learning_graph_lp
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Learning graphs We now formally define a learning graph and its complexity. We first define a learning
graph in the abstract.

Definition 3 (Learning graph). A learning graph G is a 5-tuple (V, E , w, `, {py : y ∈ Y }) where (V, E) is
a rooted, weighted and directed acyclic graph, the weight function w : E → R maps learning graph edges to
positive real numbers, the length function ` : E → N assigns each edge a natural number, and py : E → R is
a unit flow whose source is the root, for every y ∈ Y .

A learning graph for a function has additional requirements as follows.

Definition 4 (Learning graph for a function). Let f : [q]n×n → {0, 1} be a function. A learning graph G for
f is a 5-tuple (V, E , S, w, {py : y ∈ f−1(1)}), where S : V → 2n×n maps v ∈ V to a label S(v) ⊆ [n]× [n] of
variable indices, and (V, E , w, `, {py : y ∈ f−1(1)}) is a learning graph for the length function ` defined as
`((u, v) = |S(v) \ S(u)| for each edge (u, v). For the root r ∈ V we have S(r) = ∅, and every learning graph
edge e = (u, v) satisfies S(u) ⊆ S(v). For each input y ∈ f−1(1), the set S(v) contains the index set of a
1-certificate for y on f , for every sink v ∈ V of py.

In our construction of learning graphs we usually define S by more colloquially stating the label of each
vertex. Note that it can be the case for an edge (u, v) that S(u) = S(v) and the length of the edge is zero.
In Belovs [2] what we define here is called a reduced learning graph, and a learning graph is restricted to
have all edges of length at most one.

In this paper we will discuss functions whose inputs are themselves graphs. To prevent confusion we will
refer to vertices and edges of the learning graph as L-vertices and L-edges respectively.

We now define the complexity of a learning graph. For the analysis it will be helpful to define the
complexity not just for the entire learning graph but also for stages of the learning graph G. By level d of G
we refer to the set of vertices at distance d from the root. A stage is the set of edges of G between level i and
level j, for some i < j. For a subset V ⊆ V of the L-vertices let V + = {(v, w) ∈ E : v ∈ V } and similarly let
V − = {(u, v) ∈ E : v ∈ V }. For a vertex v we will write v+ instead of {v}+, and similarly for v− instead of
{v}−.

Definition 5 (Learning graph complexity). Let G be a learning graph, and let E ⊆ E be the edges of a stage.
The negative complexity of E is

C0(E) =
∑
e∈E

`(e)w(e).

The positive complexity of E under the flow py is

C1,y(E) =
∑
e∈E

`(e)

w(e)
py(e)2.

The positive complexity of E is
C1(E) = max

y∈Y
C1,y(E).

The complexity of E is C(E) =
√
C0(E)C1(E), and the learning graph complexity of G is C(G) = C(E).

The learning graph complexity of a function f , denoted LG(f), is the minimum learning graph complexity of
a learning graph for f .

Theorem 1 (Belovs). Q(f) = O(LG(f)).

Originally Belovs showed this theorem with an additional log q factor for functions over an input alphabet
of size q; this logarithmic factor was removed in [3].
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Analysis of learning graphs Given a learning graph G, the easiest way to obtain another learning graph
is to modify the weight function of G. We will often use this reweighting scheme to obtain learning graphs
with better complexity or complexity that is more convenient to analyze. When G is understood from the
context, and when w′ is the new weight function, for the edges E ⊆ E of a stage, we denote the complexity
of E with respect to w′ by Cw

′
(E).

The following useful lemma of Belovs gives an example of the reweighting method. It shows how to upper
bound the complexity of a learning graph by partitioning it into a constant number of stages and summing
the complexities of the stages.

Lemma 2 (Belovs). If E can be partitioned into a constant number k of stages E1, . . . , Ek, then there exists
a weight function w′ such that

Cw
′
(G) = O(C(E1) + . . .+ C(Ek)).

Now we will focus on evaluating the complexity of a stage. Our learning graph algorithm for triangle
detection is of a very simple form, where all L-edges present in the graph have weight one, all L-vertices in
a level have the same degree, incoming and outgoing flows are uniform over a subset of L-vertices in each
level, and all L-edges between levels are of the same length. In this case the complexity of a stage between
consecutive levels can be estimated quite simply.

Lemma 3. Consider a stage of a learning graph between consecutive levels. Let V be the set of L-vertices
at the beginning of the stage. Suppose that each L-vertex v ∈ V is of degree-d with all outgoing L-edges e of
weight w(e) = 1 and of length `(e) ≤ `. Furthermore, say that the incoming flow is uniform over L-vertices
W ⊆ V , and is uniformly directed from each L-vertex v ∈ W to g of the d possible neighbors. Then the

complexity of this stage is at most `
√

d|V |
g|W | .

Proof. The total weight is d|V |. The flow through each of the g|W | many L-edges is (g|W |)−1. Plugging
these into Definition 5 gives the lemma.

To analyze the cost of our algorithm for triangle detection, we will repeatedly use Lemma 3. The
contributions to the complexity of a stage are naturally broken into three parts: the length `, the vertex
ratio |V |/|W |, and the degree ratio d/g. This terminology will be helpful in discussing the complexity of
stages.

For our more general framework given in Section 4, flows will no longer be uniform. To evaluate the
complexity in this case, we will use several lemmas developed in [9]. The main idea is to use the symmetry
of the function to decompose flows as a convex combination of uniform flows over disjoint edge sets. A
natural extension of Lemma 3 can then be used to evaluate the complexity. To state the lemma we first
need a definition. For a set of L-edges E, we let py(E) denote the value of the flow py over E, that is
py(E) =

∑
e∈E py(e).

Definition 6 (Consistent flows). Let E be a stage of G between two consecutive levels, and let V1, . . . , Vs be
a partition of the L-vertices at the beginning of the stage. We say that {py} is consistent with V +

1 , . . . , V
+
s

if py(V +
i ) is independent of y for each i.

The next lemma is the main tool for evaluating the complexity of learning graphs in our main theorem,
Theorem 8.

Lemma 4 ([9]). Let E be a stage of G between two consecutive levels. Let V be the set of L-vertices at the
beginning of the stage and suppose that each v ∈ V has outdegree d and all L-edges e of the stage satisfy
w(e) = 1 and `(e) ≤ `. Let V1, . . . , Vs be a partition of V , and for all y and i, let Wy,i ⊆ Vi be the set of
vertices in Vi which receive positive flow under py. Suppose that

1. the flows {py} are consistent with {Vi+},

2. |Wy,i| is independent from y for every i, and for all v ∈Wy,i we have py(v+) = py(Vi
+)/|Wy,i|,
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3. there is a g such that for each vertex v ∈ Wy,i the flow is directed uniformly to g of the d many
neighbors.

Then there is a new weight function w′ such that

Cw
′
(E) ≤ max

i
`

√
d

g

|Vi|
|Wy,i|

. (1)

We will refer to maxi |Vi|/|Wy,i| as the maximum vertex ratio. For the most part we will deal with the
problem of detecting a (possibly directed and colored) subgraph in an n- vertex graph. We will be interested
in symmetries induced by permuting the elements of [n], as such permutations do not change the property
of containing a fixed subgraph. We now state two additional lemmas from [9] that use this symmetry to help
establish the hypotheses of Lemma 4.

