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Abstract

The computation of the diameter is one of the most central problems in distributed computation.
In the standard CONGEST model, in which two adjacent nodes can exchange O(log n) bits per
round (here n denotes the number of nodes of the network), it is known that exact computation
of the diameter requires Ω̃(n) rounds, even in networks with constant diameter. In this paper we
investigate quantum distributed algorithms for this problem in the quantum CONGEST model, where
two adjacent nodes can exchange O(log n) quantum bits per round. Our main result is a Õ(

√
nD)-

round quantum distributed algorithm for exact diameter computation, where D denotes the diameter.
This shows a separation between the computational power of quantum and classical algorithms in the
CONGEST model. We also show an unconditional lower bound Ω̃(

√
n) on the round complexity of

any quantum algorithm computing the diameter, and furthermore show a tight lower bound Ω̃(
√
nD)

for any distributed quantum algorithm in which each node can use only poly(log n) quantum bits of
memory.

1 Introduction

Diameter computation in CONGEST networks. The computation of the diameter is one of the most
fundamental problems in distributed computing. In CONGEST networks, in which communication be-
tween nodes occurs with round-based synchrony and each channel has only O(log n)-bit bandwidth,
where n denotes the number of nodes of the network, the diameter can be computed in O(n) rounds
[HW12, PRT12]. A matching lower bound Ω̃(n) has been first shown by Frischknecht et al. [FHW12],1

which also holds for sparse networks [ACHK16] and even for deciding whether the network has diame-
ter 2 or diameter 3 [HW12]. The latter result immediately implies (see also [ACHK16, BK17]) that any
distributed algorithm that computes a (3/2 − ε)-approximation of the diameter, for any constant ε > 0,
requires Ω̃(n) rounds.

If larger approximation ratios are allowed, however, sublinear-time2 approximation algorithms can be
constructed. First note that a 2-approximation of the diameter can trivially be computed inO(D) rounds,
where D denotes the diameter of the graph, by computing the eccentricity of any node. Much more
interestingly, Lenzen and Peleg constructed a O(

√
n log n + D)-round 3/2-approximation algorithm

[LP13], which was improved by Holzer et al. to O(
√
n log n+D) rounds [HPRW14].

Quantum distributed computing. While it is well known that quantum communication can offer sig-
nificant advantages over classical communication in several settings such as two-party communication
complexity (see, e.g., [deW02, BT08, DP08]), there are relatively few results directly relevant to dis-
tributed network computation. One first evidence of the potential of quantum distributed computing was

1In this paper the notation Õ(·) suppresses poly(logn) factors, and the notation Ω̃(·) suppresses 1
poly(logn)

factors.
2As usual when discussing algorithms in the CONGEST model, the time complexity of an algorithm refers to its round

complexity. A sublinear-time algorithm means a O(n1−δ)-round algorithm for some constant δ > 0.



Problem Classical Quantum

Exact computation O(n) [HW12, PRT12] O(
√
nD) Th. 1

Exact computation Ω̃(n) [FHW12]
Ω̃(

√
n+D) Th. 2

Ω̃(
√
nD/s+D) Th. 3

3/2-approximation Õ(
√
n+D) [LP13, HPRW14] Õ( 3

√
nD +D) Th. 4

(3/2− ε)-approximation Ω̃(n) [HW12, ACHK16, BK17] Ω̃(
√
n+D) Th. 2

Table 1: Our results on the quantum round complexity of computing/approximating the diameter, and
the corresponding known classical results. In this table n denotes the number of nodes in the network,
D denotes the diameter and s denotes the quantum memory used by each node.

the design of exact quantum protocols for leader election [TKM12]. Gavoille et al. [GKM09] then con-
sidered quantum distributed computing in the LOCAL model, and showed that for several fundamental
problems, allowing quantum communication does not lead to any significant advantage. The power of
distributed network computation in the CONGEST model has recently been investigated by Elkin et
al. [EKNP14]. In this model the nodes can use quantum processing and communicate using quantum
bits (qubits): each edge of the network corresponds to a quantum channel (e.g., an optical fiber if qubits
are implemented using photons) of bandwidth O(log n) qubits. The main conclusions reached in that
paper were that for many fundamental problems in distributed computing, such as computing minimum
spanning trees or minimum cuts, quantum communication does not, again, offer significant advantages
over classical communication. The main technical contribution of [EKNP14] was the introduction of
techniques to prove lower bound for quantum distributed computation, which is significantly more chal-
lenging than proving lower bounds in the classical setting due to several specific properties of quantum
information, such as quantum non-locality and the impossibility of “copying” quantum information. A
pressing open question is to understand for which important problems in distributed computing quantum
communication can help.

Our results. In this work we consider quantum distributed network computation in the CONGEST
model, and especially investigate the complexity of computing the diameter. Our main contributions
are for the exact computation of the diameter. We present the first quantum distributed algorithm that
overcomes classical algorithms for this task:

Theorem 1. There exists a Õ(
√
nD)-round quantum distributed algorithm, in which each node uses

O((log n)2) qubits of memory, that computes with probability at least 1− 1/poly(n) the diameter of the
network, where n denotes the number of nodes of the network and D denotes the diameter.

Theorem 1 shows in particular that if the diameter is small (constant or at most polylogarithmic
in n), then it can be computed in Õ(

√
n) time in the quantum setting. Moreover, whenever the diameter

is O(n1−δ) for some constant δ > 0, it can be computed in sublinear time. This significantly contrasts
with the classical setting, where even distinguishing if the diameter is 2 or 3 requires Ω̃(n) time [HW12],
as already mentioned. Note that our quantum algorithm uses onlyO((log n)2) space, i.e., each node only
needs to keep O((log n)2) qubits of memory at any step of the computation. This low space complexity
is especially appealing due to the technological challenges to construct large-scale quantum memory.

A natural question is whether the upper bounds of Theorem 1 can further be improved. We first show
the following lower bound by adapting the argument from prior works that lead to the classical lower
bound [HW12].

Theorem 2. Any quantum distributed algorithm that decides, with probability at least 2/3, whether the
diameter of the network is at most 2 or at least 3 requires Ω̃(

√
n) rounds.
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Note that this result holds even for quantum algorithms with an arbitrary amount of memory. The-
orem 2 shows that the upper bound of Theorem 1 is tight for networks with small diameter. A similar
argument can actually be used to derive a Ω̃(

√
n) lower bound for any quantum algorithm that decides

if the diameter is at most d or at least d + 1 for larger values of d, but for large diameters this does not
match the upper bound of Theorem 1. We succeed in proving another lower bound, which matches the
upper bound of Theorem 1 for large diameters, under the assumption that the nodes in the distributed
quantum algorithm use only small space. This is one of the main technical contributions of the paper.

Theorem 3. Any quantum distributed algorithm, in which each node uses at most s qubits of memory,
computing with probability at least 2/3 the diameter of the network requires Ω̃(

√
nD/s) rounds.

Observe that Theorems 1 and 3 together completely (up to possible polylogarithmic factor) settle
the complexity of distributed quantum exact computation of the diameter with small quantum memory.
While the memory restriction in the lower bound is a significant assumption, we believe that Theorem 3
is still a fairly general result since most known quantum communication protocols (e.g., protocols used to
show the superiority of quantum communication in the model of communication complexity) use only a
polylogarithmic amount of quantum memory. We actually conjecture that the upper bound of Theorem 1
is tight even without any restriction on the size of quantum memory used by the nodes.

