Exact and Approximate Testing/Correcting of
Algebraic Functions: A Survey

Marcos Kiwi* *, Frédéric Magniez' **, and Miklos Santha ***

* Dept. Ing. Matematica, U. Chile & Ctr. Modelamiento Mateméatico, UMR 2071
UChile-CNRS, Santiago 170-3, Chile.
¥ CNRS-LRI, UMR 8623 Université Paris-Sud, 91405 Orsay, France.

mkiwi@dim.uchile.cl {magniez,santha}@lri.fr

Abstract. In the late 80’s Blum, Luby, Rubinfeld, Kannan et al. pio-
neered the theory of self-testing as an alternative way of dealing with the
problem of software reliability. Over the last decade this theory played a
crucial role in the construction of probabilistically checkable proofs and
the derivation of hardness of approximation results. Applications in ar-
eas like computer vision, machine learning, and self-correcting programs
were also established.

In the self-testing problem one is interested in determining (maybe prob-
abilistically) whether a function to which one has oracle access satisfies
a given property. We consider the problem of testing algebraic functions
and survey over a decade of research in the area. Special emphasis is
given to illustrate the scenario where the problem takes place and to the
main techniques used in the analysis of tests. A novel aspect of this work
is the separation it advocates between the mathematical and algorithmic
issues that arise in the theory of self-testing.

1 Introduction

The issue of program (software) reliability is probably just as old as the theory of
program design itself. People have spent and continue to spend considerable time
on finding bugs in programs. But, the conception of a really satisfying theory
for handling this problem remains a hard and elusive goal. Besides professional
programmers, users would also like to dispose of tools which could enable them to
efficiently address this task. Since they are usually not experts, these tools should
ideally be less complicated than the ones used in the programs themselves. The
fact that programs are becoming more and more involved obviously presents an

* Gratefully acknowledges the support of Conicyt via Fondecyt No. 1981182 and Fon-
dap in Applied Mathematics, 2000.

** Partially supported by the EC thematic network RAND-APX IST-1999-14036. The
participation at the Summer School was founded by the LRI (Orsay) and the IPM
(Tehran).

*** Partially supported by the EC thematic network RAND-APX IST-1999-14036. The
participation at the Summer School was founded by the EGIDE (Paris) and the IPM
(Tehran).

additional difficulty. Nonetheless, several approaches have been considered and
are used in practice. Each of them have different pros and cons. None is totally
satisfactory.

The method of program verification proceeds through mathematical claims
and proofs involving the behavior of a program. In principle this method could
perfectly achieve the desired task once the program has been proven to behave
correctly on all possible inputs. Another advantage of this approach is that the
verification takes place only once, before the program is ever executed. Unfor-
tunately, establishing such proofs turns out to be extremely difficult, and in
practice it has only been achieved for a few quite simple programs. Also, requir-
ing that programmers express their ideas in mathematically verifiable programs
is probably not a realistic expectation. Moreover, there is no protection against
errors caused by hardware problems.

Traditional program testing selects a few (sometimes random) inputs, and
verifies the program’s correctness on these instances. The drawbacks of this
approach are fairly obvious. First, there is a priori no reason that the correctness
on the chosen instances would imply correctness on instances which were not
tested. Second, testing the correctness on the chosen instances usually involves
another program which is believed to execute perfectly its task. Clearly, there is
some circularity in this reasoning: relying on the correctness of another program
is using a tool which is just as powerful as the task that was set to be achieved.
Finally, hardware based errors might not be detected until it is too late.

In the late eighties a significantly novel approach, the theory of program
checking and self-testing/correcting, was pioneered by the work of Blum [Blu88],
Blum and Kannan [BK89] and Blum, Luby, and Rubinfeld [BLR90]. This theory
is meant to address different aspects of the basic problem of program correctness
via formal methods by verifying carefully chosen mathematical relationships be-
tween the outputs of the program on randomly selected inputs. Specifically, con-
sider the situation where a program P is supposed to compute some function f. A
checker for f verifies whether the program P computes f on a particular input x;
a self-tester for f verifies whether the program P is correct on most inputs; and
a self-corrector for f uses a program P, which is correct on most inputs, to
compute f correctly everywhere. All these tasks are supposed to be achieved
algorithmically by probabilistic procedures, and the stated requirements should
be obtained with high probability. Checkers and self-testers/correctors can only
access the program as a black box, and should do something different and simpler
than to actually compute the function f.

More than a decade after the birth of this new approach, one can state with
relatively high assurance that it has met considerable success both in the theo-
retical level and in practice. The existence of efficient self-testers was established
in the early years of the theory for a variety of mostly algebraic problems, in-
cluding linear functions and polynomials. These results which were first obtained
in the model of exact computations were later partly generalized to more and
more complicated (and realistic) models of computations with errors. Self-testers
were heavily used in structural complexity, paving the way for the fundamen-

tal results characterizing complexity classes via interactive and probabilistically
checkable proofs. These results also had remarkable and surprising consequences
— they played a crucial role in the derivation of strong non—approximability
results for NP-hard optimization problems. In recent years, the theory of self—
testing has evolved into what is called today property testing, where one has to
establish via a few random checks whether an object possesses some given prop-
erty. Among the many examples one can mention numerous graph properties
such as bipartiteness or colorability; monotonicity of functions, or properties of
formal languages.

On the practical side, self-testers/correctors were constructed for example for
a library of programs computing standard functions in linear algebra [BLRI0].
The viability of the approach was also illustrated in the study by Blum and
Wassermann [BW97] of the division bug of the first Pentium processors. They
showed that this problem could have been detected and corrected by the self—
testing/correcting techniques already available at that time. Also, the self-tester
of Ergiin [Erg95] for the Discrete Fourier Transform is currently used in the soft-
ware package FFTW for computing reliably fast Fourier transformations [FFT].

In this survey we review the most important results and techniques that
arise in self-testing/correcting algebraic functions, but we do not address the
subject of checking since the existence of a self-tester/corrector directly implies
the existence of a checker. This work also contains some new results about self—
correcting, but its main originality lies in the systematic separation it advocates
between the purely mathematical and the algorithmic/computational aspects
that arise in the theory of self-testing. Also, we do not include any specific
computational restriction in our definitions of self-testers/correctors. Instead, we
think it is better to give precise statements about the algorithmic performance
of the self-testers/correctors constructed. The advantage of this approach is that
it allows to independently address different aspects of self-testers/correctors.

This work will be divided into two main parts: the first one deals with ex-
act, and the second with approximate computations. In both models, our basic
definition will be for testing function families. In the exact model we first prove
a generic theorem for constructing self-testers. This method requires that the
family to be tested be characterized by a (property) test possessing two specific
properties: continuity and robustness. These properties ensure that the distance
of a program from the target function family is close to the probability that
the program is rejected by the test, which in turn can be well approximated by
standard sampling techniques. After illustrating the method on the benchmark
problem of linearity, we address the questions of self-correcting linear functions,
and a way to handle the so-called generator bottleneck problem which is of-
ten encountered when testing whether a program computes a specific function.
Afterwards, we study self-testers for multiplication and polynomials.

The basic treatment of the approximate model will be analogous. The gen-
eral notion of a computational error term will enable us to carry this out in
several models of approximate computing, such as computations with absolute
error, with error dependent on the input size, and finally with relative error.

We will emphasize the new concepts and techniques we employ to deal with the
increasing difficulties due to the changes in the model. In particular, we will
have to address a new issue that arises in approximate testing: stability. This
property ensures that a program approximately satisfying a test everywhere is
close to a function which exactly satisfies the test everywhere. We formalize here
the notion of an approximate self-corrector. In our discussion of approximate
self-testers we again address the linearity testing problem in (almost) full detail,
whereas for polynomials we mostly simply state the known results. On the other
hand, we address in some detail the issue of how to evaluate rapidly the test
errors in the case of input size dependent errors. In the case of relative error
we discuss why the standard linearity test, which works marvelously well in all
previously mentioned scenarios, has to be replaced by a different one.

In the last section of this work we briefly deal with two subjects closely related
to self-testing: probabilistically checkable proofs and property testing. Proba-
bilistically checkable proofs heavily use specific self-testing techniques to verify
with as few queries as possible whether a function satisfies some pre-specified
properties. Property testing applies the testing paradigm to the verification of
properties of combinatorial objects like graphs, languages, etc. We conclude this
survey by describing the relation between self-testing and property testing and
mentioning some recent developments concerning this latter framework.

2 Exact Self-testing

2.1 Introduction to the model

Throughout this section, let D and R be two sets such that D is finite, and let C
be a family of functions from D to R. In the testing problem one is interested
in determining, maybe probabilistically, how “close” an oracle function f : D —
R is from an underlying family of functions of interest 7 C C. The function
class F represents a property which one desires f to have. In order to formalize
the notion of “closeness,” the concept of distance is introduced. Informally, the
distance between f and F is the smallest fraction of values taken by f that need
to be changed in order to obtain a function in F. For a formal definition, let
Pr,c, 4 [E,] denote the probability that the event E, occurs when a is chosen
at random according to the distribution D over A (typically, D is omitted when
it is the uniform distribution).

Definition 1 (Distance). Let P, f € C be two functions. The distance between
P and f is

Dist(P, f) = Pr [P(x) # f(x)].
If F C C, then the distance of P from F is

Dist(P,) = Inf Dist(P, f).

A self-tester for a function class F C C is a probabilistic oracle program T that
can call as a subroutine another program P € C, i.e., can pass to P an input x
and is returned in one step P(z). The goal of T is to ascertain whether P is
either close or far away from F. This notion was first formalized in [BLR90].

Definition 2 (Self-tester). Let F C C, and let 0 < n < n' < 1. An (n,n)-
self-tester for F on C is a probabilistic oracle Turing machine T such that for
every P € C and for every confidence parameter 0 < vy < 1:

— if Dist(P, F) <, then Pr [T"(y) = Goop] > 1—1~;

— if Dist(P, F) > n/, then Pr [T"(y) =BaD] > 1 —~,

where the probabilities are taken over the coin tosses of T'.

Self-Tester T'

GOOD/BAD

GOOD grey zone BAD
S >

0 7 Ul 1 Dist(P,F)

Fig. 1. Definition of an (n,n’)-self-tester.

One of the motivations for building self-testers is to make it possible to
gain evidence that a program correctly computes a function f on a collection
of instances without trying to prove that the program is correct on all possible
inputs. However, this raises the question of how to determine that the self—
tester is correct. One way around this issue is to ask for the self-tester to be
simpler than any correct program for f. Unfortunately simplicity is an aesthetic
notion difficult to quantify. Thus, Blum suggested forcing the self-tester to be
different from any program computing f in a quantifiable way. This leads to
the following definition [Rub90]: A self-tester T is quantifiably different with
respect to F, when for all programs P the incremental time taken by TT is
smaller than the fastest known program for computing a function in F.' Still, this
requires the design of equally good self-testers for both efficient and inefficient
programs purportedly computing the same function f. Moreover, self-testers are
useful in contexts other than program verification, e.g., in the construction of

! Ideally, one would prefer that the incremental time be smaller than any correct
program for computing functions in F. But, this is too strong a requirement since
for many problems of interest no non—trivial lower bound on a correct program’s
running time is known.

probabilistically checkable proofs where one is more concerned with the query
complexity and randomness usage rather than the efficiency of the self-testers.
Thus, we simply advocate precisely stating the incremental running time and the
operations carried out by the self-testers in order to let the user judge whether
the self—tester is useful.

Traditionally, the self-testing literature identifies a test with a self-tester.
We do not advocate this practice. We prefer to think of a test as a purely math-
ematical object and keep it separate from its computational implementation, as
proposed in [Kiw96]. This motivates the following:

Definition 3 (Exact test). An exact test (7,C, D) is a set of applications T
from C to the set {GOOD,BAD} together with a distribution D over T. The ezxact
test characterizes the family of functions

Char(T,C,D)={f€eC : tng [t(f) = cooD] = 1}.

The rejection probability of a function P € C by the exact test is defined as

Rej(P,T) = té?rT [t(P) = BAD] .

A probabilistic oracle Turing machine M realizes the exact test T on C if for all
PecC,
Pr [M" returns BAD] = Rej(P, T),

where the probability on the left hand side is taken over the coin tosses of the
machine M.

For the sake of clarity, we specify an exact test via the following mathematically
equivalent very high level algorithm:

Exact Test(P € C,7,D)
1. Choose an element t € 7 according to D.
2. Reject if t(P) = BAD (otherwise accept).

This notation highlights how to realize an exact test: First, randomly sample
from 7 according to D by using only coin tosses and then compute ¢t(P).

In order not to unnecessarily clutter the notation, when referring to an exact
test (7,C,D) we henceforth omit D and assume that it is the uniform distri-
bution over 7. Also, if no reference to a particular distribution is given, by a
randomly chosen element we mean an element chosen uniformly at random. In
addition, when talking about several randomly chosen elements, unless said oth-
erwise, we mean that they are randomly and independently chosen. It is a simple
exercise to extend the framework presented here to the case of non—uniform dis-
tributions over 7. Note however, that if an exact test 7 on C is finite, then in
the uniform distribution case it characterizes the family of functions f € C such
that ¢(f) = G0OD for every t € 7. We also omit C if it is clear from context.
Finally, it is to be understood that a test accepts when it does not reject.

Computing the distance of a function from a family F is usually a hard task.
On the other hand, the rejection probability of a function by an exact test 7
can be easily approximated by standard sampling techniques. Therefore, if an
exact test characterizing some function family is such that for every function the
rejection probability is close to the distance, then by approximating the rejection
probability one can estimate the distance. This allows to probabilistically deter-
mine whether the oracle function is close or far away from the function class F
of interest. In other words, one obtains a self-tester for F. The two important
properties of an exact test which ensure that this approach succeeds are:

Definition 4 (Continuity & robustness). Let T be an ezact test on C char-
acterizing F. Let 0 < 1,6 < 1 be constants. Then T is (n,d)—continuous if for
all P € C,

Dist(P,F) <1 = Rej(P,T) <0,

and it is (n,d)-robust if for all P € C,
Rej(P,7) <6 = Dist(P,F) <n.

Thus, proving continuity of an exact test implies upper bounding the rejection
probability of the exact test in terms of the relevant distance. On the contrary,
to prove robustness one needs to bound the relevant distance in terms of the
rejection probability of the exact test. In fact, we advocate explicitly stating
these bounds as long as the clarity of the writeup is not compromised.

The importance of continuity and robustness was very early recognized in
the self-testing literature. Proving continuity is usually very easy, often people
do not even bother stating it explicitly. The term itself was first used by Mag-
niez [Mag00a]. Robustness on the other hand is quite delicate to establish. The
term itself was coined and formally defined by Rubinfeld and Sudan in [RS92b]
and studied in [Rub94]. Typically, exact tests that are both continuous and ro-
bust give rise to self-testers. We now precisely state this claim. The construction
of most of the known self-testers are based on it.