For σ ∈ Sn, we define and also denote by σ the permutation over [n]× [n] such that σ(i, j) = (σ(i), σ(j)).
Recall that each L-vertex u is labeled by a k-partite graph on [n], say with color classes A1, . . . , Ak, and
that we identify an L-vertex with its label. For σ ∈ Sn we define the action of σ on u as σ(u) = v, where v
is a k-partite graph with color classes σ(A1), . . . , σ(Ak) and edges {σ(i), σ(j)} for every edge {i, j} in u.

Define an equivalence class [u] of L-vertices by [u] = {σ(u) : σ ∈ Sn}. We say that Sn acts transitively
on flows {py} if for every y, y′ there is a τ ∈ Sn such that py((u, v)) = py′((τ(u), τ(v)) for all L-edges (u, v).

The following lemma from [9] shows that if Sn acts transitively on a set of flows {py} then they are

consistent with [v]
+

, where v is a vertex at the beginning of a stage between consecutive levels. This will set
us up to satisfy hypothesis (1) of Lemma 4.

Lemma 5 ([9]). Consider a learning graph G and a set of flows {py} such that Sn acts transitively on {py}.
Let V be the set of L-vertices of G at some given level. Then {py} is consistent with {[u]+ : u ∈ V }, and,
similarly, {py} is consistent with {[u]− : u ∈ V }.

The next lemma gives a sufficient condition for hypothesis (2) of Lemma 4 to be satisfied. The partition
of vertices in Lemma 4 will be taken according to the equivalence classes [u].

Lemma 6 ([9]). Consider a learning graph and a set of flows {py} such that Sn acts transitively on {py}.
Suppose that for every L-vertex u and flow py such that py(u−) > 0,

1. the flow from u is uniformly directed to g+([u]) many neighbors,

2. for every L-vertex w, the number of incoming edges with from [w] to u is g−([w], [u]).

Then for every L-vertex u the flow entering [u] is uniformly distributed over Wy,[u] ⊆ [u] where |Wy,[u]| is
independent of y.

3 Triangle algorithm

Theorem 7. There is a bounded-error quantum query algorithm for detecting if an n-vertex graph contains
a triangle making O(n9/7) many queries.

Proof. We will show the theorem by giving a learning graph of the claimed complexity, which is sufficient by
Theorem 1. We will define the learning graph by stages; let Vt denote the L-vertices of the learning graph
present at the beginning of stage t. The L-edges between Vt and Vt+1 are defined in the obvious way—there
is an L-edge between vt ∈ Vt and vt+1 ∈ Vt+1 if the graph labeling vt is a subgraph of the graph labeling
vt+1, and all such L-edges have weight one. The root of the learning graph is labeled by the empty graph.

For a positive input graph G, let a1, a2, a3 be the vertices of a triangle of G. The algorithm (see Figure 1)
depends on set size parameters r1, r2 ∈ [n], r1, r2 = o(n) and a vertex degree parameter λ ∈ [n] that will be
optimized later. We will choose r1 < r2 such that r2/r1 is an integer. The cost of each stage will be upper
bounded using Lemma 3.
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Figure 1: Stages 1-6 for Triangle Algorithm
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Stage 1 (Setup): The initial level V1 consists of the root of the learning graph labeled by the empty
graph. The level V2 consists of all L-vertices labeled by a complete unbalanced bipartite graph with disjoint
color classes A1, A2 ⊆ [n] where |A1| = r1 − 1 and |A2| = r2 − 1 and r1 ≤ r2. Flow is uniform from the root
to all L-vertices such that ai 6∈ A1, ai 6∈ A2 for i = 1, 2, 3.
Cost: The hypotheses of Lemma 3 hold trivially at this stage. The length of this stage is O(r1r2). The
vertex ratio is 1, and the degree ratio is (

n
r1

)(
n−r1
r2

)(
n−3
r1

)(
n−r1−3

r2

) = O(1),

as r1, r2 = o(n). Thus the overall cost is O(r1r2).

Stage 2 (Load a1): During this stage we add a vertex to the set A1 and connect it to all vertices in A2.
Formally, V3 consists of all vertices labeled by a complete bipartite graph between color classes A1, A2 of
sizes r1, r2− 1, respectively. The flow goes uniformly to those L-vertices where a1 is the vertex added to A1.
Cost: By the definition of stage 1, the flow is uniform over L-vertices at the beginning of stage 2. The
out-degree of every L-vertex in V1 is n − r1 − r2 + 2. Of these, in L-vertices with flow, exactly one edge is
taken by the flow. Thus we can apply Lemma 3. Since the degree ratio was O(1) for the first stage, the
vertex ratio is also O(1) for this stage. The length is r2 − 1. The degree ratio is O(n). Thus the cost of this
stage is O(

√
nr2).

Stage 3 (Load a2): We add a vertex to A2 and connect it to all of the r1 many vertices in A1. Thus the
L-vertices at the end of stage 3 consist of all complete bipartite graphs between sets A1, A2 of sizes r1, r2,
respectively. The flow goes uniformly to those L-vertices where a2 is added at this stage to A2. Note that
since we work with a complete bipartite graph, if a1 ∈ A1 and a2 ∈ A2 then the edge {a1, a2} is automatically
present.
Cost: The amount of flow in a vertex with flow at the beginning of stage 3 is the same as at the beginning of
stage 2, as the flow out-degree in stage 2 was one and there was no merging of flow. Thus flow is still uniform
at the beginning of stage 3. The out-degree of each L-vertex is n− r1 − r2 + 1 and again for L-vertices with
flow, the flow out-degree is exactly one. Thus we can again apply Lemma 3.

The length of this stage is r1. The vertex ratio is O(n/r1) as flow is present in L-vertices where a1 is in
the set A1 of size r1 (and such that a2, a3 are not loaded which only affects things by a O(1) factor). The
degree ratio is again O(n) as the flow only uses L-edges where a2 is added out of n − r1 − r2 + 1 possible
choices. Thus the cost of this stage is O(

√
n/r1
√
nr1) = O(n

√
r1).

Stage 4 (Load a3): We pick a vertex v and λ many edges connecting v to A2. Thus the L-vertices at the
end of stage 4 are labeled by edges that are the union of two bipartite graphs: a complete bipartite graph
between A1, A2 of sizes r1, r2, and a bipartite graph between v and A2 of type {(1, λ)}, {(λ, 1), (r2 − λ, 0)}.
Flow goes uniformly to those L-vertices where v = a3 and the edge {a2, a3} is not loaded.
Cost: Again the amount of flow in a vertex with flow at the beginning of stage 4 is the same as at the
beginning of stage 3, as the flow out-degree in stage 3 was one and there was no merging of flow. Thus the
flow is still uniform. The out-degree of L-vertices is (n−r1−r2)

(
r2
λ

)
, and the flow out-degree is

(
r2−1
λ

)
. Thus

we can again apply Lemma 3.
The length of this stage is λ. At the beginning of stage 4 flow is present in those L-vertices where

a1 ∈ A1, a2 ∈ A2 and a3 is not loaded. Thus the vertex ratio is O((n/r1)(n/r2)). Finally, the degree ratio is
O(n). Thus the overall cost of this stage is

O

(√
n

r1

√
n

r2

√
nλ

)
= O

(
n3/2λ
√
r1r2

)
.