We then consider approximation algorithms and show that the round complexity can be further de-
creased if we are only interested in computing a 3/2-approximation of the diameter.

Theorem 4. There exists a Õ( 3
√
nD + D)-round quantum distributed algorithm that computes with

probability at least 1− 1/poly(n) a 3/2-approximation of the diameter of the network.

Whenever the diameter is small, this quantum approximation algorithm again provides a signifi-
cant improvement over the best known classical algorithms [LP13, HPRW14] already mentioned. The
quantum algorithm of Theorem 4 actually consists of two phases, one classical and one quantum. The
quantum phase still has polylogarithmic memory per node.

Our results are summarized in Table 1.

Overview of our upper bound techniques. At a high level, our approach can be described as a dis-
tributed implementation of quantum search and its generalizations (quantum amplitude amplification and
quantum optimization), which are fundamental quantum techniques well studied in the centralized set-
ting and in two-party quantum communication. In Section 2.4 we show how to implement them in the
distributed setting by electing a leader in the network who will coordinate the quantum search. We de-
velop a general framework involving three basic operations, Initialization, Setup and Evaluation, which
need to be implemented on the whole network to perform quantum distributed optimization. This frame-
work is general and can be applied to a large class of search or optimization problems on a distributed
network as long as quantum communication is allowed between the nodes. The round complexity of the
whole approach depends on the round complexity of each of the three basic operations, which is naturally
problem-specific. We show how to implement them efficiently for the case of diameter computation.

For exact diameter computation (Theorem 1), the optimization problem we consider corresponds to
finding a set S of Θ(n/D) nodes that contains a vertex of maximum eccentricity in the network. The
most delicate part is the implementation of the Evaluation operation, which given any set S distributed
(as a quantum superposition) among all the nodes of the network needs to compute the maximum ec-
centricity among all nodes in S. Our implementation is based on a refinement of the deterministic
classical distributed algorithm for shortest paths in [PRT12]. For our 3/2-approximation of the diameter
(Theorem 4), the strategy is slightly different: our approach is inspired by the classical algorithm for
3/2-approximation by Holzer et al. [HPRW14].

Overview of our lower bound techniques. Essentially all the known lower bounds on the classical
complexity of computing or approximating the diameter in the CONGEST model are obtained by an
argument based on the two-party communication complexity of the disjointness function. More precisely,
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the idea is to first reduce the two-party computation of DISJk, the disjointness function on k-bit inputs,
for some value of k, to the computation or the estimation of the diameter of a carefully constructed
network, and then use the fact that the two-party classical communication complexity of DISJk is Ω(k)
bits [KS92, Raz92]. A first approach to obtain quantum lower bounds would be to use instead the (tight)
quantum lower bound Ω(

√
k) showed by Razborov [Raz03] for the quantum two-party communication

complexity of DISJk. It turns out, however, that the dependence in
√
k is too weak to lead to non-trivial

lower bounds on the quantum round complexity of diameter computation. Fortunately, we observe that
we can instead use a recent result by Braverman et al. [BGK+15], which was obtained using quantum
information complexity, showing that the r-message quantum two-party communication complexity of
DISJk is Ω̃(k/r + r). This better dependence in k enables us to prove Theorem 2.

Proving the lower bound of Theorem 3, i.e., making the diameter appear in the lower bound, is much
more challenging. Our approach is as follows. We start from the network introduced in [ACHK16] to
prove a Ω̃(n)-round classical lower bound for deciding whether a sparse bipartite network has diame-
ter 4 or diameter 5. We convert each edge between the left part and the right part of the network in this
construction into a path of d dummy nodes (the total number of introduced node is Θ(n)), which imme-
diately gives a reduction from the computation of DISJk with k ≈ n into deciding whether the diameter
is d+ 4 or d+ 5. Since d rounds of communication are needed to transfer 1 bit (or 1 quantum bit) from
the left part to the right part of the network, we would expect the following statement to be true: any
r-round algorithm computing the diameter can be converted into a O(r/d)-message two-party protocol
for DISJk with Õ(r) qubits of communication. This would give, via the lower bound from [BGK+15]
mentioned above, the claimed lower bound. The hard part is to prove this statement. While it is easy to
see that the statement is true in the classical setting, in the quantum setting several difficulties arise (as
in [EKNP14]) due to entanglement between the nodes of the network. Our main technical contribution
(Theorem 11 in Section 6) shows that the statement is indeed true in the quantum setting if we assume
that each node has small enough quantum memory.

2 Preliminaries

We assume that the reader is familiar with the basic notions of quantum computation and refer to, e.g.,
[NC11] for a good introduction. A quantum state will be written using the ket notation such as |ψ⟩. A
quantum register means a set of quantum bits (qubits). When the system has several identified reg-
isters, we indicate them as a subscript. For instance |i⟩R|j⟩Q, means that register R is in state |i⟩,
and register Q in state |j⟩. Of course those could be entangled and in superposition. Then we write
|ψ⟩ =

∑
i,j αij |i⟩R|j⟩Q.

In this paper we will use the term CNOT copy to refer to the unitary operation on 2m qubits (for
some integer m) that maps the state |u⟩|v⟩ to the state |u⟩|u ⊕ v⟩ for any binary strings u, v ∈ {0, 1}m,
where u ⊕ v is the bitwise XOR operation on u and v. This quantum operation can be implemented by
applying m Controlled NOT gates. In particular it maps the state |u⟩|0⟩, for any binary string u, to the
state |u⟩|u⟩, and thus corresponds to a classical copy.

For any integer M , we denote by [M ] the set {1, 2, . . . ,M}. For an undirected graph G = (V,E),
we write d(u, v) the distance between u, v ∈ V , i.e., the minimum length of a path between u and v
inG. The eccentricity of u ∈ V , denoted ecc(u), is the maximum distance of u to any other node v ∈ V .
Then the diameter D is simply the maximum eccentricity among all nodes u ∈ V . Finally, the Breath
First Search tree from u on G is denoted by BFS(u) and the Depth First Search tree is denoted DFS(u).

2.1 Quantum CONGEST networks

In this paper we consider the CONGEST communication model. The graph G = (V,E) represents the
topology of the network, executions proceed with round-based synchrony and each node can transfer
one message of bw qubits to each adjacent node per round. Initially the nodes of the network do not
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share any entanglement. In this paper all the networks are undirected and unweighted. Unless explicitly
mentioned, the bandwidth bw will always be bw = O(log n), where n = |V |. The only exception is the
results in Section 6.1, and in particular Theorem 11, where the bandwidth will be kept as a parameter.
All links and nodes (corresponding to the edges and vertices of G, respectively) are reliable and suffer
no faults. Each node has a distinct identifier. Initially, each node knows nothing about the topology of
the network except the set of edges incident to itself and the value n.

We write |ψ⟩v to denote a state in the memory space of node v. When such a state is entangled, we
use the tensor product notation. For instance 1√

M

∑
i∈[M ]

⊗
v∈V |i⟩v denotes a uniform superposition

over integers in [M ] distributed over all nodes of V (i.e., each node is synchronized with the same value,
in superposition).