Theorem 1 (Generic self-tester). Let F C C be a function family and let T
be an exact test on C that is realized by a probabilistic Turing machine M. Let
0<d<d <land0<n<n <1.IfT characterizes F,

— s (n, §)—continuous, and
— (n,¢")-robust,

then there exists an (n,n')-self-tester T for F on C. Moreover, T performs,
for every confidence parameter 0 < v < 1, O(ln(l/’y)%) iterations of M,

counter increments, comparisons, and binary shifts.

Proof. Let 6* = (6 4+ ¢")/2. The self-tester T repeats N-times the computation
of M with program P as oracle. After N repetitions, T' computes the fraction
err of runs which gave the answer BAD. If err > ¢*, then T returns BAD, and
GOOD otherwise. To make the computation of err simple, N is chosen a power

of 2. Moreover, N is chosen large enough so that Rej(P,7) < § (respectively
Rej(P,7) > ¢') implies err < §* (respectively err > 6*) with probability at
least 1 — . Standard Chernoff bound arguments (see e.g. [AS92a, Appendix A])
show that it is sufficient to choose N so that N = O(ln(l/’y)/%). The
work performed by the self-tester consists of at most IV iterations of M, counter
increments, comparisons, and binary shifts.

We now show that T" has the claimed properties. First, assume Dist(P, F) < 7.
The continuity of the exact test implies that Rej(P,7) < 4. Therefore, with
probability at least 1 — v the machine 77 () computes err < §* and returns
GOOD. Suppose now that Dist(P, F) > n’. Since the exact test is (n’,d")-robust,
Rej(P,T) > &'. Therefore, with probability at least 1 — + the machine T (v)
computes err > §* and returns BAD. a

A typical way of specifying an exact test is through a functional equation.
Indeed, let @ : C x N' — R be a functional where N' C U‘kzll DF. The set N is
called the neighborhood set and each of its members is typically referred to as
a neighborhood. The functional @ induces the exact test 7 on C by defining for
every (z1,...,x;) € N the mapping t;, . ., : C — {GOOD,BAD} as

. (P) = GooD, if ®(P,xq,...,x%) =0,
ELyeeesh " | BAD, otherwise,

and letting
T ={te, a: (x1,...,2) E N}

The Exact Test(P) thus becomes:

Functional Equation Test(P,)
1. Randomly choose (z1,...,zx) € N.
2. Reject if (P, x1,...,x) = BAD.

The family of functions characterized by the induced exact test consists of those
functions f € C satisfying the following functional equation:

V(Jfl,...,.’L‘k)E.j\/’, @(f,l‘l,...,xk)zo.

There might be different functionals characterizing the same collection of func-
tions, and not necessarily all of them give rise to equally appealing exact tests.
Indeed, one usually desires that the largest number of values of f that one needs
to know in order to compute &(f, . ..), no matter what f is, be small. If the largest
such number is K, the exact test is called K—local. For example, the exact test
induced by the functional &(f,x,y) = f(x +y) — f(z) — f(y) is 3-local.

Through Theorem 1, functional equations that give rise to exact tests that
are both continuous and robust lead to the construction of self-testers.

For the sake of concreteness, we now introduce one of the most famous
self-testing problems, one that has become the benchmark throughout the self—
testing literature for trying out new techniques, disproving conjectures, etc. —

the so called linearity testing problem. In it, one is interested in verifying whether
a function P taking values from one finite abelian group G into another such
group G’ is a group homomorphism. In other words, whether

Vg, € G, Plg+4g)—Plg)—P(g)=0.

This functional equation gives rise to the following functional equation test:

Linearity Test(P)
1. Randomly choose x,y € G.
2. Reject if P(x +y) — P(x) — P(y) # 0.

The above described exact test was introduced in [BLR90] and is also known as
the BLR test. We will now illustrate the concepts introduced so far as well as
discuss several important issues that arise in connection to testing by focusing
our attention in the study of the Linearity Test.

2.2 Linearity self-testing

Let C denote the collection of functions from G to G’, and let £ be the subset
of those functions that are homomorphisms. By Theorem 1, in order to come
up with a self-tester for £ on C we need only that the Linearity Test is both
continuous and robust. As mentioned before, the continuity of an exact test is
a property which is rather easy to establish. This is also the case for the Lin-
earity Test as shown by the following result from which the (7, 3n)—continuity
immediately follows.

Theorem 2. Let G and G’ be two finite abelian groups and let P,g : G — G’
be such that g is a homomorphism. Then

Pr_[P(e+y) — Ple) ~ P(y) #0] <3 Pr [gle) £ P(a).

Proof. Observe that P(x+y)— P(x)— P(y) # 0 implies that g(z+vy) # P(z+y)
or g(x) # P(x) or g(y) # P(y) and that x + y is uniformly distributed in G for
x,y uniformly and independently chosen in G. To conclude, apply the union
bound. ad

There is nothing very special about the Linearity Test for the above argument
to work. Indeed, suppose that &(f,...) was a functional that gave rise to a K-
local functional equation test. Then, the Functional Equation Test associated
with @ would be (7, Kn)-continuous provided each evaluation of f was performed
on an element chosen uniformly from a fixed subset of f’s domain.

We now turn our attention to the harder task of proving robustness. In doing
so we illustrate the most successful argument known for establishing this prop-
erty — the so called majority function argument [BLR90, Cop89]. All proofs of

robustness based on the majority function argument start by defining a func-
tion g whose value at x takes the most commonly occurring value among the
members of a multiset S, whose elements depend on x and P, i.e.,

g(x) = Maj (s).
SES,

(Here, as well as throughout this paper, Maj,cg (s) denotes the most frequent
among the elements of the multiset .S, ties broken arbitrarily.) Moreover, there
are three clearly identified stages in this type of proof argument. First, one shows
that an overwhelming number of the elements of each S, agree with the most
commonly occurring value in the set, i.e., g(x). Second, it is shown that g is
close to P. Finally, it is shown that g has the property of interest (in the case of
Theorem 3, that ¢ is an homomorphism). The majority argument as well as its
three main stages are illustrated by the following result taken from [BLR9O0].

Theorem 3. Let G and G’ be two finite abelian groups and let P : G — G’ be
an application such that for some constant n < 1/6,

Pr_[P(e+y) — Pla) ~ Ply) £ 0 <1,

Then, there exists a homomorphism g : G — G’ such that

< .
Pr [g() # P(a)] <2
Proof. We define the function g(x) = Maj,cq (P(x +y) — P(y)) . First, we show
that with overwhelming probability P(c+ y) — P(y) agrees with g(c), i.e.,
Prlgle)=Plety)—Ply)]=1-2 (1)
By hypothesis, for randomly chosen z and y in G, we have that P(c+ = +y) —
P(c+x)— P(y) # 0 with probability at most n. Under the same conditions, the
probability that P(c+x+y) — P(c+y) — P(x) # 0 is also upper bounded by 7.
Therefore,
Pé'G [P(c+z)— P(x)=P(c+y) — P(y)] >1-2n.
w’y
Note that Y . (Pryeq [P(c+y) — P(y) = z])? equals the left hand side term
of the previous inequality. By definition of g(c¢) we know that for every z € G’
Pr [P(c+y) — P(y) = 2] < Pr [g(c) = P(c+y) — P(y)].
yeG yeG
Since Yo Prycg [P(c+y) — P(y) = 2] = 1, we obtain (1).
Suppose now, for the sake of contradiction, that the distance between P
and g was greater than 27. By (1), for every = the probability that g(x) =
P(z+y) — P(y) is at least 1/2 when y is randomly chosen in G. Thus,

Pr [Pla+y) = P(@) = P(y) # 0] >,

which contradicts our hypothesis.

Finally, we prove that g is indeed a homomorphism. Fix a,b € G. Apply-
ing (1) three times we get that, with probability at least 1 — 6n when y is
randomly chosen in G, the following three events hold

Pla+y)— P(y),
g(b) = Pla+b+vy)— Pla+y),
gla+b)=Pla+b+y)— Py).

Q

~—~
B

ol
Il

Therefore,

P, [9(a+b) = g(a) +g(b)] > 1 —6n>0.

Since the event g(a+b) = g(a) + g(b) is independent of y, we get that g(a+b) =
g(a) + g(b) must hold. O

Note that the proof of the previous result shows more than what its statement
claims. In fact, the proof is constructive and it not only shows that an homo-
morphism g with the claimed properties exist, but that one such homomorphism
is

g9(x) = 1;46%1 (P(z+y) = P(y)).

Also, observe that a direct consequence of Theorem 3 is that the Linearity Test
is (2, n)-robust provided n < 1/6, or simply (67, n)-robust (for every n > 0) if
one is not so much concerned with the constants. We will use the latter statement
since, rather than derive the best possible constants, in this work we strive to
present ideas as clearly as possible. A similar convention is adopted throughout
this survey for all the tests we discuss.

Corollary 1. Let G and G’ be two abelian groups, let C be the family of all
functions from G to G', and let L C C be the set of homomorphisms. Then, for
every n > 0, there is an (n,19n)-self-tester for L on C which uses for every
confidence parameter 0 < v < 1, O(In(1/v)/n) calls to the oracle program,
additions comparisons, counter increments, and binary shifts.

Proof. The Linearity Test characterizes L since it is induced by the functional
equation

Va,y € G, P(z+y)— P(z) — P(y) =0.

Realizing the Linearity Test just means randomly choosing = and y in G
and verifying whether P(x + y) — P(z) — P(y) = 0. By Theorem 2, the test
is (n, 3n)—continuous and by Theorem 3 it is also (61',n’)-robust. Letting n’ =
(3+1/6)n = 191/6 and applying Theorem 1, the existence of the claimed self-
tester is established. O

2.3 Self-correcting

We saw that for some function classes F, a self-tester can be used to ascertain
whether a program P correctly computes a function in F. As we shall see later
on, self-testing techniques can often be used to verify (probabilistically) whether
a program P computes a specific function g € F on some significant fraction
of its domain. Sometimes in these cases, the program P itself can be used to
compute g correctly with very large probability everywhere in its domain. This
leads to the following:

Definition 5 (Self-corrector). Let F C C be a function family and let n > 0.
An n-self-corrector for F on C is a probabilistic oracle Turing machine T such
that for every P € C, if Dist(P,g) < n for some g € F, then for every x € D
and for every confidence parameter 0 < v < 1, the output TF (z,v) is g(x) with
probability at least 1 — ~.

Note that by definition, in order to possess an n-self-corrector, a family F has
to satisfy that for each function P € C, there exists at most one function g € F
such that Dist(P, g) <.

Below we give an example of a self-corrector for the class of homomorphisms
from one finite abelian group into another. In doing so we illustrate how the
majority function argument discussed in the previous section naturally gives
rise, when applicable, to self-correctors.

Theorem 4. Let G and G’ be two abelian groups, let C be the family of all
functions from G to G', and let L C C be the set of homomorphisms. Then,
for every 0 < n < 1/4 there is an n-self-corrector for L on C which uses for
every confidence parameter 0 < v < 1, O(In(1/7)/(1 — 4n)?) calls to the oracle
program, additions, comparisons, counter increments, and binary shifts.

Proof. For some fixed P € C, let g be the function defined in z € G by g(z) =
Maj,cq (P(z +y) — P(y)).

If Dist(P, £) < n for some 0 < n < 1/4, then there exists only one function
1 € L such that Dist(P,1) < 5. This is a direct consequence of the fact that for
all linear functions [, 1’ € L, since the elements x € G such that [(x) = I'(z) form
a subgroup H of G, either H = G or |H|/|G| < 1/2. Therefore, either I =’ or
Dist(l,1") > 1/2.

The closeness of P to [implies that P(z +y) — P(y) = I(z) for at least half
the elements y in G. Thus, by the definition of g, we get that g = [. Moreover,
Chernoff bounds tell us that for every x € G, the quantity g(x) can be correctly
determined with probability greater than 1 —~ by choosing N = O(In(1/v)/(1—
4n)?) points y; € G and then computing Maj,_; n (P(z +yi) — P(yi)). O

Note that the function g(x) = Maj,cs (P(z +y) — P(y)) played a key role both
in the construction of a self-tester and of a self—corrector for the function class of
homomorphisms. This is a distinctive feature of the majority function argument.
Indeed, recall that this argument is constructive. Specifically, it proceeds by
defining a function g whose value at x takes the most commonly occurring value

among the members of a set S, whose elements depend on x and P. When
successful, this argument suggests that a self—corrector for the function class of
interest is one that on input v and z, for an appropriately chosen N = N(v),
randomly chooses g1,...,gn in S, and returns Maj,_; _ y (9i)-

2.4 Generator test

An extreme case of self-testing is to ascertain whether a program P computes
a fixed function f. This task is usually undertaken in two stages. First, self—
testing techniques are used in order to determine whether P computes, in a
large fraction of its inputs, a function fp in some specific function class F. For
example, when f is a group homomorphism, one checks whether P is close to a
group homomorphism. In the second stage, one ascertains whether fp is indeed
equal to f. To do so it suffices to check that fp and f agree in a collection of
inputs equality over which implies agreement everywhere. The process through
which this goal is achieved is called generator test. This is somewhat complicated
by the fact that one cannot evaluate fp directly but only P which is merely
close and not equal to fp. Self-testing takes care of the first stage while self—
correcting is useful in the second stage. We shall illustrate the technique with
our benchmark linearity testing problem. First, we state a result implicit in the
proof of Theorem 3.

Corollary 2. Let G and G’ be two finite abelian groups, and (e;)1<i<aq be a set
of generators of G. Let f : G — G’ be a homomorphism and P : G — G’ be such
that for some constant n < 1/6,
Pr [Pa+y) — P() — Py) £0] < 1,

Suppose also that g(e;) = f(e;) fori = 1,...,d, where by definition g(x) =
Maj,cq (P(x +y) — P(y)). Then, g = f and

P P < 2n.

Pr [f(x) # P(a)] < 20
Proof. Implicit in the proof of Theorem 3 is the fact that g is an homomorphism
and that Pryeq [g(z) # P(x)] < 2. Since two homomorphisms f,g : G — G’

agree everywhere if and only if they agree on a set of generators of GG, the desired
conclusion follows. ad

The preceding result tells us that the following procedure leads to a continuous
and robust exact test for the linear function f.

Specific Linear Function Test (P, f)
— Linearity Test(P)
1. Randomly choose z,y € G.
2. Reject if P(z+y) — P(z) — P(y) #0.
— Generator Test(P)
1. Fori=1,...,d, reject if P(z +¢;) — P(x) — f(e;) # 0.