8



Stage 5 (Load {a2, a3}): We add one new edge between v and A2. Thus the L-vertices at the end of
this stage will be labeled by the union of edges in two bipartite graphs: a complete bipartite graph between
A1, A2 of sizes r1, r2, and the second between v and A2 of type {(1, λ+ 1)}, {(λ+ 1, 1), (r2−λ− 1, 0)}. Flow
goes uniformly along those L-edges where the edge added is {a2, a3}.
Cost: The flow is uniform at the beginning of this stage, as it was uniform at the beginning of stage 4, the
flow out-degree was constant in stage 4, and there was no merging of flow. Each L-vertex has out-degree
r2 − λ and the flow-outdegree is one. Thus we can again apply Lemma 3.

The length of this stage is one. The vertex ratio is O((n/r1)(n/r2)n) as flow is present in a constant
fraction of those L-vertices where a1 ∈ A1, a2 ∈ A2 and v = a3. The degree ratio is r2 − λ, as there are this
many possible edges to add and the flow uses one. Thus the overall cost of this stage is

O

(√
n

r1

√
n

r2

√
n
√
r2

)
= O

(
n3/2
√
r1

)
.

Stage 6 (Load {a1, a3}): We add one new edge between v and A1. Thus the L-vertices at the end of
this stage will be labeled by the union of three bipartite graphs between A1, A2 and v,A2 as before, and
additionally between v,A1 of type {(1, 1)}, {(1, 1), (r1 − 1, 0)}. Flow goes uniformly on those L-edges where
{a1, a3} is added.
Cost: Again flow is uniform as it was at the beginning of stage 5, the flow out-degree was constant and
there was no merging. Each L-vertex has out degree r1 and the flow out-degree is one. Thus we can again
apply Lemma 3.

The length of this stage is one. The vertex ratio is O((n/r1)(n/r2)n(r2/λ)) as flow is present in a constant
fraction of those L-vertices where a1 ∈ A1, a2 ∈ A2, v = a3 and {a2, a3} is present. The degree ratio is r1.
Thus the overall cost of this stage is

O

(√
n

r1

√
n

r2

√
n

√
r2
λ

√
r1

)
= O

(
n3/2√
λ

)
.

By choosing r1 = n4/7, r2 = n5/7, λ = n3/7 we can make all costs, and thus their sum, O(n9/7).

To quickly compute the stage costs, it is useful to associate to each stage a local cost and global cost. The
local cost is the product of the square root of the degree ratio and the length of a stage. The global cost is
the square root of the factor by which the stage increases the vertex ratio—we call this a global cost as it is
propagated from one stage to the next. Thus the square root of the vertex ratio at stage t will be given by
the product of the global costs of stages 1, . . . , t− 1. As the cost of each stage is the product of the square
root of the vertex ratio, square root of the degree ratio, and length, it can be computed by multiplying the
local cost of the stage with the product of the global costs of all previous stages.

Stage 1 2 3 4 5 6

Global cost 1
√
n/r1

√
n/r2

√
n

√
r2/λ

Local cost r1r2
√
nr2

√
nr1

√
nλ

√
r2

√
r1

Cost r1r2
√
nr2 n

√
r1 n3/2λ/

√
r1r2 n3/2/

√
r1 n3/2/

√
λ

Value n9/7 n17/14 n9/7 n9/7 n17/14 n9/7

4 An abstract language for learning graphs

In this section we develop a high-level language for designing algorithms to detect constant-sized subgraphs,
and more generally to compute functions f : [q]n×n → {0, 1} with constant-sized 1-certificate complexity.
This high-level language consists of commands like “load a vertex” or “load an edge” that makes the algorithm
easy to understand. Our main theorem, Theorem 8, compiles this high-level language into a learning graph
and bounds the complexity of the resulting quantum query algorithm. After the theorem is proven, we can
design quantum query algorithms using only the high-level language, without reference to learning graphs.
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This saves the algorithm designer from having to make many repetitive arguments as in Section 3, and also
allows computer search to find the best algorithm within our framework.

4.1 Special case: subgraph containment

We now give an overview of our algorithmic framework and its implementation in learning graphs. We first

use the framework for computing the function fH : [2](
n
2) → {0, 1}, which is by definition 1 if the undirected

n-vertex input graph contains a copy of some fixed k-vertex graph H = ([k], E(H)) as a subgraph. This
case contains all the essential ideas; after showing this, it will be easy to generalize the theorem in few more

steps to any function f : [q](
n
2) → {0, 1} or f : [q]n×n → {0, 1} with constant-sized 1-certificate complexity.

Fix a positive instance x, and vertices a1, . . . , ak ∈ [n] constituting a copy of H in x, that is, such
that x{ai,aj} = 1 for all {i, j} ∈ E(H). Vertices of the learning graph will be labeled by k-partite graphs
with color classes A1, . . . , Ak. The sets A1, . . . , Ak are allowed to overlap. Each L-vertex label will contain
an undirected bipartite graph G{i,j} = (Amin{i,j}, Amax{i,j}, E{i,j}) for every edge {i, j} ∈ E(H), where
E{i,j} ⊆ Amin{i,j} × Amax{i,j}. For {i, j} ∈ E(H), by {ai, aj} we mean (ai, aj) if i < j, and (aj , ai) if j < i.
For an edge {i, j} ∈ E(H), and u ∈ [n], the degree of u in Gij towards Aj is the number of vertices in Aj
connected to u if u ∈ Ai, and is 0 otherwise. The edges of these bipartite graphs define naturally the input
edges formally required in the definition of the learning graph: for u 6= v, both (u, v) and (v, u) define the
input edge {u, v}. We will disregard multiple input edges as well as self loops corresponding to edges (u, u).
Observe that various L-vertex labels may correspond to the same set of input edges. For the ease of notation
we will denote G{i,j} by both Gij and Gji. We will use similar convention for E{i,j} which will be denoted
by both Eij and Eji.

Our high-level language consists of three types of commands. The first is a setup command. This is
implemented by choosing sets A1, . . . , Ak ⊆ [n] of sizes r1, . . . , rk and bipartite graphs Gij between Ai and
Aj for all {i, j} ∈ E(H). Both the set sizes r1, . . . , rk and the average degree of vertices in the bipartite
graph between Ai and Aj are parameters of the algorithm. The degree parameter dij = dji represents the
average degree of vertices in the smaller of Ai, Aj towards the bigger one in Gij . It is defined in this fashion
so that it is always an integer and at least one—the average degree of the larger of Ai, Aj can be less than
one. Without loss of generality there is only one setup step and it happens at the beginning of the algorithm.

The other commands allowed are to load a vertex ai and to load an edge {ai, aj} corresponding to
{i, j} ∈ E(H) (this terminology was introduced by Belovs). There are two regimes for loading an edge. One
is the dense case, where all vertices in the graph Gij have a neighbor; the other is the sparse case, where
some vertices in the larger of Ai, Aj have no neighbors in the smaller. We need to separate these two cases
as they apparently have different costs (and cost analyses). The algorithm is defined by a choice of set sizes
and degree parameters, and a loading schedule giving the order in which the vertices and edges are loaded
and which loads all edges of H.