When discussing the space complexity of quantum distributed algorithms, the memory refers to the
number of qubits each node uses in its workspace. We assume for simplicity that each node performs
unitary operations and measures its register only at the very end of the algorithm.3

2.2 Two-party communication complexity

Let X , Y and Z be three finite sets. Consider two players, usually called Alice and Bob, and assume
that Alice receives as input an element x ∈ X , while Bob receives an element y ∈ Y . In the model of
communication complexity, first introduced in the classical two-party setting by Yao [Yao79], the players
want to compute a function f : X × Y → Z by running a protocol such that, at the end of the protocol,
both Alice and Bob obtain f(x, y), and they want to minimize the communication. In the quantum
communication model, introduced by Yao [Yao93], the players are allowed to communicate with qubits.
More precisely, the quantum communication complexity of a quantum protocol is the maximum (over
all inputs) number of qubits that the protocol sends. The quantum communication complexity of f is the
minimum communication complexity of any quantum protocol that computes f with probability at least
2/3.

For any integer n ≥ 1, the disjointness function DISJk : {0, 1}k × {0, 1}k → {0, 1} is the function
such that DISJk(x, y) = 0 if and only if there exists an index i ∈ {1, . . . , k} such that xi = yi = 1.
It is well known that its (randomized) classical communication complexity is Θ(k) bits [KS92, Raz92].
Its quantum communication complexity is Θ(

√
k) qubits [BCW98, HdW02, Raz03, AA05]. Recently

Braverman et al. [BGK+15] proved the following lower bound for quantum protocol with limited inter-
action, i.e., when only a bounded number of messages can be exchanged between Alice and Bob, which
significantly improved the previous bound from [JRS03]

Theorem 5 ([BGK+15]). The r-message quantum communication complexity of DISJk is Ω̃(k/r + r).

This result shows in particular that any O(
√
k)-qubit quantum protocol for DISJk requires Ω̃(

√
k)

messages, i.e., Ω̃(
√
k) rounds of interaction between Alice and Bob.

2.3 Quantum generic search

We now review the general framework of quantum generic search in the centralized model (see for
instance [MNRS11] for a more thorough treatment). In this framework, we are given a set of items X
and we are looking for a marked item x ∈ M , for some unknown subset M ⊆ X . We have two main
black-box unitary operators, and their inverses, available to design a quantum search procedure. The first

3More general models, such as models allowing intermediate measurements and models that allow nodes to use both a
quantum memory and a classical memory, can naturally be considered as well. We prefer not introducing such models in this
paper since the precise definition (and in particular the relation between the classical part and the quantum part), which can
for instance be proposed similarly to [LeG09], would be fairly technical. We just mention that under natural “hybrid” models
allowing both classical and quantum parts, the lower bound of Theorem 3 would hold for any quantum algorithm that uses s
qubits of quantum memory, independently to the quantity of classical memory used, since the difficulty only comes from the
quantum memory. A very simple example is the straightforward generalization of our model that allows a first classical phase
with unbounded classical memory and then a quantum phase using only s qubits of memory per node.
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one, Setup, is the quantum analogue of a random sampling. The second one, Checking, is a quantum
checking procedure.

It will be convenient to assume the existence of a third procedure, Initialization, that performs some
global initialization: the procedure is applied only once at the beginning of the algorithm and its output
is later used in order to implement Setup and Checking.

We identify a specific register |·⟩I that we call internal, which is the core of the algorithm. Its size
is polylogarithmic in all parameters. It is used to encode the element we are looking for, to perform
basic operations such as arithmetic operations (e.g., counting), and also to control the application of
other unitary matrices. The quantum algorithm uses two additional registers to represent additional
information created by the procedures Initialization and Setup.

The framework thus assumes that the following three quantum procedures are given (as black-boxes).

Initialization: Creates an initial state |0⟩I |init⟩ with some possible precomputed information |init⟩ and a
distinguished element 0 ∈ X , usually a long enough bit string of 0s.

Setup: Produces a superposition from the initial state:

|0⟩I |init⟩ 7→
∑
x∈X

αx|x⟩I |data(x)⟩|init⟩,

where the αx’s are arbitrary amplitudes and data(x) represents some information depending on x.

Checking: Performs the transformation

|x, 0⟩I |data(x)⟩|init⟩ 7→ |x, bx⟩I |data(x)⟩|init⟩,

where bx = 1 if x ∈M and bx = 0 otherwise.

Note that the procedures Initialization and Checking are often described as deterministic or ran-
domized (i.e., classical) procedures. They can then been quantized using standard techniques: one first
transforms it to a reversible map using standard techniques [Ben89], with potentially additional garbage
whose size is of the same order as the initial memory space.

Define PM =
∑

x∈M |αx|2, the probability to observe a marked element when measuring Register I
after one application of Setup on the initial state. Classically one could iterate Θ(1/PM ) time this process
in order to get at least one marked element with high probability. Amplitude amplification explains how
to get a marked element using simply Θ(1/

√
PM ) iterations of Setup and Checking.

Theorem 6 (Amplitude amplification [BHT98]). Let ε > 0 and assume that either PM = 0 or PM ≥ ε
holds. Then, for any δ > 0, there is a quantum algorithm that can decide if M = ∅ with success
probability at least 1 − δ using one unitary operator Initialization, O(log(1/δ)/

√
ε) unitary operators

Setup and Checking, their inverse, and O(log(1/δ)/
√
ε) other basic operations (independent of M ) on

the internal register.
More precisely, an observation of the internal register when the algorithm declares that M ̸= ∅,

outputs a random x ∈M with probability |αx|2/PM .

2.4 Distributed quantum optimization

Let us first explain how to derive a generic quantum procedure for optimization problems in the cen-
tralized model. Indeed, a well known application of amplitude amplification is optimization, such as
minimum finding [DHHM06]. We are now given a procedure Evaluation instead of Checking, which
evaluates the (unknown) function we want to maximize.

Evaluation: Performs the transformation

|x, 0⟩I |data(x)⟩|init⟩ 7→ |x, f(x)⟩I |data(x)⟩|init⟩,

where f : X → Z is the function we want to maximize.
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Define the probability Popt to observe an element where f takes a maximum value when measuring
Register I after one application of Setup on the initial state as

Popt =
∑

x:f(x) is maximal

|αx|2.

A standard application of amplitude amplification shows how to maximize f using Θ(1/
√
Popt) itera-

tions of Setup and Evaluation. We state this result as follows.

Corollary 1 (Quantum optimization). Let ε > 0 be such that Popt ≥ ε. Then, for any δ > 0, there
is a quantum algorithm that can find,with probability at least 1 − δ, some element x such that f(x)
is maximum, using one unitary operator Initialization, O(log(1/δ)/

√
ε) unitary operators Setup and

Evaluation, and their inverses, and O(log(1/δ)/
√
ε) other basic operations (independent of f ) on the

internal register.

Proof. The proof uses standard applications of Theorem 6 such as in [DHHM06]. We give the main
lines of the reduction:

1. Start with some fixed a ∈ X;
2. Use amplitude amplification of Theorem 6 with ε′ = 1/2 and δ′ = δ to find b > a;
3. If an element is found, then set a = b and go to (2);
4. Else if ε′ > ε, then set ε′ = ε′/2 and go to (2);
5. Output a and stop.