The second part of this procedure consists of verifying that the closest linear
function to P coincides with f on a set of generators for the group domain. Thus,
it illustrates an instance of the generator test. The generator test is done on the
corrected program which is computed by the self-correcting process. Indeed,
instead of comparing f(e;) and P(e;) the comparison is done with respect to
P(z + e;) — P(x) for a randomly chosen x. This is necessary since P although
close to an homomorphism f’ # f might agree with f over all generators — but,
in this case P(x + ¢;) — P(z) will most likely agree with f’(e;) for a randomly
chosen z. Finally, observe how the Linearity Test simplifies the task of verifying
whether P is close to the homomorphism f. Indeed, when P is known to compute
on a large fraction of the inputs an homomorphism g, it is sufficient to check
that g equals f on a set of generators whose size can be very small (constant)
compared to the size of the whole domain.

Corollary 3. Using the notation of Corollary 2, the Specific Linear Func-
tion Test characterizes f, is (n, (3 + d)n)—continuous, and (61, n)-robust.

Nonetheless, when the number of generators d is large (for example grows with
the size of the group), the number of calls to the program in the Generator
Test will be large. This situation is called the generator bottleneck.

2.5 Generator bottleneck

In some cases, it is possible to get around the generator bottleneck using an
inductive test. This is essentially another property test which eliminates the
need of testing the self-corrected function on all the generators. We illustrate this
point for the case of the Discrete Fourier Transform (DFT). The method and the
results in this subsection are due to Ergiin [Erg95]. For a more detailed discussion
on the possibilities to circumvent the generator bottleneck by an inductive test
see [ESKO00].

Let p be a prime number and fix some x = (xg,...,2,) € Zg“, where z; # x;
for i # j. Then the linear function DFT, : Z7*! — ZZH maps the coefficient
representation a = (ag,...,a,) € Z;}*l of a degree n polynomial Q(X) = ag +

a1 X +...+a, X" into its point-value representation (Q(zo), ..., Q(zn)) € ZiH.
The group Z;L‘H has n + 1 generators which can be chosen for example as ey =
(1,0,...0),...,e, = (0,...,0,1). Applying the Generator Test in order to
verify whether a linear function g is equal to DFT, would require checking
whether g(e;) = DFT,(e;) for ¢ = 0,...,n, and therefore the number of calls
to the program would grow linearly with the degree of the polynomial. The key
observation that helps to overcome this problem is that the generators e, . .., e,
can be obtained from each other by a simple linear operation and that the same
is true for the values of DFT, on eg,...,e,. We now explain in detail how
to take advantage of this fact. First, we need to introduce some notation. For
a = (ag,...,an) € Zy*' let the rotation to the right vector be ROR(a) =
(an,ag,...,an—1) and let -a = (zpaq, ..., Tpa,). Note that e;11 = ROR(e;) for
i=0,...,n—1, that DFT, maps e to (1,1,...,1), and most importantly, that

DFT, sends ROR(a) to z-DFT,(a) for all a = (ao,...,an) € Zy*! with a,, = 0.
Therefore, to verify whether a linear function g is equal to DFT, it suffices to
check whether g maps eg to (1,1,...,1) and that g(ROR(a)) = z - g(a) for all
a with a,, = 0. The robustness of this testing procedure is guaranteed by the
following:

Theorem 5. Let x € Zpt! and let P : Z3+Y — Z2H! be an application such
that for some constant n < 1/6,

Pr [P(a+1)~ P(a) ~ P(b) #0] <1,

a,bEZ;“*'1

Pr [g(ROR() 2+ g()] < 1/2
€LY ey =0
where g(a) = Maj,czn i1 (P(a+b) — P(b)) for all a € Z2 and ¢(1,0,...,0) =
(1,...,1). Then, g = DFT, and

Pr [DFT,(a) # P(a)] < 21

aczy ™!

Proof. Theorem 3 and the comment following its proof guarantee that g is linear
and that P is close to g. The linearity of g implies that for every a,b € Zg“,
we have g(ROR(a + b)) = g(ROR(a)) + g(ROR(D)). By linearity we also have
z-(a+b)=x-a+z-bfor every a,b € ZZ“. Thus, the second probability bound
in the hypotheses of the theorem implies that for all a with a,, = 0,

Pr [9(ROR(a)) = g(ROR(c)) + g(ROR(a — ¢)) = x - g(a)] > 0.

ceZptt e, =0

Therefore, g(ROR(a)) = = - g(a) always holds. To conclude the proof observe
that the latter identity and the fact that ¢(1,0,...,0) = (1,...,1) imply that
g = DFT,. 0

The previous result suggests the following exact test in order to ascertain whether
a program computes DFT,.

DFT, Test(P)
1. Randomly choose a,b € Zpt!.
2. Reject if P(a+b) — P(a) — P(b) #0.
3. Reject if P((1,0,...,0) +a) — P(a) — (1,...,1) #0.
4. Randomly choose ¢ € Z2*! such that ¢, = 0.
5. Reject if P(ROR(c) +a) — P(a) —z - (P(c+b) — P(b)) # 0.

It follows that,

Corollary 4. The DFT, Test is such that it characterizes DFT,,, is (n,6n)-
continuous, and (61, n)-robust.

2.6 Beyond self-testing linearity

So far we have discussed the testing problem for collections of linear functions.
This was done for ease of exposition. The arguments and concepts we have
described are also useful in testing non—linear functions. We now illustrate this
fact with two examples.

Multiplication over Z,,: The Linearity Test and the Generator Test can
be combined to yield various self-testers. One such example allows to ascertain
whether a program computes the multiplication function mult over Z,, i.e., the
function that associates to (x,y) € Z, X Z, the value xy (arithmetic over Z,).
The exact test that achieves this goal is realized by the following procedure
which is due to Blum, Luby, and Rubinfeld [BLRI0]:

Multiplication Test(P)
1. Randomly choose x,y, z € Z,,.
2. Reject if P(z,y+ 2) — P(x,y) — P(x, z) # 0.
3. Reject if P(z,y+1) — P(x,y) —x #0.

Corollary 5. The Multiplication Test is such that it characterizes mult, is
(n, 4n) —continuous, and (61, n)-robust.

Proof. For a fixed z € Zy, let l,, : Z,, — Z, be the linear function defined by
l.(y) = xy. Let d, be the distance Dist(P(z,-),l,) and let e, be the rejection
probability of the test for randomly chosen y, z € Z,,. By Corollary 3, we know
that e;/4 < d, < 6e, for all . Observe now that E,cz [d;] = Dist(P, mult)
and that E,cyz, [e,] is the probability that the test rejects P. The desired result
follows. O

Polynomials: Let F be a field and let f : F — F be a function. We adopt the
standard convention of denoting the forward difference operator by V. Hence,
by definition, V,f(z) = f(z +t) — f(z) for x,t € F. If we let V¢ denote the
operator corresponding to d applications of V, and for ¢ € F? denote by V.
the operator corresponding to the applications of Vi ,...,V,,, then it is easy to
check that:

1. V., is linear,
2. V¢, and V¢, commute,

3. th,t? = Vt1+t2 - th - Vtz, and
d

LV = Z(l)“(i) Vit

k=0

'S

The usefulness of the difference operator in testing was recognized by Rubinfeld
and Sudan [RS92b]. They used it to give a more efficient self—corrector for poly-
nomials over finite fields than the one proposed by Lipton [Lip91]. Its utility is
mostly based on two facts: V;f(z) can be computed efficiently, and it gives rise
to the following well known characterization of polynomials:

Theorem 6. Let p be a prime number, let f : Z, — Z, be a function, and let
d <p—1. Then f is a degree d polynomial over Z,, if and only if Vf""lf(:z:) =0
for all x,t € Zy.

The preceding theorem gives a functional equation characterization of degree d
polynomials. Hence, it gives rise to the following functional equation test:

Degree d Polynomial Test(P)
1. Randomly pick z,t € Z,,.
2. Reject if VI P(x) # 0.

The above described exact test was proposed and analyzed in [RS92b]. Let us
now discuss shortly its properties. For the sake of simplicity, consider the follow-
ing particular case where d = 1:

Affine Test(P)
1. Randomly pick z,t € Z,.
2. Reject if P(x+2t) —2P(x+t)+P(z) # 0.

Instead of choosing t as above it is tempting to pick two values t; and to also
in Z, and check whether P(z +t1 +t2) — P(x +t1) — P(x +t2) + P(x) # 0. This
is not an acceptable verification procedure in the self-testing context since it
is essentially equivalent to affine interpolation (polynomial interpolation in the
general case). Hence, it is not really computationally simpler than computing
the functions of the class one wishes to test. On the contrary, the Degree d
Polynomial Test is computationally more efficient than computing a degree d
polynomial. Moreover, it requires less evaluations of the program P. This justifies
the use of the Vf“ operator in testing degree d polynomials.

Since the Degree d Polynomial Test is (d+2)-local, the standard approach
for proving continuity of such tests yield that it is (1, (d + 2)n)-continuous. The
robustness of the test is guaranteed by the following result of Rubinfeld and
Sudan [RS92Db):

Theorem 7. Let p be a prime number, let P : Z, — Z, be a function, and let
d < p—1. If for some n < 1/2(d + 2)?,

Pr [V{T'P(z) £0] <,

T, t€Zy

then there exists a degree d polynomial g : Z,, — Zy such that
Pr [g(x) £ P(a)] < 20.
TEZLy

Proof (Sketch). The proof is a standard application of the majority function
argument albeit algebraically somewhat involved. We only describe the main
proof steps. For i = 0,...,d+1, let a; = (—1)"*'(*T"). Note that V{ ™ P(z) = 0
if and only if P(x) = Zflill a; P(x +it). This motivates the following definition:

d+1
g(z) = Maj (Z a; P(x + zt)) .

tez, \ iy

The proof proceeds in the typical three stages that application of the major-
ity function argument gives rise to. First, one shows that with overwhelming
probability Z;Hll a;P(x + it) agrees with g(z), in particular that

d+1

Za, (x +it)

Second, one establishes that the distance between g and P is at most 27. Finally,
one proves that

>1—2(d+1)n.

tEZ

d+1
Zazg x—i—zt)—O] >1-2(d+2)°n>0

tl)t2 EZP

Since the event ZZ 0 Y a;g(x + it) = 0 is independent of t; and t,, we get that
S qig(x + it) = 0 must hold. The desired conclusion follows. 0

3 Approximate self-testing

Initially it was assumed in the self-testing literature that programs performed
exact computations and that the space of valid inputs was closed under the
standard arithmetic operations, i.e., was an algebraically closed domain. How-
ever, early on it was recognized that these assumptions were too simplistic to
capture the real nature of many computations, in particular the computation of
real valued functions and of functions defined over finite rational domains (finite
subsets of fixed point arithmetic of the form {i/s : [i| < n,i € Z} for some
n,s > 0).

Self-testers/correctors for programs whose input values are from finite ra-
tional domains were first considered by Lipton [Lip91] and further developed
by Rubinfeld and Sudan [RS92b]. In [Lip91] a self-corrector for multivariate
polynomials over a finite rational domain is given. In the same scenario [RS92b]
describes more efficient versions of this result as well as a self-tester for uni-
variate polynomials. The study of self-testing in the context of inexact com-
putations was started by Gemmell et al. [GLRT91] who provided approximate
self—testers/correctors for linear functions, logarithmic functions, and floating
point exponentiation. Nevertheless, their work was limited to the context of alge-
braically closed domains. Program checking in the approximate setting was first
considered by Ar et al. [ABCG93] who provided, among others, approximate
checkers for some trigonometric functions and matrix operations. Considering
both aspects simultaneously led to the development of approximate self-testers
over finite rational domains by Ergiin, Kumar, and Rubinfeld [EKR96]. Among
other things, they showed how to perform approximate self-testing with abso-
lute error for linear functions, polynomials, and for functions satisfying addition
theorems.

We now begin a formal discussion of the theory of approximate testing. Our
exposition follows the presentation in [Mag00a] which has the advantage of en-
compassing all models of approximations studied in the self-testing literature.

Throughout this section, let D be a finite set and let R be a metric space.
The distance in R will be denoted by d(-,-), When R is also a normed space, its
norm will be denoted by |-||. As usual we denote by C the family of functions
from D to R.

As in the case of the exact testing problem we are again interested in de-
termining, maybe probabilistically, how “close” a program P : D — R is to an
underlying family of functions of interest 7 C C. But now, the elements of R
might be hard to represent (for example, when F is a family of trigonometric
functions). Thus, any reasonable program P for computing f € F will necessar-
ily have to compute an approximation. In fact, P might never equal f over D
but still be, for all practical purposes, a good computational realization of a
program that computes f. Hence, the way in which we captured the notion of
“closeness” in Section 2, that is, Definition 1, is now inadequate. Thus, to ad-
dress the testing problem for R valued functions we need a different notion of
incorrect computation. In fact, we need a definition of error. This leads to the
following:

Definition 6 (Computational error term). A computational error term
for C is a function ¢ : D x R — RY. If P,f : D — R are two functions,
then P e—computes f on x € D if d(P(x), f(x)) < e(z, f(z)).

This definition encompasses several models of approximate computing that de-
pend on the restriction placed on the computational error term e. Indeed, it
encompasses the

— exact computation case, where e(z,v) = 0,

— approximate computation with absolute error, where e(x,v) = g¢ for some
constant gg € R,

— approximate computation with error relative to input size, where e(z,v) =
e1(z) for some function 1 : D — RT depending only on z,

— approximate computation with relative error, where R is a normed space
and e(z,v) = 0||v]| for some constant § € RT.

Based on the definition of computational error term we can give a notion of
distance, similar to that of Definition 1, which is more appropriate for the context
of approximate computation.

Definition 7 (¢s—Distance). Let P, f € C, let D' C D, and let € be a computa-
tional error term. The e-distance of P from f on D’ is?

Dist(P, f, D’ &) = PB [P does not e—compute f on x].
zeD’
If F CC, then the e—distance of P from F on D’ is
Dist(P, F, D’ &) = Inf Dist(P, f, D’ ¢).
feF
2 The need for considering the values taken by P over a subset D’ of f’s domain is

a technical one. We discuss this issue later on. In the meantime, the reader might
prefer to simply assume D’ = D.

The new notion of distance naturally gives rise to extensions of the notions
introduced in Section 2. In what follows, we state these extensions.

Definition 8 (Approximate self-tester). Let F C C, let D' C D, let ¢
and ' be computational error terms and let 0 < n < 7’ < 1 be constants. A
(D,e,n; D', &', ") ~(approximate) self-tester for F on C is a probabilistic oracle
Turing machine T such that for every P € C and for every confidence parameter
0<y<1:

— if Dist(P, F,D,¢e) <n, then Pr [Tp(fy) = GOUD] >1—7;
— if Dist(P, F,D',¢') >/, then Pr [T¥(y) =BaD| > 1—1,

where the probabilities are taken over the coin tosses of T'.