We now define the parameters specifying an algorithm more formally.

Definition 7 (Admissible parameters). Let H = ([k], E(H)) be a k-vertex graph, r1, . . . , rk ∈ [n] be set size
parameters, and dij ∈ [n] for {i, j} ∈ E(H) be degree parameters. Then {ri}, {dij} are admissible for H if

• 1 ≤ ri ≤ n/4 for all i ∈ [k],

• 1 ≤ dij ≤ max{ri, rj} for all {i, j} ∈ E(H),

• for all i there exists j such that {i, j} ∈ E(H) and dij(2rj + 1)/(2ri + 1) ≥ 1.

We give a brief explanation of the purpose of each of these conditions. We will encounter terms of the
form

(
n
ri

)
/
(
n−k
ri

)
that we wish to be O(1); this is ensured by the first condition. As dij represents the average

degree of the vertices in the smaller of Ai, Aj towards the larger, the second condition states that this degree
cannot be larger than the number of distinct possible neighbors. The third item ensures that the average
degree of vertices in Ai is at least one in the bipartite graph with some Aj .
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Definition 8 (Loading schedule). Let H = ([k], E(H)) be a k-vertex graph with m edges. A loading schedule
for H is a sequence S = s1s2 . . . sk+m whose elements si ∈ [k] or si ∈ E(H) are vertex labels or edge labels
of H such that an edge {i, j} only appears in S after i and j, and S contains all edges of H. Let VSt be the
set of vertices in S before position t and similarly ESt the set of edges in S before position t.

We can now state the main theorem of this section.

Theorem 8. Let H = ([k], E(H)) be a k-vertex graph. Let r1, . . . , rk, dij be admissible parameters for H,
and S be a loading schedule for H. Then the quantum query complexity of determining if an n-vertex graph
contains H as a subgraph is at most a constant times the maximum of the following quantities:

• Setup cost: ∑
{u,v}∈E(H)

min{ru, rv}duv,

• Cost of loading st = i: ∏
u∈VSt

√
n

ru

∏
{u,v}∈ESt

√
max{ru, rv}

duv

×√n
 ∑
j:{i,j}∈E(H)

ri≤rj

dij +
∑

j:{i,j}∈E(H)
ri>rj

rjdij
ri

 ,

• Cost of loading st = {i, j} in the dense case where (2 min{ri, rj}+ 1)dij ≥ (2 max{ri, rj}+ 1): ∏
u∈VSt

√
n

ru

∏
{u,v}∈ESt

√
max{ru, rv}

duv

max{ri, rj},

• Cost of loading st = {i, j} in the sparse case where (2 min{ri, rj}+ 1)dij < (2 max{ri, rj}+ 1): ∏
u∈VSt

√
n

ru

∏
{u,v}∈ESt

√
max{ru, rv}

duv

√rirj .
If {i, j} is loaded in the dense case we call it a type 1 edge, and if it loaded in the sparse case we call it

a type 2 edge. The costs of a stage given by Theorem 8 can again be understood more simply in terms of
local costs and global costs. We give the local and global cost for each stage in the table below.

Stage Global Cost Local Cost
Setup 1

∑
{u,v}∈H min{ru, rv}duv

Load vertex i
√
n/ri

√
n× total degree of i

Load a type 1 edge {i, j}
√

max{ri, rj}/dij max{ri, rj}
Load a type 2 edge {i, j}

√
max{ri, rj}/dij

√
rirj

Proof. We show the theorem by giving a learning graph of the stated complexity. Vertices of the learning
graph will be labeled by k-partite graphs with color classes A1, . . . , Ak of cardinality (of order) r1, . . . , rk ∈ [n].
The parameter dij ≥ 1 is the average degree of vertices in the smaller of Ai, Aj towards the bigger in the
bipartite graph Gij .

The bipartite graph Gij , for each edge {i, j} ∈ E(H), will be specified by its type, that is by its degree
sequences as given in Definition 2.

We first need to modify the set size parameters {ri} to satisfy a technical condition. Let ri1 ≤ · · · ≤ rik
be a listing in increasing order. We set r′i1 = ri1 and r′it = Θ(rit) such that (2r′it + 1)/(2r′it−1

+ 1) is an odd
integer. As a consequence, (2 max{r′i, r′j}+ 1)/(2 min{r′i, r′j}+ 1) is an odd integer, for every i 6= j. We now
suppose this is done and drop the primes.

Throughout the construction of the learning graph we will deal with two cases for the bipartite graph
between Ai and Aj , depending on the size and degree parameters.
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�ij vertices

degree dij � 1

degree dij

degree �ij � 1

degree �ij

Ai : 2ri vertices
Aj : 2rj vertices

2ri � �ij vertices

2rj � dij vertices

degree dij degree �ij

dij vertices

1 new vertex

degree dij

dij vertices

with degree dij

with degree �ij

with degree dij � 1
with degree �ij � 1

Aj : 2rj vertices
Ai with 1 new vertex ! 2ri + 1 vertices

2rj � dij vertices

2ri � �ij vertices

�ij vertices

1 new vertex

degree �ij

Ai : 2ri + 1 vertices
Aj with 1 new vertex ! 2rj + 1 vertices

2ri � �ij + 1 vertices

with degree �ij

2rj vertices

with degree dij � 1
�ij vertices

with degree dij

Ai : 2ri + 1 vertices
Aj : 2rj + 1 verticesall of degree dij

all of degree �ij

per selected vertex

ri selected vertices

⇡ rj/ri new edges

1 neighbor ⇡ rj/ri vertices

Ai : 2ri + 1 vertices
Aj : 2rj + 1 vertices

with degree dij

with degree �ij

with degree �ij + 1

⇡ rj/ri new edges

⇡ rj vertices

ri vertices

ri + 1 vertices

⇡ rj + 1 vertices

1 fresh

ri disjoint neighborhoods

with degree ⇡ dij + rj/ri
neighborhood

Figure 2: Example of a part of learning graph corresponding to Case 1 and restricted to the bipartite graph
between Ai and Aj , where ri < rj . Observe that λij ≈ ri

rj
dij . The loading schedule is ’setup’, ’load i’, ’load

j’ and ’load {i, j}’.
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degree dij

degree 1

degree 0

Ai : 2ri vertices
Aj : 2rj vertices

degree dij

2(rj � ridij) vertices

2ridij vertices

1 new vertex

degree dij

with degree 1

with degree 0

Aj : 2rj vertices
Ai with 1 new vertex ! 2ri + 1 vertices

2(rj � ridij) vertices
2ri vertices

with degree dij

(2ri + 1)dij vertices
with degree 1

with degree 0

1 new vertex
with degree 0

Ai : 2ri + 1 vertices
Aj with 1 new vertex ! 2rj + 1 verticesall of degree dij

with degree 1

with degree 0

Aj : 2rj + 1 vertices

ri vertices

ri vertex-disjoint new edges

Ai : 2ri + 1 vertices
all of degree dij

with degree 1

with degree 0

ri vertices
with degree dij + 1

with degree dij

ri vertices

Ai : 2ri + 1 vertices

1 new edge

Aj : 2rj + 1 vertices

(2ri + 1)dij vertices

(2ri + 1)dij vertices

2rj � (2ri + 1)dij vertices

2rj + 1 � (2ri + 1)dij vertices

(2ri + 1)dij + ri vertices

2rj + 1 � (2ri + 1)dij � ri vertices

Figure 3: Similar to Figure 2, but for Case 2.
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• Case 1 is where (2 min{ri, rj} + 1)dij ≥ 2 max{ri, rj} + 1, which means that there are enough edges
from the smaller of Ai, Aj to cover the larger. We will say that the parameters for {i, j} are of type 1.
In this case, we take d′ij = Θ(dij) to be such that