The expected number of iterations, that is of jumps to Step (2), can be shown to be O(log(1/ε)), with an
expected number of applications of unitary maps and of other basic operations inO(log(1/δ)/

√
ε) using

similar arguments to [DHHM06] for minimum finding. In order to get the claimed worst case bounds,
one just need to abort the computation when too much resources have been used and to output the current
value of a.

We now explain how to implement quantum optimization in the distributed model. In the distributed
setting, the internal register I and therefore the control of the algorithm itself are simply centralized
by a leader node. The two other registers |data(x)⟩ and |init⟩, however, can be distributed among all
the nodes of the network, and implementing Procedures Setup and Evaluation thus generally requires
communication through the network. As stated in Corollary 1, besides calls to Setup and Evaluation
and their inverses, all the other operations performed in quantum optimization are done exclusively on
the internal register I , and then can be implemented locally (i.e., without communication) by the chosen
leader node. The round complexity of distributed quantum optimization thus depends on the round
complexity of Procedures Setup and Evaluation. The precise statement follows.

Theorem 7 (Distributed quantum optimization). Let G = (V,E) be a distributed network with a pre-
defined node leader ∈ V . Assume that Initialization can be implemented within T0 rounds and using s
memory per node in the quantum CONGEST model, and that unitary operators Setup and Evaluation
and their inverses can be implemented within T rounds and using s memory per node. Assume that
s = Ω(log |X|).

Let ε > 0 be such that Popt ≥ ε. Then, for any δ > 0, the node leader can find, with probability
at least 1 − δ, some element x such that f(x) is maximum, in T0 + O(log(1/δ)/

√
ε) × T rounds. This

quantum algorithm uses O(s× log(1/ε)) memory per node.

Proof. The round complexity follows immediately from Corollary 1. Let us now analyze the amount of
memory needed for the node leader. Since measurements in the procedure described in Corollary 1 are
only performed at the end of the computation, all outcomes of amplitude amplification in Line (2) are
recorded in the procedure, leading to an additional term O(log |X| × log(1/ε)) in the memory size. The
total amount of memory needed for the implementation is thus O(s + log |X| × log(1/ε)) = O(s ×
log(1/ε)) qubits for leader and O(s) qubits for the other nodes.
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In ecc(leader) = O(D) rounds:

1. First, only leader is activated, it declares itself as its own parent, and sends a message
through all its edges in order to activate its neighbors for the next round.

2. When a message reaches node v from node u:

• If v was already activated, then v ignores the message.

• Else v becomes activated, it sets its parent to u and sends, through all its edges,
its distance to leader in order to activate its neighbors for the next round.

Figure 1: Construction of BFS(leader) in Proposition 1.

3 First Algorithm : Exact Computation of the Diameter

Let G = (V,E) denote the network we consider. We write n = |V | and use D to denote its diameter.
We assume that the network G has elected a node leader ∈ V , and computed its eccentricity ecc(leader).
This can be done using standard methods inO(D) classical rounds andO(log n) memory space per node.
In addition, our algorithm will use a Breadth First Search tree rooted at leader (denoted BFS(leader)),
which can be computed efficiently as described in the following proposition.

Proposition 1. There is a classical procedure that allocates to each node v ∈ V its parent on
BFS(leader) and its distance to leader in O(D) rounds and O(log n) memory space per node.

Proof. The procedure is the classical procedure described in Figure 1 that performs a Breadth First
Search tree from leader. This procedure has complexity O(D) and can be implemented with O(log n)
bits of memory per node.

Our quantum algorithm will compute the diameter, i.e., the maximum eccentricity among all nodes,
using quantum optimization. In Section 3.1, we first give a simpler quantum algorithm that computes the
diameter in O(

√
nD) rounds. In Section 3.2 we then give our O(

√
nD)-round quantum algorithm.

3.1 A simpler quantum algorithm

We apply the framework of Section 2.4 with X = V and the function f : V → Z defined as

f(u) = ecc(u) (1)

for all u ∈ V . Obviously, maximizing f gives the diameter of the network.
Procedure Initialization is the classical procedure of Proposition 1. This means that |init⟩ represents

the classical information computed by this classical procedure: this is a quantum register shared by all
the nodes of the network, in which the part owned by each node contains its parent on BFS(leader) and
its distance to leader.

For any u0 ∈ V , the quantum state |data(u0)⟩ used in the quantum algorithm is defined as
|data(u0)⟩ =

⊗
v∈V |u0⟩v. We set αu0 = 1/

√
n for all u0 ∈ V , and thus have Popt ≥ 1/n. We

first observe that Procedure Setup can be implemented efficiently.

Proposition 2. The procedure Setup can be implemented in O(D) rounds and using O(log n) memory
space per node.

Proof. The node leader first prepares the quantum state

1√
n

∑
u0∈V

|u0⟩leader.
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Then this state is simply broadcast using CNOT copies to all nodes of the network along BFS(leader),
which takes d rounds. The resulting state is

1√
n

∑
u0∈V

|u0⟩leader
⊗
v∈V

|u0⟩v =
1√
n

∑
u0∈V

|u0⟩leader|data(u0)⟩,

as required.

We now observe that Procedure Evaluation can also be implemented efficiently.

Proposition 3. The procedure Evaluation for the function f defined in (1) can be implemented in O(D)
rounds and using O(log n) memory space.

Proof. Consider the following problem: all the nodes of the network receive as input u0, for some
fixed u0 ∈ V , and the goal is for node leader to output ecc(u0). There is a straightforward O(D)-
round classical algorithm solving this problem using O(log n) bits of memory per node: node u0 starts
building a Breadth First Search tree rooted at u0, the nodes use this tree to compute their distance to u0,
and finally ecc(u0) is transmitted to the node leader. Note that this algorithm is precisely a procedure to
compute f(u0) when the nodes initially share the classical information contained in |data(u0)⟩ (i.e., the
nodes all know u0). As mentioned in Section 2.3, this procedure can then been quantized using standard
techniques in order to obtain a quantum algorithm that performs the transformation

|u0, 0⟩I |data(u0)⟩|init⟩ 7→ |u0, f(u0)⟩I |data(u0)⟩|init⟩,

with the same round and space complexities.

We are now ready to analyze the overall complexity of our algorithm. We apply Theorem 7 to
maximize the function f defined in (1). Propositions 1, 2 and 3, along with the lower bound Popt ≥ 1/n,
show that this quantum algorithm uses O(

√
nD) rounds and O((log n)2) memory per node for any

constant error probability δ.

3.2 The final quantum algorithm

We now show how to reduce the complexity to O(
√
nD). The key idea is to modify the function to be

maximized, in order to increase Popt when d is large. Before defining the new function, let us introduce
some definitions.

We take some integer d such that d ≤ D ≤ 2d. Since ecc(v) ≤ D ≤ 2 × ecc(v) for any node
v ∈ V , this will concretely be done by choosing d = ecc(leader). Similarly to [PRT12], we introduce
the following numbering on the vertices of G via a Depth-First-Search traversal of BFS(leader).