Definition 9 (Approximate test). An approximate test (A,C, D, 3) is a set
of applications A from C to RT with a distribution D over A and a test error,
i.e., a function 3: A x C — R*. The approzimate test characterizes the family
of functions

Char(4,C.D) = {f €C : Pr [t(f)=0] =1},

The rejection probability of a function P € C by the approximate test is defined
as

Rej(P, A, 3) [t(P) > B(t, P)].

= Pr
tep A
A probabilistic oracle Turing machine M realizes the approzimate test if for all
PecC,
Pr [MP returns BAD| = Rej(P, A, 3),

where the probability on the left hand side is taken over the internal coin tosses
of the machine M.

As in the case of exact testing, we specify approximate tests through the following
high level description:

Approximate Test(P € C, A, D, 3)
1. Choose an element t € A according to D.
2. Reject if t(P) > B(t, P).

Note that one needs to compute the test error for realizing the approximate
test. Also, exact tests are a particular case of approximate tests where the test
error is 0 everywhere, GOOD is identified with 0 and BAD with 1.

In order not to unnecessarily clutter the notation, we again omit C, D, and 3
whenever clear from context and restrict our discussion to the case where D is
the uniform distribution.

The robustness and continuity properties of exact tests are now generalized
as follows:

Definition 10 (Continuity & robustness). Let € be a computational error
term for C, let D' C D, and let (A,[3) be an approzimate test on C which
characterizes the family F. Also, let 0 < 1,5 < 1 be constants. Then, (A,) is
(n, 8)—continuous on D’ with respect to e if for all P € C,

Dist(P,F,D’,e) <n = Rej(P,A,B) <4,
and it is (n,d)-robust on D’ with respect to e if for all P € C,
Rej(P, A,) <6 = Dist(P,F, D') < 1.

The continuity and the robustness of an approximate test give rise to the con-
struction of approximate self-testers through the following:

Theorem 8 (Approximate generic self-tester). Let 0 < § < ¢’ < 1 and
0<n <7 <1 be constants, C be a family of functions from a finite set D to a
metric space R, € and €' be computational error terms for C, and D' C D. Also,
let (A, B) be an approximate test on C that is realized by the probabilistic Turing
machine M. If (A, B) characterizes the family F,

— s (n, 0)—continuous on D with respect to e, and
— (0, 8")—robust on D’ with respect to &,

then there exists a (D,e,n; D', &', n')-self-tester for F on C which performs for
every confidence parameter 0 < v < 1, O(ln(l/v)%) iterations of M,

counter increments, comparisons, and binary shifts.
Proof. Similar to the proof of Theorem 1. O

As in the case of exact self-testing, realizable approximate tests are often
constructed through functional equations. Specifically, for D’ C D, let @ : C x
N — R be a functional where N C ULle (D')* is a collection of neighborhoods.
The functional @ and a function 5’ : NN — RT induce an approximate test
(A, B) by defining for all (x1,...,zx) € N the mapping t,,, ., (f) : F — RT
as ty, 2. (f) = |9(f,21,...,2)|, making B(ty, &, f) = B'(z1,...2), and
letting

A=A{ty, . ap:(@1,...,21) €N}

By definition,
Char(A) ={fe€C : Y(x1,...,2x) €N, &(P,xq,...,21) =0}

If @ and ' are efficiently computable, then a Turing machine M realizes the
induced approximate test by choosing (z1,...zx) € N and comparing the value
|P(f, x1,...,2x)| to F(x1,...2x). When (A, 3) is continuous and robust with
respect to some computational error term, Theorem 8 can be applied to derive
a corresponding approximate self-tester. The complexity of the self-tester will
ultimately depend on the complexity of computing @ and 3'.

The approximate testing problem is technically more challenging and in-
volved than the exact testing problem. We shall try to smoothly introduce the
new aspects that one encounters in the approximate testing scenario. Thus, the
discussion that follows is divided into three parts: the case of absolute error,
the case of error relative to the input size, and finally the case of relative error.
The discussion becomes progressively more involved. We shall try to stress the
common arguments used in the different cases, but will discuss each one in a
separate section.

Before proceeding, it is worth pointing out two common aspects of all known
analyses of approximate tests. Specifically, in their proofs of robustness. First,
they are considerably more involved than in the case of exact testing. Second,
there are two clearly identifiable stages in such proofs. In each stage, it is shown
that the approximate test exhibits one of the properties captured by the following
two notions:

Definition 11 (Approximate robustness). Let ¢ be a computational error
term for C and D' C D. Let (A,) and (A',3") be approximate tests on C,
both characterizing the family F. Let 0 <n,d < 1 be constants. Then, (A,) is
(n, 6)—approximately robust for (A’,3") on D' with respect to € if for all P € C,

Rej(P, A, 8) <6 = Jg e, Dist(P,g,D’,e) <n, Rej(g, A", ') = 0.

Definition 12 (Stability). Let e be a computational error term for C and D’ C
D. Let (A,) be an approzimate test on C which characterizes the family F.
Then, A is stable on D’ with respect to € if for all g € C,

Rej(g, A, 3) =0 = Dist(g, F, D', ¢) = 0.

Note that stability is nothing else than (0,0)-robustness. A direct consequence
of these definitions is that if (A,) is approximately robust for (A’, 3') with
respect to ¢ and (A’, 3') is stable with respect to €', then (A,) is also robust
with respect to e-+¢’.

We henceforth restrict our discussion to real valued functions whose domain
is D, ={t € Z : |i] < n} for some n > 0. Our results can be directly extended
to finite rational domains. We conclude this section by stating some general facts
that play a key role in the design and analysis of all approximate tests.

3.1 Basic tools

Here we state two simple lemmas which will be repeatedly applied in the forth-
coming sections.

Definition 13 (Median). For f : X — R denote by Med,ecx (f(x)) the median
of the values taken by f when x varies in X, i.e.,

lg\c/lee}c(i(f(as)) =Inf{a e R: xfg{ [f(z) >a] <1/2}.

Lemma 1 (Median principle). Let D, D’ be two finite sets. Let € > 0 and
F:Dx D' —R. Then,

P Med (F <2 P F .
Py (IMeg (Pl > <2 Pr (P>

Proof. Observe that

P Med (F <P Pr [|F 1/2
Py (1Mo (Pl > 2| < Py | Py 0P| > 2> 172

and apply Markov’s inequality. a

Lemma 2 (Halving principle). Let 2 and S denote finite sets such that S C
2, and let ¢ be a boolean function defined over {2. Then,

Pr [j(z)] < 2 Pr ().

z€s =S| zen
Proof.
Pr (o)) > Pr [oa)le € 5| P [0 € 8] = (&1 Pr [0(a)].

O

If 2 is twice the size of S, then Pr,cp [¢(x)] is at least one half of Prycg [¢(z)].
This motivates the choice of name for Lemma 2.

We will soon see the importance that the median function has in the context
of approximate self-testing. This was recognized by Ergiin, Kumar, and Rubin-
feld in [EKR96] where the median principle was also introduced. The fact that
the Halving principle can substantially simplify the standard proof arguments
one encounters in the approximate testing scenario was observed in [KMS99].

4 Testing with absolute error

Throughout this section we follow the notation introduced in the previous one.
Moreover, we restrict our discussion to the case of absolute error, i.e., to the
case where ¢(z,v) is some non—negative real constant €. Again, for the purpose
of illustration we consider the linearity testing problem over a rational domain D,
say D = Dg, for concreteness. Hence, taking D’ = Dy, the functional equation

Va,y € Dy, Pz +y) — P(z) — P(y) =0,

gives rise to the following approximate absolute error test:

Absolute error Linearity Test(P,¢)
1. Randomly choose x,y € Dyy,.
2. Reject if |P(x +y) — P(xz) — P(y)| > «.

The preceding approximate test was proposed and analyzed by Ergiin, Kumar,
and Rubinfeld [EKR96]. We illustrate the crucial issues related to testing under
absolute error by fully analyzing this approximate test. Our discussion is based
on [EKR96] and simplifications proposed in [KMS99].

4.1 Continuity

As in the case of exact testing, continuity is a property which is usually much
easier to establish than robustness. Although proofs of continuity in the approx-
imate case follow the same argument than in the exact case, there is a subtlety
involved. It concerns the use of the Halving principle as shown by the following
result from which (7, 6n)—continuity of the Absolute error Linearity Test
immediately follows.

Lemma 3. Let € > 0. Let P,l be real valued functions over Dsg, such that [is
linear. Then,

Pr [[P(z+y)—P(z)— P(y)| >3] <6 Pr [|P(x)—I(z) >c¢].
z,Yy€Dan xE€Dgy

Proof. Simply observe that |P(z+y)—P(z)—P(y)| > 3¢ implies |P(x+y)—1l(z+

y)| > e or |P(x) — l(x)| > € or |P(y) — I(y)| > . By the Halving principle, the

probability that each of these three events occur when x and y are independently

and uniformly chosen in Dy, is at most 2 Pryep,, [|P(z) — I(z)| > €]. Thus, the

union bound yields the desired conclusion. ad

4.2 Approximate robustness

We now describe how robustness is typically established. Our discussion is based
on [EKR96]. The majority argument will again be useful, but it needs to be
modified. To see why, recall that the argument begins by defining a function g
whose value at x takes the most commonly occurring value among the members
of a multiset S, whose elements depend on x and P, i.e.,

g(x) = Maj (s).
SES,

Each value in S, is seen as an estimation of the correct value of P on z. But
now, P is not restricted to taking a finite number of values. There might not
be any clear majority, or even worse, all but one pair of values in every set S,
might be distinct while very different from all other values in the set — the
latter of these values might even be very similar among themselves. Thus, the
Maj (-) is not a good estimator in the context of testing programs that only
approximately compute the desired value. A more robust estimator is needed.
This explains why Med (-) is used instead of Maj (-). This gives rise to what
we shall call the median function argument. The robustness proofs based on it
will also exhibit three stages. The first two are similar to those encountered in
the majority function argument. Indeed, first one shows that an overwhelming
number of the elements of S, are good approximations of g(z) = Med,eg, (),
then one shows that ¢ is close to P. The major difference is in the third stage
— it falls short of establishing that g has the property one is interested in. For
the sake of concreteness, we now illustrate what happens in the case of linearity
testing.

Theorem 9. Let € > 0 and 0 < n < 1/96 be constants and let P : Dg, — R be
an application such that

s (1P(x+y) = Px) = Py)| > el <n.

Then, there exists a function g : Dy, — R such that

Er llg(z) — P(z)] > €] < 16n,

and for all a,b € D,,
l9(a+b) — g(a) — g(b)| < Ge.

Proof. Let P,, = P(x +y) — P(xz) — P(y). Define the function g : Dy, — R
by g(z) = Medyep,, (P(z +y) — P(y)) . First, we show that with overwhelming
probability P(x + y) — P(y) is a good approximation to g(z), specifically, that
for all ¢ € Dy, and I C Dy, such that |I| = |D,|,

Prllglc) = (Ple+y) = P(y))] > 2¢] < 32n. (2)

The Median principle implies that

P — (P - P >2|<2 P P, - P > 2¢].

Pr (l9(c) ~ (Plc+9) ~ PG| > 21 S2 P ([Pevy = Povey| > 2]
Observe that if y and z are randomly chosen in I and Dsy,, respectively, then the
union bound yields

ly)g [[Pety,z = Petzyl > 2] < Eg (| Petzyl > €] + 1;5 ([Pety,z| > €]

To obtain (2), note that the Halving principle implies that the latter sum is at

most | |2
-D4n
2——— Pr [|P,,]|>¢].
|Dn||D2n‘ ©,9€Dan [| z,y|]

To see that g is close to P, observe that the Halving principle implies that

Pr lg(e) ~ @) >l <4 Pr [lg(e) ~ P)] > <].

By definition of g we get that g(x) — P(z) = Medyep,, (Pr,y). Hence, the Median
principle and the Halving principle yield

P — P(z)| >e]<8 P Pyl >
L llg@) - P@)|>ef <8 _ Pr =[Pyl >e]

Dy,
|Ds Pr [|P.,|>¢].

<8
- ‘D2n| z,y€EDyp,

Elementary calculations and the hypothesis imply that the last expression is
upper bounded by 167.

Finally, let a,b € D,,. Three applications of (2) imply that for some y € D,,

lg(a) = (P(a+y) — P(y))| < 2,
lg(b) = (P(a+b+y) — Pla+y))| <2,
lg(a+b) = (Pla+b+y)— Py))| < 2e.

It follows that |g(a 4+ b) — g(a) — g(b)| < 6e. O

The previous result falls short of what one desires. Indeed, it does not show that
a low rejection probability for the Absolute error Linearity Test guarantees
closeness to linearity. Instead, it establishes that if

|P(x+y) — P(x) = P(y)| > ¢

holds for most x’s and y’s in a large domain, then P must be close to a function g
which is approximately linear, i.e., for all a’s and b’s in a small domain,

l9(a +b) = g(a) = g(b)] < Ge.

A conclusion stating that g(a+b) = g(a)+ g(b) would have been preferable. This
will follow by showing that ¢ is close to a linear function, thus implying the close-
ness of P to a linear function. By Definition 12, these results whereby it is shown
that a function that approximately satisfies a functional equation everywhere
must be close to a function that exactly satisfies the functional equation, are
called stability proofs. Also, by Definition 11, results as those we have shown so
far (i.e., whereby it is proved that a function that approximately satisfies a func-
tional equation for most inputs must be close to a function that approximately
satisfies the functional equation everywhere) are called approximate robustness
proofs. As mentioned earlier, approximate robustness and stability imply ro-
bustness. In the following section we discuss a technique for proving stability
results.

4.3 Stability

The main result of this section, i.e., the statement concerning stability of the
Absolute error Linearity Test is from [EKR96]. However, the proof presented
here is from [KMS99] and is based on an argument due to Skopf [Sko83]. The
proof technique is also useful for obtaining stability results in the context of ap-
proximate testing over finite rational domains. It relies on two ideas developed
in the context of stability theory. The first consists in associating to a function g
approximately satisfying a functional equation a function h approximately satis-
fying the same functional equation but over an algebraically closed domain, e.g.,
a group. The function h is carefully chosen so that h agrees with g over a given
subset of ¢’s domain. In other words, h will be an extension of g. Thus, showing
that h can be well approximated by a function with a given property is sufficient
to establish that the function g can also be well approximated by a function with
the same property. This task is easier to address due to the fact that h’s domain

has a richer algebraic structure. In fact, there is a whole community that for
over half a century has been dedicated to the study of these type of problems.
Indeed, in 1941, Hyers [Hye41] addressed one such problem for functions whose
domain have a semi—group structure. The work of Hyers was motivated by a
question posed by Ulam. Coincidentally, Ulam’s question concerned linear func-
tions. Specifically, Ulam asked whether a function f that satisfies the functional
equation f(x +y) = f(x) + f(y) only approximately could always be approxi-
mated by a linear function. Hyers showed that f could be approximated within
a constant error term by a linear function when the equality was correct also
within a constant term. To be precise, Hyers proved the following:

Theorem 10 (Hyers). Let Ey be a normed semi—group, let Eo be a Banach
space, and let h : E1 — FEs be a mapping such that for all x,y € Fn,

[h(z +y) — h(z) = h(y)| <e.