2d′ij + 1 = (2λij + 1)
2 max{ri, rj}+ 1

2 min{ri, rj}+ 1
(2)

for some integer λij . This can be done as (2 max{ri, rj} + 1)/(2 min{ri, rj} + 1) is an odd integer.
In our construction, λij will be the average degree of the vertices in the larger of Ai, Aj towards the
smaller, which we want to be integer. We now consider this done and drop the primes.

• Case 2 is where (2 min{ri, rj} + 1)dij < 2 max{ri, rj} + 1. We will say that the parameters for {i, j}
are of type 2. In this case, all degrees of vertices in the larger of Ai, Aj towards the smaller will be
either zero or one.

Now we are ready to describe the learning graph. Figures 2 and 3 illustrate the evolution of a learning
graph for a subsequence (i, j, {i, j}) of some loading schedule, that is the sequence of instructions ‘setup’,
‘load i’, ‘load j’ and ‘load {i, j}’. The figures only represent the added edges between Ai and Aj , where
ri < rj . Figure 2 corresponds to Case 1, and Figure 3 to Case 2.

Recall that for every positive instance x, we fixed a1, . . . , ak ∈ [n] be such that x{au,av} = 1 for all
{u, v} ∈ E(H). During the construction we will specify for every edge {u, v} ∈ E(H), and for every stage
number t, the correct degree cd(u, v, t) which is the degree of au in Gij towards av in each L-vertex of Vt+1

with positive flow.

Stage 0 (Setup): For each edge {i, j} ∈ E(H) we setup a bipartite graph between Ai and Aj . The type of
the bipartite graph depends on the type of the parameters for {i, j}. Let ` = min{ri, rj} and g = max{ri, rj}.

• Case 1: Solving for λij in Equation (2) we get λij = ((2` + 1)dij + ` − g)/(2g + 1). Intuitively, dij
represents the average degree of vertices in the smaller of Ai, Aj and λij the average degree in the
larger. Formally, the type of bipartite graph between Ai, Aj , with the listing of degrees for the smaller
set given first, is ({(2`− λij , dij), (λij , dij − 1)}, {(2g − dij , λij), (dij , λij − 1)}).

• Case 2: In this case the type of bipartite graph between Ai and Aj , with the listing of degrees for the
smaller set given first, is ({(2`, dij)}, {(2`dij , 1), (2g − 2`dij , 0)}).

The L-vertices at the end of stage 0 will be labeled by (possibly overlapping) sets A1, . . . , Ak of sizes r1, . . . , rk
and edges corresponding to a graph of the appropriate type between Ai and Aj for all {i, j} ∈ E(H). Flow
goes uniformly to those L-vertices where none of a1, . . . , ak are in any of the sets A1, . . . , Ak. For all
{u, v} ∈ E(H), we set cd(u, v, 0) = 0.

Stage t when st = i: In this stage we load ai. The L-edges in this stage select a vertex v and add it to
Ai. For all j such that {i, j} ∈ E(H) we add the following edges:

• Case 1: Say the parameters for {i, j} are of type 1. If ri ≤ rj , then v is connected to those vertices of
degree λij − 1 in Aj , and we set cd(i, j, t) = dij . Otherwise v is connected to those vertices of degree
dij − 1 in Aj , and we set cd(i, j, t) = λij .

• Case 2: Say the parameters for {i, j} are of type 2. If ri ≤ rj then v is connected to dij vertices of
degree 0 in Aj , and we set cd(i, j, t) = dij . Else no edges are added between v and Aj , and we set
cd(i, j, t) = 0.

For all other (u, v), we set cd(u, v, t) = cd(u, v, t−1). Flow goes uniformly on those L-edges where v = ai.
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Stage t when st = {i, j}: In this stage we load {ai, aj}. Again we break down according to the type of
the parameters for {i, j}. Let ` = min{ri, rj} and g = max{ri, rj}.

• Case 1: As both ai and aj have been loaded, between Ai and Aj there is a bipartite graph of type
({(2` + 1, dij)}, {(2g + 1, λij)}), with the degree listing of the smaller set coming first. If we simply
added {ai, aj} at this step, ai and aj would be uniquely identifiable by their degree and blow up the
complexity of later stages.

To combat this, loading {ai, aj} will consist of two substages t.I and t.II. The first substage is a hiding
step, done to reduce the complexity of having {ai, aj} loaded. Then we actually load {ai, aj}.
Substage t.I: Let h = (2g + 1)/(2` + 1). We select ` vertices in the smaller of Ai, Aj , and to each of
these add h many neighbors. All neighbors chosen in this stage are distinct. Thus at the end of this
stage the type of bipartite graph between Ai and Aj is ({(`, dij + h), (` + 1, dij)}, {(`(2g + 1)/(2` +
1), λij + 1), ((2g+ 1)(1− `/(2`+ 1)), λij)}). Flow goes uniformly along those L-edges where neither ai
nor aj receive any new edges. For all {u, v} ∈ E(H), we set cd(u, v, t+ 1) = cd(u, v, t).

Substage t.II: The L-edges in this substage select a vertex u in the smaller of Ai, Aj of degree dij and
add h many neighbors of degree λij . Flow goes uniformly along those L-edges where u ∈ {ai, aj} and
{ai, aj} is one of the edges added. Let s be the index of the smaller of the sets Ai, Aj , and let b the
other index. We set cd(s, b, t+ 1) = dij + h, cd(b, s, t+ 1) = λij + 1 and cd(u, v, t+ 1) = cd(u, v, t) for
{u, v} 6= {i, j}.

• Case 2: As both ai and aj have been loaded, there is a bipartite graph of type ({(2`+ 1, dij)}, {((2`+
1)dij , 1), (2g + 1− (2`+ 1)dij , 0)}). We again first do a hiding step, and then add the edge {ai, aj}.
Substage t.I: We select ` vertices in the smaller of Ai, Aj and to each add a single edge to a vertex of
degree zero in the larger of Ai, Aj . Flow goes uniformly along those L-edges where no edges adjacent
to ai, aj are added. For all {u, v} ∈ E(H), we set cd(u, v, t+ 1) = cd(u, v, t).

Substage t.II: A single edge is added between a vertex in the smaller of Ai, Aj of degree dij and
a vertex in the larger of Ai, Aj of degree zero. Flow goes along those L-edges where {ai, aj} is
added. Let again s be the index of the smaller of the sets Ai, Aj , and let b the other index. We
set cd(s, b, t+ 1) = dij + 1, cd(b, s, t+ 1) = 1 and cd(u, v, t+ 1) = cd(u, v, t) for {u, v} 6= {i, j}.