Definition 1 (DFS-numbering). The DFS(leader)-number of v ∈ V , denoted by τ(v), is the length of
the path to reach v from leader on a DFS-traversal of BFS(leader). In particular τ(leader) = 0.

We now use the DFS-numbering to define sets of vertices.

Definition 2. For any u ∈ V , define S(u) = {v ∈ V : τ(v) ∈ [τ(u), τ(u) + 2d mod 2n]}. Let S be
the collection of subsets S(u) for all u ∈ V .

We following lemma, which will be crucial for our analysis, shows that S covers well the set V .

Lemma 1. Fix any v ∈ V , and take some u0 ∈ V uniformly at random. Then Pr[v ∈ S(u0)] ≥ d
2n .
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Proof. Consider a sequential execution π of DFS(leader) on BFS(leader). We now consider π as a
circle by attaching its extremities. Observe that each top-down move to some node v at step t causes the
numbering τ(v) = t. In addition, since BFS(leader) has depth d, any segment of π with md top-down
moves and mu bottom-up ones must satisfy |md −mu| ≤ d.

Thus for any vertex v ∈ V , consider the part of π of length 2d ending in a top-down move to v. It
must contain at least ⌈d/2⌉ top-down moves to some vertices u1, . . . , u⌈d/2⌉. Therefore v ∈ S(ui), for
i = 1, . . . , ⌈d/2⌉, and we conclude that Pr[v ∈ S(u0)] ≥ d

2n .

The function we will now optimize is the function f : V → Z defined as

f(u) = max
v∈S(u)

(ecc(v)) (2)

for any u ∈ V . Obviously, maximizing f gives the diameter of the network. We optimize this function
via the distributed quantum optimization procedure of Section 2.4. We set X , αx, |init⟩ and |data(x)⟩
exactly as in Section 3.1. Lemma 1 immediately implies that Popt ≥ d/2n.

The procedures Initialization and Setup are the same as in Section 3.1. The procedure Evaluation,
however, is different since the function to evaluate is not the same. We describe the new procedure,
which is based on a refinement of the deterministic distributed algorithm for diameter in [PRT12], in the
next proposition. The proof of this proposition is postponed to Section 3.3.

Proposition 4. The procedure Evaluation for the function f defined in (2) can be implemented in O(D)
rounds and using O(log n) memory space.

We are now ready to analyze the overall complexity of our algorithm and prove Theorem 1.

Proof of Theorem 1. We apply Theorem 7 to maximize the function f defined in (2). Propositions 1, 2
and 4, along with the lower bound Popt ≥ d/2n, show that this quantum algorithm usesO(

√
nD) rounds

and O((log n)2) memory per node for any constant error probability δ.

3.3 The evaluation procedure

We prove Proposition 4 by describing the Procedure Evaluation for the function f defined in (2). Re-
member that this procedure should, for any u0 ∈ V given as input to all the nodes of the network, enable
the node leader to output f(u0) = maxv∈S(u0)(ecc(v)). Remember also that we are assuming the each
node v ∈ V knows its parent on BFS(leader) and its distance to leader (this information was computed
in Procedure Initialization).

The procedure Evaluation is described in Figure 2. (The procedure is described as a classical pro-
cedure. As mentioned in Section 2.3 and in the proof of Proposition 3, it can then been quantized using
standard techniques.)

The main idea is simple: each node v ∈ S(u0) starts a process in order to globally compute its
eccentricity. This will be done in parallel, and the main difficulty is to avoid congestions. We achieve
this goal by refining techniques used in the deterministic distributed algorithm from [PRT12]. As in
[PRT12], we coordinate the starts of all the processes so that messages initiated by nodes v ∈ S(u0)
arrive in the same order as their DFS(leader)-numbers. Therefore, there is no congestion, and messages
to disregard are easily identified, even with a local memory of logarithmic size for each node.

A difference with [PRT12] is that we do not use the DFS(leader)-number τ(v), which is too costly to
compute, but instead the quantity τ ′(v) = τ(v)− τ(u0), which is much easier to compute, to coordinate
the starts of the process. More precisely, node v ∈ S(u0) starts its process at round 2τ ′(v), see Step 2(2)
of the algorithm.

Another difference is that each node v in Step 2 of the algorithm only keeps in memory the maximum
of their previously computed distances. Nodes receive at each round messages of the form (τ ′, δ) that
they either disregard or broadcast after incrementing δ. This message has been initiated at round τ ′ by
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Step 1. The network performs sequentially 2d steps of a Depth First Search traversal on
BFS(leader) starting at u0 (if it reaches the end of the DFS, it starts again from
leader). Let us write S the nodes visited by the process, and for each v ∈ S, let
τ ′(v) to be the index of the round they are reached (for the first time) by the traversal.

Step 2. Each node v ∈ V implements the following process during 6d rounds:

1. Set tv = −1 and dv = 0.

2. If v ∈ S and only at round 2τ ′(v):
Broadcast message (τ ′(v), 0) along all edges (v, w).

3. At each round:

(a) Disregards all messages of type (τ ′, δ) with τ ′ ≤ tv.
(b) Keep at most one of the remaining messages of type (τ ′, δ) with τ ′ > tv .

(In fact they are all equal according to Lemma 4.)
If one message has been kept then:

Set tv = τ ′ and dv = max(dv, δ).
Broadcast message (τ ′, δ + 1) along all edges (v, w) of G.

Step 3. Each node v ∈ V sends its current value dv to leader. In order to avoid conges-
tions, the transmission is done bottom up on BFS(leader), and at each node only the
maximum of received values is transmitted.

Step 4. Node leader computes the maximum of all received values.

Step 5. Revert steps 3 to 1, in order to clean all registers.

Figure 2: The procedure Evaluation.

the node u ∈ S such that τ ′ = τ ′(u) in Step 2(2). The number δ is the number of rounds this message
took to reach v for the first time, i.e., δ = d(u, v). The value tv is used to decide which messages can
be disregarded. The value dv represents the maximum distance d(u, v) over all the nodes u processed so
far.

The procedure Evaluation can be implemented in O(D) rounds and using O(log n) space per node
since at any time each node only needs to keep one message (τ ′, δ), in addition to tv and dv, in mem-
ory. The correctness follows from the following three lemmas, which together show that the procedure
computes the maximum of ecc(v) over all v ∈ S(u0).

Lemma 2. At Step 1, the computed set S satisfies S = S(u0). Furthermore, for every nodes v, w ∈ S,
if τ ′(v) < τ ′(w) then d(v, w) ≤ τ ′(w)− τ ′(v).

Proof. First observe that at Step 1, τ ′(v) = τ(v) − τ(u0), for all v ∈ S(u0). Therefore, the computed
set S satisfies S = S(u0). Then the rest of the statement is a direct consequence of [PRT12, Property 1]
which was stated for the DFS(leader)-numbering τ , and therefore remains valid for τ since τ ′(v) =
τ(v)− τ(u0), for all v ∈ S(u0).

Lemma 3. Let r1 be the first round that a message of type (τ ′1, ∗) reaches a given node v, and similarly
for r2 and τ ′2. Then r2 − r1 ≥ τ ′2 − τ ′1. In particular, if τ ′1 < τ ′2 then r1 < r2.