Then, the function | : By — Es defined by l(x) = lim,,— oo h(2™x) /2™ is a well
defined linear mapping such that for all x € F1,

[h(z) = T(2)]| < 2.

Remark 1. We have stated Theorem 10 in its full generality in order to highlight
the properties required of the domain and range of the functions we deal with.
Also for this purpose, as long as we discuss stability issues, we keep the exposition
at this level of generality. Nevertheless, we will apply Theorem 10 only in cases
where F1 = Z and Ey = R. O

Many other Ulam type questions have been posed and satisfactorily answered.
For surveys of such results see [HR92, For95]. But, these results cannot directly
be applied in the context of approximate testing. To explain this, recall that we
are concerned with functions g such that |g(x+y) — g(x) — g(y)| < € only for z’s
and y’s in D,, — which is not a semi—group. To address this issue and exploit
results like those of Hyers one associates to g a function h that extends it over
a larger domain which is typically a group. Moreover, the extension is done in
such a way that one can apply a Hyers’s type theorem.

Although the approach described in the previous paragraph is a rather nat-
ural one, it requires more work than necessary, at least for our purposes. In-
deed, when deriving a stability type result for the approximate testing problem
over D,, one considers the extension h of g given by h(x) = ¢(r:) + g.g(n),
where ¢, € Z and r, € D,, are the unique numbers such that z = ¢q.n + r;
and |gyn| < |z] if z € Z\ {0}, and go = ro = 0. (See Fig. 2.) Thus, the limit
of h(2™x)/2™ when m goes to oo is zg(n)/n. Hence, there is no need to prove
that I(z) = limy,—oo h(2™2)/2™ is well defined and determines a linear map-
ping. Thus, when Hyers’s theorem is applied to a function like h the only new
thing we get is that [is close to h. As shown in the next lemma, to obtain this
same conclusion a weaker hypothesis than that of Theorem 10 suffices. This fact
significantly simplifies the proof of the stability results needed in the context of
approximate testing.

Fig. 2. Extension of g.

Lemma 4. Let Fy be a normed semi—group and E5 be a Banach space. Lete > 0
and let h : E1 — FEs be such that for all x € Eq,

[Ih(22) — 2h(x)| < e.

Then, the function T : By — Eo defined by T(x) = limy,— oo h(2M2)/2™ is a
well defined mapping such that for all x € Eq,

[h(z) = T(2)]| <e.

Proof. We follow the argument used by Hyers [Hye41] to prove Lemma 4. First,
we show by induction on m, that

H h2va) h(m)” < 522# (3)

2m

The case m = 1 holds due to the hypothesis. Assume the claim is true for m. To
prove the claim for (m + 1), note that

H h(2m)

9gm+1 o h(.T)

IA

1 H h(2™ - 2x)

o — h(2x)

IN
po| ™
+
IR
NgE
"

Fix = 2%y in (3). Then, the sequence (h(2*y)/2");, satisfies a Cauchy criterion
for every y. Therefore, T is well defined. Letting m — oo in (3) one obtains the
desired conclusion. O

Thus, to establish the stability type result we are seeking for the linearity testing
problem one needs to show that an appropriate extension h : Z — R of a function
g : Da,, — R such that |g(z +y) — g(z) — g(y)| < e for all z,y € D,, satisfies the
hypothesis of Lemma 4. The following lemma achieves this goal.

Lemma 5. Let € > 0 and let g : Do, — R be such that for all x,y € D,

lg(z +y) —g(z) —gy)| <e.

Then, the function h : Z — R such that h(x) = g(rz) + gz9(n) satisfies that for
allx € Z,

|h(2x) — 2h(x)| < 2.
Proof. Let x,y € Z. By definition of h and since 79, = 2r, — n(g2. — 2¢.),

|h(2z) — 2h(z)| = |9(2rs — n(g20 — 242)) — 29(72) + (q20 — 2q2)g(n)].

We will show that the right hand side of this equality is upper bounded by 2¢.
Note that g2, —2¢, € {—1,0,1}. We consider three cases depending on the value
that this latter quantity takes.

CASE 1: Assume g2, — 2¢q, = 0. Then, since r, € D,,, the hypothesis implies
that |h(2x) — 2h(x)| = |g(2ry) — 2g9(rs)| < €.

CASE 2: Assume now that ¢o, — 2¢, = 1. Hence, ro, = 2r, — n and
|h(22) — 2h(z)| = |9(2rs —n) — 29(rz) + g(n)]

< g(2rz) —29(r2)| +19(2rz —n) + g(n) — g(2r.)|
< Zg,

where the first inequality is due to the triangle inequality and the second in-
equality follows from the hypothesis since 7, ro, = 2r, — n,n € D,,.

CASE 3: Assume ¢o,, — 2¢q, = —1. Hence, 9, = 2r, +n which is at most n. Thus,
r; cannot be positive. This implies that r, +n € D,, and

|h(2x) = 2h(x)| = |g(2r, + n) — 29(r2) — g(n)]
<|9@2ry +n) — g(re +n) — g(ra)| + |g(r2 +n) — g(rz) — g(n)]
S 257

where the first inequality is due to the triangle inequality and the second one
follows from the hypothesis since ., + n,7,,n € D,. a

An immediate consequence of the two previous results is the following;:

Theorem 11. Let g : Do, — R be a function such that for all x,y € D,

lg(z +y) —g(z) —gy)| <e.

Then, the linear function l : Dy, — R defined by l(n) = g(n) satisfies, for all
x € D,,
lg(z) = U(z)] < 2e.

4.4 Robustness

The results presented in the two previous sections yield the following:
Theorem 12. Lete > 0 and 0 < n < 1/96 be constants, and let P : Dg, — R
be an application such that

eb, (1P(z+y) — P(x) = P(y)| >] <n.

Then, there exists a linear function l : D,, — R such that

— < .
Pr [Ji(x) = P(a)| > 13¢] < 161

Proof. Direct consequence of Theorem 9 and Theorem 11. O

This last result gives us the analog of Theorem 3 that we need in order to
establish the robustness of the Absolute error Linearity Test.

4.5 Self-testing with absolute error

We now put together all the different pieces of the analyses of previous sections
and establish the existence of an approximate self-tester for linearity.

Corollary 6. Let C be the set of real valued functions over Dg, and let L C C
be the set of linear functions. Let n > 0 and € > 0 be two constants. Then,
there exists a (Dsp,e,n; Dn,39¢, 57Tn)-self-tester for L on C which uses for
every confidence parameter 0 < v < 1, O(In(1/v)/n) calls to the oracle program,
additions, comparisons, counter increments, and binary shifts.

Proof. Consider the approximate test induced by the functional &(P,z,y) =
P(z +y) — P(z) — P(y) where z and y are in Dy, and where the test error is
3e. This approximate test clearly characterizes the family of linear functions, in
fact, it gives rise to the Absolute error Linearity Test. Hence, by Lemma 3,
it is (n, 6n)—continuous on Dg,, with respect to the computational error term
g. Moreover, by Theorem 12, it is also (961, 7’)-robust on D,, with respect to
the computational error term 13(3¢). Therefore, Theorem 8 implies the desired
result by fixing ' = (6 + 1/96)n = 5771/96. O

4.6 Self-correcting with absolute error
An obvious generalization of Definition 5 for any computational error term is:

Definition 14 (Approximate self—corrector). Let F C C be a function
family from D to R and D' C D. Let 0 < 1 < 1 and let €, ' be computa-
tional error terms for C. An (n, D, e, D', e")~(approximate) self—corrector for F
on C is a probabilistic oracle Turing machine T such that for every P € C,
if Dist(P, f,D,e) < n for some f € F, then for every x € D' and for every
confidence parameter 0 < v < 1,

Pr [|Tp(z,'y) —fl@)| <€) >1-7,

where the probability is taken over the internal coin tosses of T.

Of course, the above definition would be vacuous if we could not exhibit an
example that satisfies it. We believe that in the same way that the majority
argument gave rise to self—correctors, the median argument gives rise to approx-
imate self—correctors. Below, we exhibit some supporting evidence for this claim
by analyzing the problem of approximate self—correction of, the benchmark, class
of linear functions.

Theorem 13. Let C be the family of all real valued functions over D, and
let L C C be the set of linear functions. Then, for every 0 < n < 1/4 and
e > 0, there is an (1, Dan, &, Dy, 2¢)—self-corrector for L on C which uses for
every confidence parameter 0 < v < 1, O(In(1/7)/(1 — 4n)?) calls to the oracle
program, additions, comparisons, and counter increments.

Proof. For some fixed P € C assume [: Dy, — R is a linear function such that
Dist(P, 1, Day,e) < 0. Let N be a positive integer whose value will be determined
later. Let T be the probabilistic Turing machine that on input x € D,,, a constant
0 < v < 1, and oracle access to P, randomly chooses y1,...,yn € D,, and then
outputs Med;=1, ...~ (P(z +y;) — P(y;)). Note that,

Pr UTP(x,'y) —l(x)] > 26]

= Pr |Z:1\1/IedN (P(x+y;) — P(y:)) — l(x)] > 25]

Y1, YNEDn |

= yJIV.eDn _i:1,_e__,N(‘ (y) (Z/)|) >6]

* Y1, EJSGD", |:i_1\1/[,.6?_(}N(|P($ +yi) — Uz +yi)) > 5}
< Pr _|{..|P(;) —1(.)|>€}|>N}
T Y1, YynED, i Yi : Yi Yi 2 3

N

o B s PG4~) el 2 5.
Y1, YyNEDR 2

The Halving principle implies that both Prycp, [|P(z +y) — l(z + y)| > €] and

Prycp, [|P(y) —l(y)| > €] are at most 2Dist(P,l, Day,€). Hence, when N =

2(In(1/7)(1 — 4n)?), a standard Chernoff bound yields the desired result. O

4.7 Self-testing a specific function with absolute error

One might expect that self-testing whether a program computes a specific linear
function over D,, C Z would be achieved by replacing in the Specific Linear
Function Test the Linearity Test by the Absolute error Linearity Test,
equalities by approximate equalities, and a generator of Z (i.e., —1 or 1) by any
non-zero x € D,,. We shall see that one has to be more careful in the choice of
the latter element. In particular one has to perform the following:

Absolute error Specific Linear Function Test(P, <)
— Absolute error Linearity Test(P,¢)
1. Randomly choose x,y € Dy,.
2. Reject if |P(z 4+ y) — P(z) — P(y)| > «.
— Generator Test(P)
1. Randomly choose = € D,,.
2. Reject if |[P(z +n) — P(x) — f(n)] > €.

We now explain why in the second stage of the previous test the comparison
between f and the self—corrected value of P is performed at n. First, recall that
when the probability 7 of rejection by the Absolute error Linearity Test is
low we have a guarantee that P is close to a linear function. A careful inspection
of the proof of Theorem 12 elicits that when [is the real valued linear function
defined over D,, that at n takes the value Medycp,, (P(n+y) — P(y)),

Pr [li(z) — P(z)| > 13¢] < 16m.

zeD,
This justifies the comparison that is performed, in the second part of the above
described approximate test, between f(n) and the estimation P(x + n) — P(n)
of I(n)’s value. Lemma 3 and the following result yield the (7,22n)-continuity
of the Absolute error Specific Linear Function Test (when the test error
is 5¢) on Dg,, with respect to the computational error term e.

Lemma 6. Let ¢ > 0. Let P, f be real valued functions over Dg, such that f is
linear. Then,

Pr [[Plo+n)— Pa) - f(n)] > 2] <16 Pr [[P(a) — f(@)] >],

Proof. The linearity of f, the union bound, and the Halving principle imply that

Pr [|[P(z+n) = P(x) = f(n)| > 2¢]

r€Dy,

< Pr (P+n) — f@+n)]>e+ Pr [P@) - f(z)]> <]

<16 Pr (P(@)~ /(@) > <.

n

O

The following result implies the (497, 7n)-robustness of the Absolute error
Specific Linear Function Test (when the test error is €) on D,, with respect
to the computational error term 16e¢.

Lemma 7. Let ¢ > 0 and 0 < n < 1/96 be constants and let P, f : Dg, — R
be mappings such that f is linear and the probability that the Absolute error
Specific Linear Function Test rejects is at most n. Then,

Pr [|f(z) - Pla)] > 16¢] < 495,

Proof. Let | : D,, — R be such that {(n) = Medyep,, (P(n+y) — P(y)) and
linear. Implicit in the proof of Theorem 12 is that Pr,cp,, [|I(z) — P(z)] > 13¢] <
16n and that (see (2))

Pr (lgn) — (P(n+y) ~ P(y)| > 2¢] < 321,

Thus, Pryep, [|f(z) — P(z)| > 16¢] is at most

zggn [l(z) — P(x)| > 13¢] + zggn [|Z|P(Jc +n)—P(n)—1l(n)] > 2

||
Pr |— - P P .
+ Pr B i) = Pl n) +)| > 2
Since |z|/n < 1, the observation made at the beginning of this proof shows that
the first and second term of the previous summation are bounded by 167 and
32n respectively. By the hypothesis and since |z|/n < 1, the last term of the
summation is bounded by 7. ad

Corollary 7. Let C be the collection of all real valued functions over Dg, and let
f € C be linear. Then, there exists a (Dsy,e,n; Dy, 80e,2113n)-self-tester for f
on C which uses for every confidence parameter 0 < v < 1, O(In(1/7)/n) calls
to the oracle program, additions, comparisons, counter increments, and binary
shifts.

4.8 Beyond self-testing approximate linearity

So far we have discussed the approximate testing problem only for linear func-
tions. The arguments we have used are also useful in testing non—linear functions.
Nevertheless, a couple of new issues arise. To describe them we consider the prob-
lem of approximate testing whether a real valued function behaves like a degree
d polynomial.

The characterization of degree d polynomials of Theorem 6, i.e., Vf“ f(z) =
0 for all z,t € Z,, still holds when Z, is replaced by Z. Hence, our discus-
sion concerning approximate tests for class functions defined through functional
equations suggest performing the following approximate test:

Absolute error Degree d Polynomial Test(P,¢)
1. Randomly choose x € D,, and t € D,,.
2. Reject if |V P(z)| > e.

The above described approximate test was proposed and analyzed by Ergiin,
Kumar and Rubinfeld in [EKR96]. Since the approximate test with test error
24+ 1¢ is (d+2)-local it is easily seen to be (1, 2(d+2)n)-continuous with respect
to the computational error term e, specifically:

Lemma 8. Let € > 0. Let P, Q be real valued functions over Da2q13), such
that Q is a polynomial of degree d. Then,
(Vi P(z)| > 24t e] <2(d+2) Pr [|P(z)— Q(z)| > €.