This completes the description of the learning graph.

Complexity analysis We will use Lemma 4 to evaluate the complexity of each stage. First we need to
establish the hypothesis of this lemma, which we will do using Lemma 5 and Lemma 6. Remember that
given σ ∈ Sn, we defined and denoted by σ the permutation over [n] × [n] such that σ(i, j) = (σ(i), σ(j)).
First of all let us observe that every σ ∈ Sn is in the automorphism group of the function we are computing,
since it maps a 1-certificate into a 1-certificate. As the flow only depends on the 1-certificate graph, this
implies that Sn acts transitively on the flows and therefore we obtain the conclusion of Lemma 5.

Let Vt stand for the L-vertices at the beginning of stage t. For a positive input x, and for an L-
vertex P ∈ Vt, we will denote the incoming flow to P on x by px(P ) and the number of outgoing edges
from P with positive flow on x by g+x (P ). For an L-vertex R ∈ Vt−1 we will denote by g−x,R(P ) number
of incoming edges to P from L-vertices of the isomorphism type of R with positive flow on x, that is
g−x,R(P ) = |{τ ∈ Sn : px(τ(R), P ) 6= 0}|. The crucial features of our learning graph construction are the
following: at every stage, for every L-vertex P and every σ ∈ Sn, the L-vertex σ(P ) is also present. The
outgoing flow from an L-vertex is always uniformly distributed among the edges getting flow. The flow
depends only on the vertices in the input containing a copy of the graph H, and therefore the values g+x (P )
and g−x,R(P ), for px(P ) non-zero, depend only on the isomorphism types of P and R. Mathematically, this
last property translates to: for all t, for all P ∈ Vt, for all R ∈ Vt−1, for all positive inputs x and y, for all
σ ∈ Sn, we have

[px(P ) 6= 0 and py(σ(P )) 6= 0] =⇒ [g+x (P ) = g+y (σ(P )) and g−x,R(P ) = g−y,R(σ(P ))]. (3)
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which is exactly the hypothesis of Lemma 6.
Now we have established the hypotheses of Lemma 4 and turn to evaluating the bound given there. The

main task is evaluating the maximum vertex ratio of each stage. The general way we will do this is to
consider an arbitrary vertex P of a stage. We then lower bound the probability that σ(P ) is in the flow for
a positive input x and a random permutation σ ∈ Sn, without using any particulars of P . This will then
upper bound the maximum vertex ratio. We use the notation P ∈ Fx to denote that L-vertex P has at least
one incoming edge with flow on input x.

Lemma 9 (Maximum vertex ratio). For any L-vertex P ∈ Vt+1 and any positive input x

Pr
σ

[σ(P ) ∈ Fx] = Ω

 ∏
j∈VSt

rj
n

∏
(u,v)∈ESt

duv
max{ru, rv}

 .

Proof. We claim that an L-vertex P in Vt+1, that is at the end of stage t, has flow if and only if

∀i ∈ VSt, ∀{i, j} ∈ ESt, we have ai ∈ Ai and {ai, aj} ∈ Eij , (4)

∀i ∈ [k] \VSt, ∀{i, j} ∈ H(E) \ ESt, we have ai 6∈ Ai and {ai, aj} 6∈ Eij , (5)

∀{i, j} ∈ ESt, the degree of ai in Gij towards Aj is cd(i, j, t). (6)

The only if part of the claim is obvious by the construction of the learning graph. The if part can be proven
by induction on t. For t = 0, the first half (5) is exactly the one which defines the flow for L-vertices in V1.

For the inductive step let us suppose first that st = i. Consider the label P ′ by dropping the vertex ai
from Ai. Then in P ′ every bipartite graph is of appropriate type for level t because of (6), and therefore
P ′ ∈ Vt. It is easy to check that P ′ also satisfies all three conditions, (for (6) we also have to use the second
half of (5): {ai, aj} 6∈ Eij), and therefore has positive flow. Since P ′ is a predecessor of P is the learning
graph, P has also positive flow.

Now let us suppose that st = {i, j}. In P the edge set Eij can be decomposed into the disjoint union
of E1 ∪ E2, where E1 a bipartite graph of type ({(2` + 1, dij)}, {(2g + 1, λij)}) and E2 is of type ({(` +
1, h), (`, 0}, {((`+1)h, 1), (2g+1− (`+1)h, 0)}), and (6) implies that {ai, aj} ∈ E2. Consider the label P ′ by
dropping the edges of E2 from Eij . Again, P ′ satisfies the inductive hypotheses, and therefore gets positive
flow, which implies the same for P .

Suppose now that the L-vertex P is labeled by sets A1, . . . , Ak (some may be empty) and let the set of
edges between Ai and Aj be Eij . We want to lower bound the probability that σ(P ) ∈ Fx, meaning that
σ(P ) satisfies the above three conditions. Item (5) is always satisfied with constant probability; moreover,
conditioned on item (5) the probability of the other events does not decrease. Thus we take this constant
factor loss and focus on the items (4), (6).

We also claim that, conditioned on item (4) holding, item (6) holds with constant probability. This can
be seen as in the hiding step, in both case 1 and case 2, the probability that ai, aj have the correct degree
given that they are loaded is at least 1/4. In the step of loading an edge, again in case 1 half the vertices
on the left and right hand sides have the correct degree and so this probability is again 1/4; in case 2, given
that the edge is loaded, whichever of ai, aj is in the larger set will automatically have the correct degree,
and the other one will have correct degree with probability 1/2. Now we take this constant factor loss to
obtain that Prσ[σ(P ) ∈ Fx] is lower bounded by a constant factor times the probability that item (4) holds.

The events in the first condition are independent, except that for the edge {ai, aj} to be loaded the
vertices ai and aj have to be also loaded. Thus we can lower bound the probability it is satisfied by

Pr
σ

[σ(P ) ∈ Fx] = Ω
( ∏
i∈V St

Pr
σ

[ai ∈ σ(Ai)]×
∏

(u,v)∈ESt

Pr
σ

[{ai, aj} ∈ σ(Eij)|ai ∈ σ(Ai), aj ∈ σ(Aj)]
)

Now Prσ[ai ∈ σ(Ai)] = Ω(ri/n) as this fraction of permutations will put ai into a set of size ri. For the
edges we use the following lemma.
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Lemma 10. Let Y1, Y2 ⊆ [n] be of size `, g respectively, and let (y1, y2) ∈ Y1×Y2. Let K be a bipartite graph
between Y1 and Y2 of type {(`, d)}, {(g, `d/g)}. Then Prσ[{y1, y2} ∈ σ(K) = d/g.

Proof. Because of symmetry, this probability does not depend on the choice of {y1, y2}; denote it by p. Let
K1, . . . ,Kc be an enumeration of all bipartite graphs isomorphic to K. We will count in two different ways
the cardinality χ of the set {(e, h) : e ∈ Kh}. Every Kh contains `d edges, therefore χ = c`d. On the other
hand, every edge appears in pc graphs, therefore χ = `gpc, and thus p = d/g.