Proof. Let z1, z2 be such that τ ′i = τ ′(zi), for i = 1, 2. This is the first time that a message from zi
reaches v, therefore ri = 2τ ′(zi) + d(zi, v). In addition, by the triangle inequality, we also have that
d(z1, v)− d(z2, v) ≤ d(z1, z2). Thus

d(z1, z2) ≥ d(z1, v)− d(z2, v) = r1 − r2 + 2(τ ′(z2)− τ ′(z1)).

11



Preparation in Õ(n/s + D) rounds. This part is the same as Steps 1 to 5 of Algorithm 1
in [HPRW14]:

1. Each vertex joins a set S with probability (log n)/s.
If more than (n(log n)2/s) vertices join S, then abort.

2. Each vertex v ∈ V computes the closest node in S to v, which is denoted p(v).
Compute a node w ∈ V maximizing the distance d(w, p(w)).

3. Compute a BFS tree from w.
The s closest nodes to w in the tree join a set R.

Quantum optimization Õ(
√
sD + D) rounds. Compute the maximum eccentricity of

the vertices in R.

Output. Return the maximum computed eccentricity.

Figure 3: Our quantum algorithm computing a 3/2-approximation of the diameter.

Since τ ′(z1) < τ ′(z2), then by Lemma 2 we also have that

d(z1, z2) ≤ τ ′(z2)− τ ′(z1).

Therefore we get
r2 − r1 ≥ τ ′(z2)− τ ′(z1) > 0,

which proves the lemma.

Lemma 4. At Step 3b, all remaining messages are identical.

Proof. Assume by contradiction that at least two messages (τ ′1, δ1) and (τ ′2, δ2) remain such that either
τ ′1 ̸= τ ′2 or δ1 ̸= δ2. By construction of our algorithm, they are the first messages of types (τ ′1, ∗) and
(τ ′2, ∗) reaching v.

If τ ′1 ̸= τ ′2, by Lemma 3, those messages cannot arrive at the same round, which contradicts the fact
they both arrive at the current round.

If τ ′1 = τ ′2, but δ1 ̸= δ2, we get another contradiction. Indeed, those messages come from the same
vertex u such that τ ′(u) = τ ′1, and reach v at the same round for the first time. Thus they must satisfy
δ1 = δ2.

4 Second Algorithm: 3/2-Approximation of the Diameter

The framework for distributed quantum optimization we developed in this paper, and in particular its
application to find vertices of maximum eccentricities presented in Section 3, can be used as well to
design fast quantum approximation algorithms for the diameter. In this section we show how to apply
our framework to speed up the 3/2 classical approximation algorithm designed in [HPRW14], which
computes a value D̄ such that D̄ ≤ D ≤ 3D̄/2, and prove Theorem 4.

Our quantum algorithm for 3/2-approximation is described in Figure 3. In the description of the
algorithm, s ∈ [n] is an integer parameter that will be set later.

This quantum algorithm is exactly the same as Algorithm 1 in [HPRW14], except for the second part:
in [HPRW14] the maximum eccentricity was computed classically in O(s+D) rounds by computing a
BFS tree for each vertex in R. We thus omit the details about the implementation of the first part and
the proof of correctness of the whole algorithm (which can be found in [HPRW14]). Let us nevertheless
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point out that this first part requires a polynomial amount of (classical) memory. The quantum procedure
for the second part we describe below, however, will only require a polylogarithmic amount of memory.

The quantum procedure for the second part is essentially the same as the quantum algorithm pre-
sented in Section 3, which computed the maximum eccentricity of all the nodes in V (i.e., the diameter
of the network). The difference is that this time we do the optimization only on the vertices in R: the
function to optimize the function of Equation (2) restricted to the domain R ⊆ V . By replacing node
leader by node w, and replacing “mod 2n” by “mod 2s” in Definition 2, we obtain Popt ≥ d/2s instead
Popt ≥ d/2n since R is defined as the set of the s closest nodes to w. By additionally modifying the pro-
cedure Setup so that it distributes the state 1√

s

∑
u0∈R

⊗
v∈V |u0⟩v instead of 1√

n

∑
u0∈V

⊗
v∈V |u0⟩v,

Theorem 7 implies that the maximum eccentricity of the vertices in R can be computed with high prob-
ability in Õ(

√
sD +D) rounds and using O((log n)2) qubits of memory per node.

The overall round complexity of our algorithm is Õ(n/s+
√
ns+D). Choosing s = Θ(n2/3D−1/3)

gives complexity Õ( 3
√
nD +D), as claimed in Theorem 4.

5 Lower Bound: Tight Bound for Small Diameter

In this section we show that the connection established in prior works (in particular in [FHW12, HW12,
ACHK16, BK17]) between the round complexity of computing the diameter and the two-party com-
munication complexity of the disjointness function still holds in the quantum setting. We then use this
connection to prove Theorem 2.

In the following we will use the notation G = (U, V,E) to denote a bipartite graph whose partition
has parts U and V : it will always be implicitly assumed that the sets U and V are disjoint, and that each
edge in E has an endpoint in U and its other endpoint in V . We will use ∆(G) to denote the largest
distance between one vertex in U and one vertex of V . We will use E(U) to denote the set of all pairs of
elements in U and E(V ) to denote the set of all pairs of elements in V .

All the recent lower bounds on the classical round complexity of computing or approximating the
diameter rely on the notion of reduction introduced in the next definition.

Definition 3. Let b, k, d1 and d2 be four functions from N to N. A (b, k, d1, d2)-reduction from dis-
jointness to diameter computation is a family of triples {(Gn, gn, hn)}n≥1 such that, for each n ≥ 1,
Gn = (Un, Vn, En) is a bipartite graph with |Un ∪ Vn| = n and |En| = b, gn is a function from {0, 1}k
to E(Un) and hn is a function from {0, 1}k to E(Vn) satisfying the following two conditions for any
x, y ∈ {0, 1}k:

(i) if DISJk(x, y) = 1 then ∆(Gn(x, y)) ≤ d1,

(ii) if DISJk(x, y) = 0 then ∆(Gn(x, y)) ≥ d2,

where Gn(x, y) denotes the bipartite graph obtained from Gn by adding an edge {w,w′} for each
{w,w′} ∈ gn(x) ∪ hn(y).

In particular we will use in this paper the following two constructions from prior works.

Theorem 8 ([HW12]). There exists a (Θ(n),Θ(n2), 2, 3)-reduction from disjointness to diameter com-
putation.

Theorem 9 ([ACHK16]). There exists a (Θ(log n),Θ(n), 4, 5)-reduction from disjointness to diameter
computation.

We include a proof of Theorem 8 as an example to illustrate the notations of Definition 3.

Proof of Theorem 8. We define the graphGn = (Un, Vn, En) as follows. Here we assume, for simplicity,
that n − 2 is a multiple of 4 (the construction can be easy modified, by adding dummy nodes, to deal
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Figure 4: The graph Gn used in the proof of Theorem 8, for n = 2.

with the case when n is not of this form). We define s = (n − 2)/4. The construction is illustrated for
n = 10 in Figure 4.