Pr
€D (244 3)n t€Dn 2€D2 (244 3)n

Proof. Simply observe that since @ is a degree d polynomial, Vf’“Q(m) =0
for all x € D(2443)n and t € D,,. Moreover, Vit = Zzzé(—l)d“’k(dzl)vkt,

Zié (41 = 241 and |V P(x)| > 29+ e imply that |P(z+it) — Q(z+it)| >
e for some i € {0,...,d+ 1}. By the Halving principle, the probability that any
of the latter events occur when z € D (3443, and t € D,, are randomly chosen
is at most 2 Prucp, s, [|[P(T) — Qz)| > €l O

The approximate robustness of the Absolute error Degree d Polynomial
Test is a consequence of the following:

Lemma 9. Lete >0 and 0 <7 < 1/(16(d+1)(d+2)?) be constants, and let P
be a real valued function defined over Dy(2443)n such that

Pr [|V§l+1P(m)| >e] <.

€D (2443)n,t€Dn

Then, there exists a function g : D), C D(q42yn — R such that

|D(2d+3)nl
rggil [lg(z) — P(z)| > ¢] < QW

)

and for all x,t € D,,
IVittg(z)] <4277 —1)%.

Proof (Sketch). The proof is based on the median argument and follows the
proof idea of Theorem 9. The choice of g is the same as in Theorem 7 but now
Mayj () is replaced by Med (-) and Z, by D,, i.e.,

d+1
ola) = Med (Z(—l)i*l (") re m) .

i=1
O

As usual, approximate robustness leaves us with the need of a stability type result
in order to establish robustness, in this case of the Absolute error Degree d
Polynomial Test. We now undertake this endeavor.

For t € Z¢ denote by V; the operator corresponding to the applications of
Viys---, Vi,. To avoid getting bogged down in technicalities and focus on the
new issues that arise in approximate testing of non—linear function, we henceforth
state the results for general d and restrict the proofs to the d =1 case, i.e., the
case of testing affine functions.

Lemma 10. Let e > 0. Let f: Dg11)n, — R be such for all t € (D)%,
Ve f(0)] < e,

Then, there exists a polynomial hy : D,, — R of degree at most d such that for
all x € Dy,

d
|f(x) = ha(@)| < 27 (H(m — 1)) e < 2%dle.

i=1

Proof (Sketch). We consider only the case of affine functions, i.e., d = 1. Let
G(t) = V. f(0) = f(t) — f(0). Then, for all ¢;,ts € D,,,

|G(t, +t2) — G(t1) — G(t2)| = |V, f(0)] < e

Therefore, Theorem 11 implies that there exists a real valued linear function H
over D,, such that |G(t) — H(t)| < 2¢ for all t € D,,. Extending H linearly to all
of Z, defining f’ over D,, by f'(z) = f(z) — H(z), and observing that H(0) =0
since H is linear, we get that for all t € D,

Ve (0)] = 1G(t) — H(t)| < 2.

To conclude, let h(z) = f(0) + H(z) for all x € D,,, and observe that h is an
affine function such that |f(z) — h(z)| = [V f'(0)] < 2e. O

Remark 2. For the case of general d, the proof of Lemma 10 has to be modified.
First, G is defined for every ¢t € Z? where it makes sense as G(t) = V¢f(0).
Instead of Theorem 11, one needs a stability type result asserting the existence
of a multi-linear function H on d variables which is close to G. Instead of a
linear extension of H one relies on a multi-linear extension of H to Z<. The rest
of the proof follows the same argument and exploits the fact that if H'(xz) =
H(z,...,), then V,H'(0) = d'H(t) for all t € Z. O

We are not yet done proving the stability result we seek. Indeed, the con-
clusion of Lemma 9 is that |V¢™!g(z)| is bounded when z,t € D,,. In contrast,
the hypothesis of Lemma 10 requires a bound on |V4g(0)| when ¢t € (D,,)?*!.
The following result links both bounds. But, the linkage is achieved at a cost.
Indeed, although our assumption will be that |V¢™!g(z)| is bounded for a very
large range of values of z,t € Z, our conclusion will be that |V¢g(0)| is bounded
for a coarse range of values of t € Z4+1.

Lemma 11. Let e >0, pgy1 =lem{l,...,d+ 1}, m = par1(d+ 1)n, and g be
a real valued function over D(gy2)m- Let f : D1y, — R be such that f(x) =
g(/’[’d-i-l : ’I) IffOT’ all .’,E,t € Dm7

then for all t € (D)%,
Ve f(0)| <e.

Proof (Sketch). We consider only the case of affine functions, i.e., d = 1. Observe
that

Vi f(0) = VBF(0) = V2, ft1) = V2, jof (t2) + V2, o f(t1 +t2)
=V5g(0) — V2, 9(t1) — V2, 9(t2) + V2o, _1,9(t1 + t2).

By hypothesis, each of the four terms in the last summation is upper bounded
(in absolute value) by €/4. The desired conclusion follows by triangle inequality.
O

Putting together Lemma 9, Lemma 10, and Lemma 11 one obtains the following
result from which the (29?194 1) robustness with respect to the computa-
tional error term 20(¢lgd)¢ of the Absolute error Degree d Polynomial
Test with test error ¢ immediately follows:

Theorem 14. Let € > 0, n > 0, pgr1 = lem{1,...,d+ 1}, m = pgi1(d +
1)n, and let kD,, = {kx € Z : x € D,} for any positive integer k. Let P :
Ds(2d43ym — R be such that

P Vd+1p > <
m€D<2d+3)rm,t€Dm [| t ($)| E} <n

Then, there exists a polynomial hyq : pg+1 Dy — R of degree at most d such that

Pr [|P(z) — ha(z)| > 32d+1d!5} < 4(d+2) g n.

TEdy1Dn

Corollary 8. Let e > 0 and n > 0 be constants, pgr1 = lem{l,...,d+ 1}, and

m = pigp1(d+1)n. Let C be the set of real valued functions over Dy(aq13)m, and let

P4 C C be the set of degree d polynomials. Then, there exists a (Da(2q+3ym» €513 Hd+1Dn, 20(dlogd) o 90(dlogd)
self-tester for Py on C which uses for every confidence parameter 0 < vy < 1,

O(In(1/v)/n) calls to the oracle program, additions, comparisons, counter incre-

ments, and binary shifts.

Proof (Sketch). Similar to the proof of Corollary 6 but now based on Lemma 8
and Theorem 14. ad

Note how the probability bounds in the statement of Theorem 14 depend ex-
ponentially in d. It is not clear that there has to be a dependency in d at all.
A similar result without any dependency on d would be interesting. Even a
polynomial in d dependency would be progress.

5 Testing with error depending on input

In the preceding section we built self-testers for different function classes and
domains for the case of absolute error. These self-testers exhibit the following
characteristic: when the computational error term is a small constant they reject
good programs, e.g, those in which the error in the computation of P(z) grows
with the size of x. If on the contrary, the computational error term is a large
constant, they might pass programs that make incorrectly large errors in the
computation of P(z) for small values of x. In the next section we address the
problem of self-testing when the computational error term can be proportional to
the function value to be computed. In this section, we consider the intermediate
case where the computational error terms are measured relative to some pre-
specified function of the input = to the program P being tested. In particular,
they do not depend on the function f purportedly being computed. The results
presented here appeared in [KMS99].

In order to achieve the above stated goal, we generalize the arguments dis-
cussed in the preceding sections. We begin by pointing out that a careful inspec-
tion of the proofs of Theorem 9 and Theorem 11 yield that they still hold as long
as the test error satisfies a collection of properties captured by the following:

Definition 15 (Valid error terms of degree p € R). These are nonnegative
functions B : Z x Z — RT which are, in each of their coordinates, even and
nondecreasing for nonnegative integers, and such that 5(2s,2t) < 2P[3(s,t) for
all integers s,t.

Examples of valid error terms of degree p are 8(s,t) = |s|P + [t|P and ((s,t) =
Max{c, |s|?, |[t|P} for some nonnegative real constant c. Whenever it is clear from
context, we abuse notation and interpret a degree p error 3(,-) as the function
of one variable, denoted 3(z), that evaluates to 5(z, z) at z. Also, for 0 < p < 1,
we set C, = (1 +27)/(2 — 2P) and henceforth throughout this section use this
notation.

When it is clear from the context, speaking about valid error terms 3 will both
refer to test errors and computational error terms of the form e(z,v) = G(x).

5.1 Stability

By our choice of definition for test error depending on input size, with some
effort but no new ideas, one can generalize the proof arguments of Lemma 4 and
Lemma 5 and derive the following analog of Theorem 11:

Theorem 15. Let 3(-,-) be a valid error term of degree p where 0 < p < 1. Let
g : Dy, — R be such that for all x,y € D,,

lg(z +y) —g(z) — g(y)| < B(z,y).

Then, the linear mapping T : Z — R defined by T'(n) = g(n) is such that for all
x € D,,

lg(z) = T(x)] < CpB(x).

This last theorem is the stability type result we need to establish robustness
once we prove the approximate robustness of the analog of the Absolute error
Linearity Test where instead of comparing |P(z +y) — P(x) — P(y)| to a fixed
constant ¢ the comparison is made against 3(zx,y).

5.2 Approximate Robustness

We again rely on the median argument, but there is a crucial twist that needs
to be introduced in order to address the cases of non—constant test errors we are
concerned with. To explain the new twist, recall that in the median argument one
begins by defining a function g whose value at z is the median of a multiset S,
whose elements depend on z and P, i.e.,

g(z) = Med (5).

Each value s in S, is seen as an estimation of the correct value that P takes on x.
We would like g(x) to be a very good estimation of the correct value taken by P
on x. But now, how good an estimation is depends on the size of x. The smaller
the size of x, the more accurate we want the estimation to be. This forces a new
definition for g(z), specially when z is small. The following result illustrates this
point for the case of linearity testing with valid error terms.

Theorem 16. For 0 < § <1 and a valid error term ((-,-) of degree 0 <p < 1
define B(z) = f(Max{n/d,|z|}). Let P : Dg,, — R be a mapping such that

Pr [|P(z+y) — P(z) - P(y)| > B(z,y)] < 5/384.

z,Yy€Dyap

Then, there exists a function g : Do, — R such that

Pr|lg(x) - P(x)] > B()] < /s,

and for all a,b € D,

lg(a +b) — g(a) — g(b)| < 16 Max{j(a), 3(b)}.
Proof (Sketch). The key point is the choice of g, i.e., for x € D,, define

Med (P(z +y) — P(y)), if [z > nV5,
YyED)| 4

g(x) =

Med (P(z+y)— P(y)), otherwise.
yeD, /s

Then, following the proof argument of Theorem 9, one obtains the desired con-
clusion (although not without effort). O

Note how in the above definition of g, the median is taken over sets of different
sizes. We henceforth refer to this variation of the median argument as the variable
size median argument.

5.3 Robustness
The main goal of the two previous sections was to help establish the following:

Theorem 17. Let 0 < § <1 and B(-,-) be a valid error term of degree 0 < p <
1. If P : Dg,, — R is such that

Pr [[P(z+y) — P(z) = P(y)| > B(x,y)] < 6/384,

z,yEDuan

then there exists a linear function T : Z — R such that

Pr [IP(@) = T(@)| > 17C,8(a)] < TV5/6.

Proof. Let (z) = B(Max{nv/4, |z|}) and 3'(z,y) = 16 Max{B(z), B(y)}. Since
B'(,-) is a valid error term of degree p, Theorem 15 and Theorem 16 imply that,

— there is a function g : Da, — R such that when z € D,, is randomly chosen,
lg(x) — P(z)| > B(x) with probability at most 6/6, and

— there is a linear map T : Z — R such that |g(z) — T'(z)| < 16C,5(x) for all
€ D,.

Since 1 < C,, if |P(z) — T(x)| > 17C’pﬁ(a:)7 then |g(z) — P(z)| > B(z) when
x € D,,. Hence, Pr,ep, [\g(:r) — P(x)| > 17Cp§(x)} is at most 6/6 < v/§/6. To

conclude the proof observe that B(x) = B(z) with probability at least 1 — /3
when z is randomly chosen in D,,. a

The previous result is the analog of Theorem 12 one needs to construct an
approximate self-tester for linear functions provided the valid error term j(-,-)
is easily computable. Indeed, given oracle access to the program P and a valid
error term ((-,-), one can perform the following procedure:

1. Randomly choose x,y € Dyy,.
2. Reject if |P(x+y)—P(z)—P(y)| > B(x,y).

We are now faced with a crucial difference between testing in the absolute error
case and the case where the test errors depend on the size of the inputs. The
point is that the above defined approximate test can be implemented provided
one has a way of computing efficiently the valid error term, i.e., 5(-,-). More-
over, we would certainly like that computing the valid error term is simpler than
computing whatever function P purportedly computes. In the case of linearity
testing this is not always the case if the valid error term is a non-linear func-
tion, say B(z,y) = \/m + +/|y|. It is interesting to note that in most of the
testing literature it is implicitly assumed that the test error is efficiently com-
putable (always 0 in the case of exact testing and a fixed constant hardwired
into the testing programs in the case of testing with absolute error). Fortu-
nately, a good approximation of the test error suffices for self-testing. More
precisely, provided the valid error term (-,) is such that for some positive con-
stants A and X there is a function ¢(-,-) that is (A, X)—equivalent to B(-,-),
e, Ap(s,t) > B(s,t) > Np(s,t) for all integers s,t. In addition, one desires
that evaluating ¢ is asymptotically faster than executing the program being
tested, say it only requires additions, comparisons, counter increments, and bi-
nary shifts. Surprisingly, this is feasible. For example, let k and k' be positive
integers and let 1g(n) denote the length of an integer n in binary. (Note that
lg(n) = [logy(|n| + 1)] or equivalently 1g(0) = 0 and lg(n) = [logy(|n])| + 1 if
n # 0.) Then, B(s, t) = 2% (|s|/2" + [t|/2") or B(s, t) = 2 Max{|s|"/", [¢|1/2"}
are valid error terms of degree 1/2% which are (1,1/2)-equivalent to ¢(s,t) =
2k (2M8()/2"1 4 2Me(1)/2"1) and (s, t) = 2k +Max{[le()/2"1.N1e()/2" 1} regpectively.
The computation of these latter functions requires only counter increments and
shifting bits.

We have finally arrived at a point where we can propose an approximate test
for linearity in the case of valid error terms (3(-,-) of degree 0 < p < 1 for which
there exists an equivalent function (-,), i.e.,

Input Size Relative error Linearity Test(P,)
1. Randomly choose x,y € Dy,,.
2. Reject if |P(x +y) — P(z) — P(y)| > ¢(x,y).