In our case, the graph Gij as in the hypothesis of the lemma plus some additional edges. By monotonicity,
it follows that

Pr
σ

[{ai, aj} ∈ σ(Eij)|ai ∈ σ(Ai), aj ∈ σ(Aj)] = Ω(dij/max{ri, rj}).

This analysis is common to all the stages. Now we go through each type of stage in turn to evaluate the
stage specific length and degree ratio.

Setup Cost: The length of this stage is upper bounded by∑
(i,j)∈E(H)

min{ri, rj}dij .

We can upper bound the degree ratio by

∏
i∈[k]

(
n
2ri

)(
n−k
2ri

) ≤ 2k = O(1)

as ri < n/4.

Stage t when st = i: In a stage loading a vertex the degree ratio is O(n) as there are n − ri possible
vertices to add yet only one is used by the flow. The length of this stage is the total degree which is upper
bounded by ∑

j:{i,j}∈E(H)
ri≤rj

dij +
∑

j:{i,j}∈E(H)
ri>rj

rjdij
ri

.

Stage t when st = {i, j}: Technically we should analyze the complexity of the two substages as two
distinct stages. However, as we will see, in both cases the degree ratio in the first substage is O(1), and
therefore the local cost of this stage is just the maximum of the local cost of the two substages.

Stage t.I: In Case 1, the length of this stage is O(max{ri, rj}) and the degree ratio is constant. In Case 2,
the length of this stage is O(min{ri, rj}) and the degree ratio is constant.

Stage t.II: In Case 1, the length is h = O(max{ri, rj}/min{ri, rj}). The degree ratio is of order `
(g
h)

(g−1
h−1)

=

O(`2). Thus the square root of the degree ratio times the length is of order max{ri, rj}.
In Case 2, the length is one and the degree ratio is O(rirj) as there are O(rirj) many possible edges that

could be added and the flow uses one.
Thus in Case 1 in both substages the product of the length and square root of degree ratio is

O(max{ri, rj}). In Case 2, substage II dominates the complexity where the product of the length and
square root of degree ratio is O(

√
rirj).
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4.2 Extensions and basic properties

We now extend Theorem 8 to the general case of computing a function f : [q]n×n → {0, 1} with constant-
sized 1-certificates. A certificate graph for such a function will be a directed graph possibly with self-loops.
Between i and j there can be bidirectional edges, that is both (i, j) and (j, i) present in the certificate graph,
but there will not be multiple edges between i and j, as there are no repetitions of indices in a certificate.

We start off by modifying the algorithm of Theorem 8 to work for detecting directed graphs with possible
self-loops. To do this, the following transformation will be useful.

Definition 9. Let H be a directed graph, possibly with self-loops. The undirected version U(H) of H is a
simple undirected graph formed by eliminating any self-loops in H, and making all edges of H undirected and
single.

Lemma 11. Let H be a directed k-vertex graph, possibly with self loops. Then the quantum query complexity
of detecting if an n-vertex directed graph G contains H as a subgraph is at most a constant times the
complexity given in Theorem 8 of detecting U(H) in an n-vertex undirected graph.

Proof. Let H be a directed k-vertex graph (possibly with self-loops) and H ′ = U(H) be its undirected
version. Let r1, . . . , rk, dij be admissible parameters for H ′, and S a loading schedule for H ′. Fix a directed
n-vertex graph G containing H as a subgraph. Let a1, . . . , ak be vertices of G such that (ai, aj) ∈ E(G) for
(i, j) ∈ E(H). We convert the algorithm for loading H ′ in Theorem 8 into one for loading H of the same
complexity.

The setup step for H ′ is modified as follows. In the bipartite graph between Ai and Aj , if both
(i, j), (j, i) ∈ E(H) then all edges between Ai and Aj are directed in both directions; otherwise, if
(i, j) ∈ E(H) or (j, i) ∈ E(H) they are directed from Ai to Aj or vice versa, respectively. For every
self-loop in H, say (i, i) ∈ E(H), we add self-loops to the vertices in Ai. Note that these modifications at
most double the number of edges added, and hence the cost, of the setup step.

Loading a vertex: When loading ai we connect it as before, now orienting the edges according to (i, j)
or (j, i) in E(H), or both. If (i, i) ∈ E(H), then we add a self loop to ai. The only change in the complexity
of this stage is again the length, which at most doubles. Notice that in the case of a self-loop we have also
already loaded the edge (ai, ai). We do not incur an extra cost for loading this edge, however, as the self
loop is loaded if and only if the vertex is.

Loading an edge: Say that we are at the stage where st = {i, j} ∈ E(H ′). If exactly one of (i, j), (j, i) ∈
E(H) then this step happens exactly as before, except that the bipartite graph has edges directed from
Ai to Aj or vice versa, respectively. If both (i, j) and (j, i) ∈ E(H), then in this step all edges added are
bidirectional. This again at most doubles the length, and does not affect the degree flow probability as
(ai, aj) is loaded if and only if (aj , ai) is loaded as all edges are bidirectional.

Lemma 12. Let f : [q]n×n → {0, 1} be a function such that all minimal 1-certificate graphs are isomorphic
to a directed k-vertex graph H. Then the quantum query complexity of computing f is at most the complexity
of detecting H in an n-vertex graph, as given by Lemma 11.

Proof. We will show the theorem by giving a learning graph algorithm. Let G = (V, E , S, w, {py}) be the
learning graph from Lemma 11 for H. All of V, E , S, w will remain the same in our learning graph G′ for f .
We now describe the definition of the flows in G′.

Consider a positive input x to f , and let α be a minimal 1-certificate for x such that the certificate graph
Hα is isomorphic to H. The flow px will be defined as the flow for Hα (thought of as an n-vertex graph, thus
with n− k isolated vertices) in G, the learning graph for detecting H. This latter flow has the property that
the label of every terminal of flow contains E(Hα) and thus will also contain the index set of a 1-certificate
for x.

The positive complexity of the learning graph for f will be the same as that for detecting H and the
negative complexity will be at most that as in the learning graph for detecting H, thus we conclude that the
complexity of computing f is at most that for detecting H as given in Lemma 11.
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Theorem 13. Say that the 1-certificate complexity of f : [q]n×n → {0, 1} is at most a constant m, and
let H1, . . . ,Hc be the set of graphs (on at most m edges) for which there is some positive input x such that
Hi is a minimal 1-certificate graph for x. Then the quantum query complexity of computing f is at most a
constant times the maximum of the complexities of detecting Hi for i = 1, . . . , c as given by Lemma 11.

Proof. Consider learning graphs G1, . . . ,Gc given by Lemma 11 for detecting H1, . . . ,Hc respectively. Further
suppose these learning graphs are normalized such that their negative and positive complexities are equal.

We construct a learning graph G for f where the edges and vertices are given by connecting a new root
node by an edge of weight one to the root nodes of each of G1, . . . ,Gc. Thus the negative complexity of G is
at most c(1 + maxi C0(Gi).

Now we construct the flow for a positive input x. Let α be a minimal 1-certificate for x such that the
certificate graph Hα is isomorphic to Hi, for some i. Then the flow on x is first directed entirely to the
root node of Gi. It is then defined within Gi as in Lemma 12. Thus the positive complexity of G is at most
c(1 + maxi C1(Gi)).