We have Un = L∪L′∪{a} and Vn = R∪R′∪{b}, where L = {ℓ0, . . . , ℓs−1}, L′ = {ℓ′0, . . . , ℓ′s−1},
R = {r0, . . . , rs−1} and R′ = {r′0, . . . , r′s−1} are four sets each containing s nodes, and a, b are two
additional nodes. The set En is defined as follows: we put edges to make each of L, L′, R and R′ an
s-clique. Moreover, for each i ∈ {0, . . . , s− 1}, we add an edge from ℓi to ri and an edge from ℓ′i to r′i.
Finally, node a is connected by an edge to each node in L ∪ L′, while node b is connected by an edge to
each node in R ∪R′. Nodes a and b are also connected by an edge. Note that |En| = 2s+ 1 = Θ(n).

Now we define the functions gn and hn. Given any binary string x ∈ {0, 1}s×s, we define gn(x)
as the set of all pairs {ℓi, ℓ′j} with i, j ∈ {0, . . . , s − 1} such that xi,j = 0. Similarly, given any binary
string y ∈ {0, 1}s×s, we define hn(y) as the set of all pairs {ri, r′j} with i, j ∈ {0, . . . , s− 1} such that
yi,j = 0. This means that the graph Gn(x, y) is obtained from Gn by putting an additional edge between
node ℓi and node ℓ′j if and only if xi,j = 0, and similarly by putting an additional edge between node ri
and node r′j if and only if yi,j = 0.

It is easy to check that conditions (i) and (ii) of Definition 3 hold with k = s2 = Θ(n2), d1 = 2 and
d2 = 3, by observing that the distance in Gn(x, y) between ℓi and r′j (and, symmetrically, the distance
between ℓ′j and ri as well) is 3 if xi,j = yi,j = 1, and 2 otherwise.

An easy argument, used in all these prior works mentioned above, shows that the existence of a
(b, k, d1, d2)-reduction from disjointness to diameter computation implies a Ω̃(k/b) lower bound on the
round complexity of any classical distributed algorithm that decides whether the diameter of the network
is at most d1 or at least d2. The main technical contribution of this section is the following quantum ver-
sion of this argument, which is proved using the recent result from [BGK+15] on the message-bounded
quantum communication complexity of disjointness presented in Section 2.2.

Theorem 10. Assume that there exists a (b, k, d1, d2)-reduction from disjointness to diameter computa-
tion. Then any quantum distributed algorithm that decides, with high probability, whether the diameter
of the network is at most d1 or at least d2 requires Ω̃(

√
k/b) rounds.

Proof. Assume that there exists an r-round quantum algorithm A that decides if the diameter of a net-
work is at most d1 or at least d2. We will use this algorithm to construct a protocol that computes the dis-
jointness function DISJk in the two-party quantum communication complexity setting. Let x ∈ {0, 1}k
and y ∈ {0, 1}k be Alice’s input and Bob’s input, respectively.
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The protocol works as follows. First note that Alice and Bob can jointly construct the graphGn(x, y):
Alice can construct the subgraph induced by Un (which depends on x), while Bob can construct the
subgraph induced by Vn (which depends on y). Alice and Bob will thus simply simulate the computation
of A on Gn(x, y). To do this, they only need to exchange messages corresponding to the communication
occurring along the b edges of Gn(x, y) at each round of Algorithm A. This can be done by replacing
one round of communication in A by two messages of O(b log n) qubits (one from Alice to Bob, and the
other from Bob to Alice). At the end of simulation Alice and Bob obtain the result of the computation
by A on Gn(x, y). From our assumption on A, this enables them to decide if the diameter of Gn(x, y)
is at most d1 or at least d2, and thus to compute DISJk(x, y). The whole simulation uses 2r messages
and a total number of O(rb log n) qubits of communication. From Theorem 5, we conclude that rb =
Ω̃
(
k
r + r

)
, which implies r = Ω̃(

√
k/b).

Theorem 2 directly follows by combining Theorem 8 and Theorem 10.

6 Lower Bound: Case of Large Diameter

In this section we prove Theorem 3. We first prove in Section 6.1 a general simulation result that will be
crucial for our analysis, and then give the proof of Theorem 3 in Section 6.2.

6.1 Simulation argument

For any d ≥ 1, let us introduce the following network Gd. The network consists of two nodes A and B
connected by a path of length d+1, corresponding to d intermediate nodes P1, . . . , Pd. The total number
of nodes is thus d + 2, and the number of edges is d + 1. Each edge of Gd is a quantum channel of
bandwidth bw qubits. The construction is illustrated in Figure 5.

A P1 P2 Pd−1 Pd B

d nodes

......................

Figure 5: The graph Gd.

Let X , Y be two finite sets, and let f be a function from X × Y to {0, 1}. Consider the following
computation problem over the network Gd: node A receives an input x ∈ X and node B receives an
input y ∈ Y . The goal is for Alice and Bob to compute the value f(x, y). Note that the intermediate
nodes P1, . . . , Pd do not receive any input. The following theorem relates the round complexity of this
problem to the two-party communication complexity of f .

Theorem 11. Let d and r be any positive integers, and f be any Boolean function. If there exists an r-
round quantum distributed algorithm, in which each intermediate node uses at most s qubits of memory,
that computes function f with probability p over Gd, then there exists a O(r/d)-message two-party
quantum protocol computing f with probability p using O(r(bw + s)) qubits of communication.

Proof. Consider any r-round quantum algorithm A computing function f over Gd in which each inter-
mediate node uses s qubits of internal memory. For notational convenience, we will use P0 and Pd+1 to
refer to nodes A and B, respectively. For any i ∈ {0, 1, . . . , d + 1}, let Ri denote the quantum register
representing the memory of node Pi. Note that if 1 ≤ i ≤ d then Ri consists of at most s qubits, which
we assume (without loss of generality) are initially in the all-zero quantum state. The registers R0 and
Rd+1 contain the input x and y, respectively, in addition to qubits initially in the all-zero quantum state.
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Figure 6: Representation of an 8-round algorithm for d = 2. Each thin line represents a quantum register.
Each rectangle represents a unitary operator. The red line represents the message register T0 (which is
exchanged between P0 and P1 during the execution of the algorithm) and the green line represents the
private register R1 (which stays at node P1 during the execution of the algorithm).

For simplify notations, we will make the following assumption: at each round t ∈ {1, . . . , r} of the
algorithm A, if t is odd then messages are sent only from the left to the right (i.e, from Pi to Pi+1 for
each i ∈ {0, . . . , d}), and if t is even then messages are sent only from the right to the left (i.e, from Pi

to Pi−1 for each i ∈ {1, . . . , d+1}). This can be done without loss of generality since any algorithm can
be converted into an algorithm satisfying this assumption by increasing the round complexity only by a
factor 2. Without loss of generality, again, we can also assume that Algorithm A proceeds as follows
(see Figure 6 for an illustration for d = 2 and r = 8):

• Each node Pi, for i ∈ {0, . . . , d}, initially owns one additional b-qubit quantum register Ti con-
taining the all-zero quantum state.

• At the first round, for each i ∈ {0, . . . , d}, node Pi performs a unitary operator on (Ri,Ti), and
then sends Ti to Pi+1. (Note that the contents of the register Ti can be — and will in general be
— modified by the unitary operator.) Node Pd+1 does nothing.