5.4 Continuity

As usual, establishing continuity, in this case of the Input Size Relative error
Linearity Test is simple. We had not done so before simply because we had no
candidate test to analyze. Below we establish the (7, 6n)—continuity with respect
to the computational error term [of the mentioned approximate test with test
error /4, but to succeed we need and additional condition on the valid error
term. We say that a valid error term (-,) is c—testable, where c¢ is a constant, if
B(s)+B(t)+B(s+1t) < cB(s,t) for all s and ¢. For example, for k and k" integers,
k positive, 8(s,t) = 2 (|s|Y/2" 4 [¢[1/2") and B(s,t) = 2F Max{|s|/2", |¢|/2"}
are 4-testable valid error terms.

Lemma 12. Let §(-,-) be a 4—testable valid error term. Let P,l be real valued
functions over Dy, such that [is linear. Then,

b 1Pz +y) = Pl@) = Py)| > Blz,y)l <6 _Pr ||P(z) - I(z)] > @

Proof. Let ' = 3/4. By the Halving principle,

Pr [|P(z) —l(x)] > #'(z)] <2 Pr [[P(z) —l(z)| > f'(2)],

r€D4n 2€Dgn
Pr [IPG) - 1) > #W)] <2 _Pr [PG) - 1) > 7)),
S [Pty —le+y)l>F@+yl<2 Br [[P(z) - i(z)] > 5'(2)].

Hence, since 3'(s) + /() + 0'(s + t) < B(s,t), the union bound implies the
desired result. a

5.5 Self-testing with error relative to input size

We now piece together the results and concepts introduced in previous sections
and establish the existence of realizable approximate self-testers for the case
when the computational error term is allowed to depend on the size of the input.
We stress that the existence of computationally efficient self-testers of this type
is not a priori obvious since the test error might not be efficiently computable.

Theorem 18. Let 0 < n < 1 and 5(-,-) be a 4—testable valid error term of
degree 0 < p < 1 such that p(-,-) is (A, X)—equivalent to [(-,-). Then, there

is a (Dgn, 3/(4X),1/384; Dy, 17C,B/ N, 7,/11/6)~self-tester for the class of real
valued linear functions over Dg,. Moreover, the self-tester uses for every confi-
dence parameter 0 < v < 1, O(In(1/v)/n) calls to the oracle program, additions
comparisons, counter increments, and binary shifts.

Proof. First, assume that (-, -) is efficiently computable and consider the ap-
proximate test induced by the functional @(P,z,y) = P(xz +y) — P(z) — P(y)
where x and y are in Dy, and the test error is §(-,-). This approximate test
clearly characterizes the family of linear functions. In fact, it gives rise to the
Input Size Relative error Linearity Test(P,). Hence, by Lemma 12, it
is (n, 6n)—continuous on Dg, with respect to the computational error term 3/4.
Moreover, by Theorem 17, it is also (7v/8/6, 6 /384)-robust on D,, with respect to
the computational error term 17C, 3. Therefore, Theorem 8 implies the desired
result by fixing 61 < §/384.

To conclude the proof, we need to remove the assumption that the valid
error term (-, -) is efficiently computable. To do so, consider the self-tester that
performs sufficiently many independent rounds of the Input Size Relative
error Linearity Test(P,). An analysis almost identical to the one described
above applied to the new self-tester yields the desired result. a

Remark 3. The /1 dependency in the previous theorem, which is inherited from
Theorem 17 is not the type of probability bound one usually sees in the context of
exact and absolute error self-testing. Nevertheless, as the example below shows,
this dependency seems to be unavoidable in the case of testing with errors that
depend on the size of the input.

Let n be a positive integer, 0 < p < 1,0 < 6 < 1/4, 8,¢ > 0, B(z,y) =
O Max{|z|?, |y’ }, and consider the function P : Z — R such that (see Fig. 3)

—0(nVo)P, if —nV6 <z <0,
P(z) =1 0(nVo)P, if 0 <z <nVs,

0, otherwise.

0(nVs)P

—n\3 nyVs

—0(nVé)P

Fig. 3. The function P.

Observe that if || or |y| is greater than nv/d then |P(z+vy) — P(x) — P(y)|
20(x,y). Hence, if n’ > n, with probability at most ¢ it holds that |P(z + y)
P(z) — P(y)| > 206(x,y) when = and y are randomly chosen in D, .

One can show that for every linear function 7', when =z € D,, is randomly cho-
sen, |P(x)—T(z)| > ¢B(z) with probability greater than v/§/(2(Max{1, 2c})'/?).

O

<

Similar results as those stated above for linear functions hold for the class of
polynomials. Their derivation is based on the arguments discussed in the previ-
ous as well as this section. Unfortunately, these arguments give rise to technically
complicated proofs (for details see [KMS99]). Simplifications are certainly desir-
able.

6 Testing with relative error

In this section we consider the testing problem in the case where the allowed
computational test error is proportional to the (absolute value of) the correct
output one wishes to compute, i.e., the so called case of relative error. Again, we
have oracle access to a program P purportedly computing a function belonging
to a class of functions F. The specific function f which P purportedly computes
is unknown if there is more than one element in F. The accuracy we wish P to
compute f on z depends on the unknown value of f(x). Thus, it is not a priori
clear than one can self-test in the context of relative error. The discussion we
now undertake will establish the plausibility of this task.

The forthcoming presentation is based on [Mag00a]. It shows how to build
a self-tester for the class of linear functions in the case of relative error. The
construction proceeds in two stages. First, one builds a linearity self-tester for
the linear error case, i.e., the case where the test error is a linear function of the
(absolute vale of) the input. This self-tester is then modified so as to successfully
handle the case of relative error. The linear and relative error case, although
related, exhibit a crucial difference. In the former case, since the error is just a
known constant times the (absolute value of) the input, one knows (and thus
can compute) the test error. In the latter case, one can not directly evaluate the
test error since the function purportedly being computed by the oracle program
is unknown and the test error depends on this value.

Note that in the context of linearity testing over rational domains, relative
errors are functions that map z to 6|z| where 6 is some unknown positive con-
stant. Even if # was known, Theorem 17 would not be applicable since it does
not hold when p = 1. To see this, consider the real valued function over Z de-
fined by f(z) = 0xlogy(1 + |z|) for some # > 0. In [RS92a], it is shown that
[fx+y) — flx) — f(y)] < 20Max{|z|,|y|} for all z,y € Z. Clearly, no linear
function is close to f. Hence, in the case of linear error, the Input Size Rel-
ative error Linearity Test is not a good self-tester for linearity. In order to
overcome this situation it is natural to either use a different test error or modify
the test. Based on the former option, in previous sections, approximate self—

testers were derived from exact self-testers. In contrast, to derive approximate
self-testers in the case of linear error the latter path is taken.

When z is large, say |x| > n/2, a linear error term is essentially an absolute
error term. When z is small, say |z| < n/2, we would like to efficiently amplify
the linear error term to an absolute one. This can be done by multiplying «
by the smallest power of 2 such that the absolute value of the result is at least
n/2. This procedure can be efficiently implemented by means of binary shifts.
Formally, each x is multiplied by 2%+ where

k, = Min{k € N : 2k|a:| > n/2}.

(See Fig. 4 for an example where n/8 < x < n/4.)

X2 X2

mx

ool 3
INER
NE

Fig. 4. Amplification procedure

The amplification procedures described above leads to the following new func-
tional equation characterization of the class of linear functions (whose domain
is Dgn)l

Y,y € Dy, f(2k=x +y) — 2% f(2) — f(y) = 0.

Note how this new characterization of linear functions relies not only on the
additive properties of linear functions, but also on their homothetic properties.

6.1 Linear error

The previous section’s functional equation characterization of linear functions
leads in the standard way to a functional equation test. Specifically, for 6 > 0 it
yields the following:

Linear error Linearity Test(P,)
1. Randomly choose x,y € Dy,
2. Reject if |[P(2Fez +y) — 2%« P(z) — P(y)| > 02k« |x|.

We henceforth denote by Rej(P, #) the rejection probability of P by the Lin-
ear error Linearity Test. The following claim establishes the continuity of
this approximate test.

Lemma 13. Let 0 > 0 and L be the set of linear functions over Z. Then, for
every P: Dg, — R,

Rej(P,0) < 6 Dist(P, L, D, 0|z|/18).

The proof of robustness for the Linear error Linearity Test follows the
usual two step approach where both the approximate robustness and the stability
of the test are established. The first of these properties is guaranteed by the
following:

Theorem 19. Let 0 <17 < 1/512 and 6 > 0. Let P : Dg, — R be such that
Pr [|P(2% 2 +y)—2"P(z) — P(y)| > 62" |z[] <.

JZ,yED4.,L
Then, the function g : Do, — R defined by
1
g(z) = Med _ (P(2%z +y) — P(y)),

2k yeDyyizy>0

is such that
Pr [|P(z) — g(z)| > 0]z|] < 32n.

zeD,
Moreover, g(z) = g(2%=x)/2%= for all x € Doy, |g(n) + g(—n)| < 160n, and for
all z and y in {n/2,...,n} (respectively {—n/2,...,—n})

lg(z +y) — g(z) — g(y)| < 240n.

Proof (Sketch). The proof follows the median function argument. The main dif-
ference is that we now have to cope with amplification terms. The closeness
of g to P follows from the definition of g, the median principle, and the bound
on rejection probability of the approximate test. The homethetic property of g
under the amplification procedure follows directly from ¢’s definition. It only
remains to prove the approximate additivity of ¢ in = and y (that is g(x + y)
is close to g(z) + g(y)) when the amplification terms of z, y and = + y are all
the same. More precisely, when both = and y belong to either {n/2,...,n} or
{—n/2,...,—n} and when {z,y} = {—n,n}. This partly justifies the restriction
on the set of elements of Dy, over which the median is taken (when zy > 0 one
knows that the absolute values of 2%z, y, and 2¥F+2 + y are all at least n/2).
Therefore, they have no amplification factors associated to them. a

Note that the approximate additivity of g over {n/2,...,n} and {—n/2,...,—n}
established by the previous result guarantees, due to g’s homothetic property,
its approximate additivity over small elements of g’s domain.

The stability of the Linear error Linearity Test is established by the
following:

Theorem 20. Let 01,05 > 0. Let g : Do, — R be such that g(x) = g(2*=x)/2k=

for all © € Doy, |g(n) + g(—n)| < O1n, and for all z and y in {n/2,...,n}
(respectively {—n/2,...,—n})

lg(z +y) —g(z) — g(y)| < Oan.

Then, the linear function l : D, — R defined by l(n) = g(n) satisfies, for all
x € Dy,
lg(z) = U(z)] < (01 + 5602)|x|.

Proof (Sketch). The idea is to prove first that g is close to some linear function I
(respectively 1) on {n/2,...,n} (respectively {—n/2,...,—n}), but in the ab-
solute error sense. This can be achieved by an argument similar to the one used
in the proof of Theorem 15. It follows that [and I’ are necessarily close since
g(n) and g(—n) are close to each other. Then, the homothetic property of g is
used to transform absolute error bounds on the distance between g and [over
{n/2,...,n} and {—n/2,..., —n}, into linear error bounds over all of D,,. O

Theorem 19 and Theorem 20 immediately yield:

Theorem 21. Let 6 > 0,0<n<1/512, P: Dg, — R, andl: D,, — R be the
linear function such that
l = Med P - P .
(n) = Med_(P(n+y)—Py))
Then,
Rej(P,0) <n = Dist(P,l, D,,1370|x|) < 327.

6.2 From linear error to relative error

We now undertake the second stage of the construction of the self-tester for the
class of linear functions in the case of relative error. Specifically, we modify the
Linear error Linearity Test so it can handle relative test errors. In order to
explain this modification, consider a program P that approximately computes
(with respect to relative errors) a linear function [. Then, one could allow a
test error proportional to [(n) in the Linear error Linearity Test. Since [
is unknown, we need to estimate its value at n. Although P is close to [the
value P(n) might be very far from [(n). Thus, P(n) is not necessarily a good
estimation of I(n). We encountered a similar situation when self—testing a specific
function. We addressed it via self-correction. The same approach succeeds here.
This leads to the Relative error Linearity Test described below. To state it
we first need to define (over Z) the real valued function ext(P, G) by:

P(x), ifx e Dy,
ext(P,G)(z) = ¢ ext(P,G)(x —n)+ G, ifz>n,
ext(P,G)(x+n)— G, ifz<—n.

Then, the modified Linear error Linearity Test becomes the

Relative error Linearity Test(P,6)

1. Randomly choose y € {0,...,n}.

2. Compute G, = P(n —y) + P(y).

3. Compute 6 = 0|G,|/n.

4. Call Linear error Linearity Test(czt(P,G,),0).

We henceforth denote by Rej”(P,#) the rejection probability of P by the
Relative error Linearity Test and let Dist" (-, -, -, 8) denote Dist(-, -, -,&) when
the computational error term ¢ is e(x,v) = |v|. The following results establish
both the continuity and the robustness of the Relative error Linearity Test.

Lemma 14. Let 0 < 6 < 18, L be the set of linear functions over Z, and
P: D, —R. Then,

Rej”(P,0) < 10 Dist” (P, £, D,,,0/72).

Proof. Let | : D, — R be a linear function such that Dist"(P,1, D,,0/72) =
Dist"(P, L, D,,,0/72) = 1. For y € {0,...,n} let G, = P(n —y) + P(y), 0 =
0|Gy|/n, and P, = ext(P,G,). By Lemma 2, |G, — I(n)| < 6]I(n)|/36 with
probability greater than 1 — 47 when y is randomly chosen in {0,...,n}. If this
latter inequality is satisfied, then DistT(Py, I, Dgy,0/36) < n. Since 6/36 < 1/2,
the assumed inequality also implies that |I(n)| < 2|G,|. Therefore, it follows that
Dist(P,, 1, Dg,, 0|x|/18) < 1. Lemma 13 implies that the rejection probability of
the Linear error Linearity Test(ezt(P,G,),0) is at most 67. It immediately
follows that Rej"(P,6) < (6 + 4)n. O

Theorem 22. Let 6 > 0, 0 < n < 1/512, L be the set of linear functions over
Z, and P : D, — R. Then,

Rej’ (P,0) <1 = Dist’(P, L, Dy, 1370) < 321.

Proof. Assume Rej"(P,6) < 7. Then, there exists a y € D,, such that for G, =
P(n —y) + P(y) and 6 = 0|G,|/n, the rejection probability of Linear error
Linearity Test(ext(P, Gy)7é) is at most 1. Thus, by Theorem 21, the linear
function [: D,, — R defined by

)= Med_ (P(n+y) = P(y).

is such that Dist(P,l, D,,1370|x|) < 325. Then, it must be that {(n) = G, and
therefore

Dist” (P, 1, D,,,1370) = Dist(P, 1, D,,,1370|x|) < 32n.

a

Similar results also hold for the class of multi-linear functions (see [Mag00b] for
details).