To make Theorem 8 and Lemma 11 easier to apply, here we establish some basic intuitive properties
about the complexity of the algorithm for different subgraphs. Namely, we show that if H ′ is a subgraph
of H then the complexity given by Lemma 11 for detecting H ′ is at most that of H. We show a similar
statement when H ′ is a vertex contraction of H.

Lemma 14. Let H be a directed k-vertex graph (possibly with self-loops) and H ′ a subgraph of H. Then the
quantum query complexity of determining if an n-vertex graph G contains H ′ is at most that of determining
if G contains H from Lemma 11.

Proof. Assume that the vertices of H are labeled from [k] and that H ′ is labeled such (i, j) ∈ E(H) for all
(i, j) ∈ E(H ′).

The learning graph we use for detecting H ′ is the same as that for H. For a graph G containing a H ′ as
a subgraph, let a1, . . . , ak be such that (ai, aj) ∈ G for all (i, j) ∈ H ′. (If t is an isolated vertex in H ′, then
at can be chosen arbitrarily). The flow for G is defined in the same way as in the learning graph for H. Note
that once a1, . . . , ak have been identified, the definition of flow depends only edge slots—not on edges—thus
this definition remains valid for H ′. Furthermore all terminals of flow are labeled by edge slots (ai, aj) for
all (i, j) ∈ H, and so also contain the edge slots for H ′. Thus this is a valid flow for detecting H ′. As the
learning graph and flow are the same, the complexity will be as that given in Lemma 11.

Lemma 15. Let H be a k-vertex graph and H ′ a vertex contraction of H. Then the quantum query complexity
of detecting H ′ is at most that of detecting H given in Lemma 11.

Proof. Again we assume that the vertices of H are labeled from [k]. The key point is the following: if H ′ is a
vertex contraction of H, then there are z1, . . . , zk ∈ [k] (not necessarily distinct) such that (zi, zj) ∈ E(H ′) if
and only if (i, j) ∈ E(H). The learning graph for H ′ will be the same as that for H except for the flows. For
a graph G containing H ′, we choose vertices a1, . . . , ak (not necessarily distinct) such that if (zi, zj) ∈ E(H ′)
then (ai, aj) ∈ E(G). As (zi, zj) ∈ E(H ′) if and only if (i, j) ∈ E(H), we can define the flow as in Lemma 11
for a1, . . . , ak to load a copy of H ′. (Note that there is no restriction in the proof of that theorem that the
sets A1, . . . , Ak be distinct). This gives an algorithm for detecting H ′ with complexity at most that given
by Lemma 11 for detecting H.

5 Associativity testing

Consider an operation ◦ : S×S → S and let n = |S|. We wish to determine if ◦ is associative on S, meaning
that a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ S. We are given black box access to ◦, that is, we can make queries
of the form (a, b) and receive the answer a ◦ b.

Theorem 16. Let S be a set of size n and ◦ : S × S → S be an operation that can be accessed in black-box
fashion by queries (a, b) returning a ◦ b. There is a bounded-error quantum query algorithm to determine if
(◦, S) is associative making O(n10/7) queries.
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a b cb � c a � bb � ca � b (a � b) � ca � (b � c)

Certificate () a � (b � c) 6= (a � b) � c

a1 a2 a3 a4 a5a2 � a1 a2 � a3 a3 � a4 a5 � a4

= a1= a5

a1 a2 a3 a4 a5

a1

a3

a4a2 = a5

1 2 3 4 5

Certificate () (a2 � a3 = a5, a3 � a4 = a1 and a2 � a1 6= a5 � a4)

Figure 4: The 5-vertex certificate graph for associativity. Both pictures represent the same graph certificate
H, where the second one has been labelled according to the notations of our abstract language.

Proof. If ◦ is not associative, then there is a triple a2, a3, a4 such that a2 ◦ (a3 ◦ a4) 6= (a2 ◦ a3) ◦ a4. A
certificate to the non-associativity of ◦ is given by a3 ◦ a4 = a1, a2 ◦ a1, a2 ◦ a3 = a5, and a5 ◦ a4 such that
a2 ◦ a1 6= a5 ◦ a4 (see Figure 4). Note that not all of a1, . . . , a5 need to be distinct.

Let H be a directed graph on 5 vertices with directed edges (2, 1), (2, 3), (3, 4), (5, 4). Each non-associative
input has a certificate graph either isomorphic to H or a vertex contraction of H, in the case that not all of
a1, . . . , a5 are distinct. By Lemma 15, the complexity of a detecting a vertex contraction of H is dominated
by that of detecting H, and so by Theorem 13 it suffices to show the theorem for H.

We use the algorithmic framework of Theorem 8 to load the graph H. Let r1 = n/10, r2 = n4/7, r3 =
n6/7, r4 = n5/7, r5 = 1 and d21 = n6/7, d23 = n6/7, d34 = n5/7, d54 = 1. Here dij indicates the average
degree of vertices in the smaller of Ai, Aj for edges directed from Ai to Aj . It can be checked that this
is an admissible set of parameters. Note that as r5d54 << r4, loading a5 ◦ a4 will be done in the sparse
regime. We use the loading schedule S = [1, 2, 4, 3, (2, 1), (2, 3), (3, 4), 5, (5, 4)]. The setup cost becomes
r2d21 + r2d23 + r4d34 + r5d54 = n10/7, and the costs of loading the vertices and edges are all bounded by
n10/7 as given in the following tables.

Stage load a1 load a2 load a4 load a3
Global cost

√
n/r1

√
n/r2

√
n/r4

√
n/r3

Local cost
√
nr2d21/r1

√
n(d21 + d23)

√
n(d34 + r5d54/r4)

√
n(r4d34/r3 + r2d23/r3)

Cost
√
nr2d21/r1

n√
r1

(d21 + d23) n3/2
√
r1r2

(d34 + r5d54/r4) n2
√
r1r2r4

(r4d34/r3 + r2d23/r3)

Value n13/14 n19/14 n10/7 n10/7

Stage load a2 ◦ a1 load a2 ◦ a3 load a3 ◦ a4
Global cost

√
r1/d21

√
r3/d23

√
r3/d34

Local cost r1 r3 r3

Cost n2
√
r2r3r4

√
r1

n2
√
r2r4d21

√
r1r3

n2
√
r2r4d21d23

r3

Value n10/7 n19/14 n19/14

Stage load a5 load a5 ◦ a4
Global cost

√
n/r5

Local cost
√
nd54

√
r4r5

Cost n5/2
√
r2r4d21d23d34

√
r3d54

n5/2
√
r2d21d23d34

√
r3

Value n15/14 n10/7

The algorithms for finding k-vertex subgraphs given in [13, 9] have complexity O(n1.48) for finding a
4-path, but it was not realized there that these algorithms apply to a much broader class of functions like
associativity. The key property that is used for this application is that in the basic learning graph model
the complexity depends only on the index sets of 1-certificates and not on the underlying alphabet. This
property was previously observed by Mario Szegedy in the context of limitations of the basic learning graph
model [8]. He observed that the basic learning graph complexity of the threshold-2 function is Θ(n2/3),
rather than the true value Θ(

√
n), as threshold-2 and element distinctness have the same 1-certificate index

sets.
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