• At round number t ∈ {2, . . . , r} with t even, for each i ∈ {1, . . . , d + 1} node Pi, who just
received register Ti−1 from Pi−1 at the previous round, performs a unitary operator on (Ri,Ti−1),
and then sends Ti−1 to Pi−1. Node P0 does nothing.

• At round number t ∈ {3, . . . , r} with t odd, for each i ∈ {0, . . . , d} node Pi, who just received
register Ti from Pi+1 at the previous round, performs a unitary operator on (Ri,Ti), and then
sends Ti to Pi+1. Node Pd+1 does nothing.

• After round number r (the last round of communication), each node performs a unitary opera-
tor on its registers, then measures them and decides its output depending of the outcome of the
measurement.

The registers R0, . . . , Rd+1 will be called the private registers (since they do not move during the execu-
tion of the protocol), while the registers T0, . . . , Td will be called the message registers.
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Simulated by Bob at s = 1

Simulated by Bob at s = 3

Simulated by Alice at s = 2 Simulated by Alice at s = 4

Figure 7: Simulation by P of the algorithm from Figure 6. The blue and red dashed areas represent
the parts that are simulated by Bob and Alice, respectively, during the protocol. The blue plain lines
represent the quantum registers that are sent by Bob to Alice during the protocol. The red plain lines
represent the quantum registers that are sent by Alice to Bob during the protocol. For instance, for s = 1,
Bob will send to Alice four registers: he first simulates the computation of P2 and P3 until steps t = 1
and t = 2 of A, respectively, and sends to Alice the corresponding message register of P3 (since 3 is
odd). He then simulates P1 and P2 until steps t = 1 and t = 2, respectively, and sends to Alice the
message register of P2 (since 2 is even). He also sends to Alice the private registers of P1 and P2.

We now describe a O(r/d)-message protocol P that computes f in the standard model of communi-
cation complexity, where Alice and Bob receive as input x and y, respectively. The idea is that Alice and
Bob jointly simulate the computation of A. The crucial observation is that, due to the time needed for a
message from A to reach B in the network Gd, the simulation can be done by dividing the computation
into O(r/d) areas, each of width d, and doing the simulation area per area. Each area will be simulated
by one of the players, who will then send to the other player only the O(d) registers that are needed to
simulate the next area. The details of the simulation are as follows (see also Figure 7 for an illustration).

Note that Alice can create the initial state of register R0, which depends only on x, and Bob can
create the initial state Rd+1, which depends only on y. For simplicity we will assume that r is an even
multiple of d, but the description can be readily adjusted for any value of r. For each s from 1 to r/d,
Alice and Bob do the following:

• If s is odd then this is Bob’s turn. Bob first simulates the computation of Pi in A up to step
t = (s − 1)d + i − 1, for each i ∈ {2, . . . , d + 1}. For each odd i ∈ {2, . . . , d + 1}, Bob then
sends to Alice the message register of Pi. Bob then proceeds with the simulation and simulates
the computation of Pi in A up to step t = (s− 1)d+ i, this time for each i ∈ {1, . . . , d}. For any
even i ∈ {1, . . . , d}, Bob sends to Alice the message register of Pi. Finally, Bob sends to Alice
the private register of Pi for each i ∈ {1, . . . , d}. Note that all the communication from Bob to

17



Alice can be concatenated into one message of O(d(bw + s)) qubits.

• If s is even then this is Alice’s turn. Alice first simulates the computation of Pi in A up to step
t = sd− i, for each i ∈ {0, . . . , d− 1}. For any odd i ∈ {0, . . . , d− 1}, Alice then sends to Bob
the message register of Pi. Alice then proceeds with the simulation and simulates the computation
of Pi in A up to step t = sd− i+1, this time for each i ∈ {1, . . . , d}. For any even i ∈ {1, . . . , d},
Alice sends to Bob the message register of Pi. Finally, Alice sends to Bob the private register of Pi

for each i ∈ {1, . . . , d}. Note that all the communication from Alice to Bob can be concatenated
into one message of O(d(bw + s)) qubits.

After all those steps, Alice has received all the messages needed to complete the computation done by
node A in Algorithm A. She completes the computation, decides her output (as done by node A in A),
and sends it to Bob.

Protocol P uses O(r/d) messages and simulates Algorithm A, i.e., computes the function f . Its
communication complexity is O(r/d× d(bw + s)) = O(r(bw + s)) qubits.

6.2 Proof of Theorem 3

We are now ready to give the proof of Theorem 3.

Proof of Theorem 3. Let {Gn}n≥1 be the family of graphs that realizes the (b, k, d1, d2)-reduction from
disjointness to diameter computation of Theorem 9. This means that we have b = Θ(log n), k = Θ(n),
d1 = 4 and d2 = 5. We will use below the same notations as in Definition 3.

Let d be any positive integer such that d ≤ n. Assume that there exists an r-round quantum algo-
rithm A that decides if the diameter of a network is at most d+ d1 or at least d+ d2. For any k ≥ 0, we
will use this algorithm to construct an r-round algorithm that computes the disjointness function DISJk in
the model described in Section 6.1 with d+2 players A,P1, . . . , Pd, B and bandwidth bw = Θ(b log n).
Let x ∈ {0, 1}k and y ∈ {0, 1}k be the inputs of nodes A and B, respectively.

Consider the bipartite graph Gn(x, y), which has b edges between Un and Vn. We modify this
graph to obtain a new graph G′

n(x, y) by replacing each of these b edges by a path of length d + 1
corresponding to d new nodes (see Figure 8 for an illustration). Note that G′

n(x, y) contains n′ = n+ bd
nodes, i.e., the quantity n does not correspond anymore to the size of the network considered. This point
can nevertheless be ignored since b = Θ(log n) in our construction, which implies n′ = Θ(n log n), and
since we ignore logarithmic terms in our lower bound.

The protocol works as follows. First note that the players can jointly construct the graph G′
n(x, y):

A can construct the subgraph induced by Un, B can construct the subgraph induced by Vn, and the inter-
mediate nodes can naturally be partitioned in d vertical layers constructed by P1, . . . , Pd (see Figure 8).
Nodes A,P1, . . . , Pd, B will thus simply simulate the computation of A on G′

n(x, y) in r rounds. At the
end of simulation A and B obtain the result of the computation by A on G′

n(x, y). From our assumption
on A, this enables them to decide whether the diameter of the network is at most d+d1 or at least d+d2
in r rounds and with at most s qubits of memory per node, and thus to compute DISJk(x, y) with the
same complexity. Theorem 11 therefore implies the existence of a two-party quantum protocol for DISJk
with O(r/d) rounds and total quantum communication complexity O(r(b log n+ s)). From Theorem 5,
we conclude that

r(b log n+ s) = Ω̃

(
k

r/d
+ r/d

)
,

which implies r = Ω̃(
√
kd/(b+ s)). The statement of Theorem 3 directly follows, since b = Θ(log n)

and k = Θ(n).

18



...

...

...

...

...

...

A P1 P2 Pd−1Pd B

Un Vn

Figure 8: Example of graph G′
n(x, y). Here b = 6: there are 6 edges between Un and Vn in Gn(x, y),

and each of these edge is replaced by a path of length d+ 1 in G′
n(x, y).
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