7 Beyond testing algebraic functions

Since the pioneering work of Blum et al. [BLR90] appeared the concepts and
paradigms discussed so far in this survey have been extended and studied under
different contexts. This has been done in order to widen the scope of applicability
of the concepts and results obtained in the self-testing literature. Below we
discuss some of these extensions and new scenarios.

7.1 Testing and probabilistically checkable proofs

The results of [BFLS91, AS92b, ALM*92] concerning probabilistically checkable
proofs (PCPs) enable the encoding of mathematical proofs so as to allow very
efficient probabilistic verification. The latter consists of a simple randomized test
that looks at a few bits of the proof and decides to accept or reject the proof’s
validity by performing a simple computation on those bits. Valid proofs are
always accepted. Incorrect proofs are rejected with a non—negligible probability.

PCPs are built by recursion [AS92b]. Each level of the recursion uses a dis-
tinct form of error-correcting code. Correct encodings are viewed as represen-
tations of functions that satisfy a pre-specified property. Thus, a central prob-
lem in the construction of PCPs is to probabilistically check (test) whether a
function satisfies a given property with as few queries as possible. Among the
typical properties that come up in the PCP context are linearity [BGLR93,
BS94, BCH'95, Tre98], multi-linearity [BFL90, FGL'91], low—individual de-
gree [BFLS91, AS92b, PS94], low—total degree [ALM 192, AS97], and member-
ship in the so called “long code” [Has96, Has97, Tre98]. Testing that a given
function satisfies one of these properties is referred to as low—-degree testing.

In the context of PCPs, thus in low—degree testing, the main concern is
to minimize the number of oracle queries and the randomness used. It is not
essential that the verification procedure be computationally more efficient than
computing the functions of the class one wants to test. Also, continuity of the
test is not so much of an issue, typically it only matters that the test never rejects
an oracle that represents a function with the desired property. Robustness is the
real issue.

Low—degree testing takes place in an adversarial scenario where the verifi-
cation procedure is thought of as a verifier that has access to an oracle written
down by a prover. The prover wishes to foul the verifier into believing the oracle
is the table of a function satisfying a specific property. The verifier wants to
determine whether this is true using as few probes and random bits as possible.
To simplify his task the verifier may force the prover to add structure to the
oracle. Moreover, he may choose a scenario where performing the verification is
easier. For the sake of illustration and concreteness we shall consider below our
benchmark linearity testing problem but in the PCP context.

The discussion that follows is taken from [KR97]. Assume G and H are finite
abelian groups and P : G — H. We want to verify whether P is linear, i.e.,
P(x +y) = P(z) + P(y) for all z,y € G. To simplify the verification procedure
we choose G and H so they have a rich structure. Specifically, for a prime field
Ly, we fix G = Zy and H = Z,. Since Z, is a prime field, P is linear if and only
if P(x) =31 a;x; for some ay,...,a, € Zy,. For x € Z7 \ {0}, denote by L,
the line in Z passing through x and 0, i.e., L, = {tx : t € Z,}. Observe that if
L, # Ly, then L, N L, = {0}. Note also that every linear function [over Z; is
such that [(tz) = tl(x) for all t € Z, and = € Z;). Hence, knowing the value of
at any non—zero element of a line completely determines the value of [over that
line. We take advantage of this fact to facilitate the verification task. Indeed,
we ask the prover to write down, for each line L C Zp, the value of P at one

representative element of L (say the first € L\ {0} according to the coordinate
wise order induced by an identification of Z, with the set {0,...,p —1}). If we
ever need to query the value of P at z # 0 we can determine it by querying
the value of P at the representative of L, and from this value compute P(z)
as if P was linear over L. This way, we are certain that P(tx) = tP(x) for all
r € Z,, and t € Z,. Equivalently, we can assume that the oracle function P has
this property. We henceforth adopt this convention. Note in particular that this
implies that P(0) = 0. Taking all the previously introduced conventions into

account we perform the following:

Prime Field Linearity Test(P)
1. Randomly choose z,y, z € Zj; such that z+y+2z = 0.
2. Reject if P(z) + P(y) + P(z) # 0.

Henceforth, let 7" denote the previous test and Zj the set Z, \ {0}. Also,
let w denote a p-th root of unity. Observe that for ¢ € Z,, ¢ = 0 if and only if

(Ztezp wt¢) /|Z,| = 1. Moreover, ¢ # 0 if and only if (Ztezp ww) /|Z,| = 0.
Hence, for [€ L,

1 1
Rei(PT)=1— — E — § t(P(z)+P(y)+P(2)) | 4
WD =1 g Zl & W
z,y7Z€Z;7 teZyp
z+y+2=0

Now, for two Z, valued functions f and g over Zj denote by w’ the function
that evaluates to w/(*) at and define

1 _
Xo(f) = 3 wf@-aa),

‘Zp|” xEZg
Observe that
- 1 1 H(f (2)—g(x)) 1
Dist(f,g) = 1-——) > w g =1- > Xeg(tf). (5)
Zp|" 5 \ 12| 5 Zy] 5

Lemma 15. For all Pl : Zy; — 7, such that | is linear and P(tx) = tP(x) for
all x € Zy, t € Zyp,
Dist(P,1) = 22! (1 y(P)).
|Zy|
Proof. Note that tP(z) = P(tx) and tl(z) = [(tx) for all t € Z, and = € Zj.
Hence, since multiplication by ¢ € Z; induces a permutation of Zj, one has that
xi(tP) = xi(P) for all t € Z;. The conclusion follows from (5) and noting that

xo(-) = 1. O

The following result establishes the (1, n)-robustness of the Prime Field
Linearity Test.

Lemma 16. Let L be the set of linear functions from Z; to Z, and let P : Z; —

Zy be such that P(tx) = tP(x) for all x € Zy, t € Zy,. Then,

Rej(P,T) = :;;: (1 _ Z (1 _ :;Pl Dist(P,l)>3> > Dist(P, L).

>l
leL p

Proof. Note that w? =3, xi(P)w! and that t(P(z)+ P(y)+ P(z)) = P(tz)+
P(ty) + P(tz). Hence,

WHP@)+PW)+P(2) — Z XZ(P)XV(P)Xl”(P)wl(tx)+l/(ty)+l’/(tz).
Li"el

Furthermore, 2 = —(x 4 y) so the linearity of I” implies that " (¢tz) = — (1" (tx) +
" (ty)). Thus, (4) yields that

. |Z;| 1
R P T == 7p il P ’ P 12 P E— 12 12 !
ej(P,T) Z,) > xi(P)xe(P)xir (P) Z] >~ e (t) xa (1)
P L el Pltens

Moreover, when t € Z5, xyu~(tl) and xy~ (tl') equal 1 provided I = 1" = 1", and
Xe (1) or xr (') equal 0 otherwise. Hence,

|Z;|

Rej(P,T) = ?ﬁ (1 - (Xz(P))3> :

lel

Since Dist(P, 1) is a real number, Lemma 15 implies that so is x;(P). Thus, since
wP =3, xi(P)w! and 1(0) = 0 for every | € L, we know that 1 = wP(©® =
> icr Xi(P). Therefore, there is some I € L for which x;(P) is non-negative. It
follows that,

Rej(P, T) = :;: (1 -2 (xl<P>>3) > :;} <1 — Max xi(P) Z(mp))?) :
P leL P leL

By Lemma 15, Maxjec xi(P) = 1—(|Z,|/|Z;|) Dist(P, £). The desired conclusion
follows by observing that Y, . (xi(P))* = 1. 0

Clearly, the Prime Field Linearity Test never rejects a linear function. As far
as continuity goes, this is all that usually matters in the PCP context. Note how
the verification procedure is simplified both by choosing a prime field structure
in which to carry out the work and by forcing structure on the oracle function P,
specifically imposing that P(tz) = tP(x) for all x € Zj; and t € Z,,. Observe also
that the (1, n)-robustness of the test is guaranteed whatever the value of . Other
robustness results discussed in other sections of this work do not exhibit this
characteristic. In fact, they typically mean something non—obvious only when 7
is small. In the PCP context one prefers test analyses that establish that the
probability of rejection increases as the distance between the oracle function and

the family of functions of interest grows. The majority and median arguments fail
to achieve these type of results. The technique on which the proof of Lemma 16
relies was introduced in [BCH'95] and is based on discrete Fourier analysis.
This proof technique, in contrast to the majority and median arguments, does
not construct a function which is both close to the oracle function and satisfies
the property of interest. Hence, when applying the discrete Fourier analysis
technique one does not need to assume that the rejection probability of the test
is small as is always the case when applying the majority and median argument.

7.2 Property testing

In the context of testing algebraic functions one is mainly concerned with the
problem of determining whether some function to which one has oracle access
belongs to some specific class. In the context of property testing one focuses in
the case where one has some kind of oracle access to an object, not necessarily a
function. Informally, there is an object of which one can ask questions about. The
goal is to infer whether or not the object has a specific property. For concreteness,
lets consider the following example given by Goldreich [Gol00]: there is a book
of which one knows it contains n words and one is allowed to query what its
i-th word is — the goal is to determine whether the book is writing in a specific
language, say Spanish. As is often the case when testing algebraic functions,
if one wants to be completely certain that the book is writing in a specific
language one has to query every word. In property testing, as in self—testing,
one relaxes the certainty requirement and simply tries to determine whether
the object is close or far away from having the property of interest. The notion
of distance depends on the problem, e.g., in Goldreich’s example, a reasonable
choice would be the fraction of non—Spanish words. Thus, suppose that upon
seeing one randomly chosen word of the book one decides whether it is writing
in Spanish depending on whether the chosen word is a word in such language.
Then, a book fully written in Spanish will always be accepted and those books
that are at distance § from being fully written in that language will be discarded
with probability §.

In summary, in property testing one is interested in deciding whether an
object has a global property by performing random local checks. One is satisfied
if one can distinguish with sufficient confidence between those objects that are
close from those that are far from having the global property. In this sense,
property testing is a notion of approximation for the aforementioned decision
problem.

There are several motivations for the property testing paradigm. When the
oracle objects are too large to examine (e.g., the table of a boolean function on
a large number of variables) there is no other feasible alternative for deciding
whether the object exhibits a given property. Even if the object’s size is not
large it might be that deciding whether it satisfies the global property is compu-
tationally infeasible. In this latter case, property testing provides a reasonable
alternative for handling the problem. Finally, when both the oracle object is
not too large and the global property can be decided efficiently, property testing

might still yield a much faster way of making the correct decision with a high de-
gree of confidence. Moreover, many of the property testers that have been built
also allow, at the cost of some additional computational effort, to construct a
witness showing the relevant object has the property of interest. These testers
could be used to detect instances which are far away from having the property
of interest. More expensive computational procedures can thus be run only on
instances that have a better chance of having the desired property.

Certainly, exact testing as described earlier in this work can be cast as a prop-
erty testing problem. Thus, it could be that property testing is a more general
paradigm. This is not the case, the two models are mathematically equivalent.
One can view property testing as a case of classical testing. However, there are
advantages of not doing so, and in recent years the general trend has been to
cast new results in the property testing scenario. Indeed, we could have written
this whole survey that way. The reasons for not doing so are twofold. The first
one is historical: most of the results about algebraic testing were stated in the
self-testing context. The second one is specific to this survey. By distinguishing
between self-testers, which are algorithms, and (property) tests, which are math-
ematical objects, we hope that we did clearly point out the difference between
the computational and the purely mathematical aspects of the theory. We think
that this difference was not adequately dealt with in the previous literature. Had
we spoken about property testers and property tests, the difference could have
been easily lost for the reader because of the similarity of the terms.

Goldreich, Goldwasser, and Ron [GGR96] were the first to advocate to use
of the property testing scenario. In particular they considered the case of testing
graph properties. Here, the oracle objects are graphs over a known node set.
In [GGRI6] the notion of distance between two n—vertex graphs with equal
node set is the fraction of edges on which the graphs disagree over n2. Among
the properties considered in [GGR96] were: whether the graph was k—colorable,
had a clique containing a p fraction of its nodes, had an (edge) cut of size at
least p fraction of the edges of the complete graph in the same node set, etc.
The distance between a graph property is defined in the obvious way, i.e., as the
smallest distance between the graph and any graph over the same node set that
satisfies the property. In [GR97] a notion of distance better suited to the study
of properties of bounded degree graphs was proposed. Specifically, the proposed
notion of distance between two n—vertex maximum degree d graphs with equal
node set is the fraction of edges on which the graphs disagree over dn. Among
the properties studied in [GR97] were: whether the graph was connected, k-
vertex—connected, k—edge—connected, planar, etc. Other recent developments in
testing graph properties can be found in [GR98, AFKS99, PR99, BR00, GROO0].

The works of Goldreich, Goldwasser, and Ron [GGR96, GR97] were influ-
ential in shifting the focus from testing algebraic properties of functions to
testing non—algebraic properties of different type of objects. Indeed, among

other properties/objects that have received attention are: monotonicity of func-
tions [GGLRY8, DGL'99], properties of formal languages [AKNS99, New00],

geometric properties like clustering [ADPR00, MOPO00], and specific properties
of quantum gates in quantum circuits [DMMS00].
For surveys on property testing see Goldreich [Gol98] and Ron [Ron00].

References

[ABCG93]

[ADPRO0]

[AFKS99]

[AKNS99]

[ALM*92]

[ALMT98]

[AS92a]

[AS92b)

[AS97]

[BCH™95]

[BFL90]

[BFLY1]

S. Ar, M. Blum, B. Codenotti, and P. Gemmell. Checking approximate
computations over the reals. In Proceedings of the 25th Annual ACM Sym-
posium on Theory of Computing, pages 786795, San Diego, California,
May 1993. ACM.

N. Alon, S. Dar, M. Parnas, and D. Ron. Testing clustering. In Proceed-
ings of the 41st Annual Symposium on Foundations of Computer Science.
IEEE, 2000. (To appear).

N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of
large graphs. In Proceedings of the 40th Annual Symposium on Foundations
of Computer Science, pages 656—666, New York City, New York, October
1999. IEEE.

N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages
are testable with a constant number of queries. In Proceedings of the 40th
Annual Symposium on Foundations of Computer Science, pages 645—655,
New York City, New York, October 1999. IEEE.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof ver-
ification and intractability of approximation problems. In Proceedings
of the 33rd Annual Symposium on Foundations of Computer Science,
pages 14-23, Pittsburgh, Pennsylvania, October 1992. IEEE. Final version
in [ALM™"98].

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifi-
cation and intractability of approximation problems. J. of the Association
for Computing Machinery, 45(3):505-555, 1998.

N. Alon and J. H. Spencer. The probabilistic method. Wiley—Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons,
Inc., first edition, 1992.

S. Arora and S. Safra. Probabilistic checking of proofs: A new characteriza-
tion of NP. In Proceedings of the 33rd Annual Symposium on Foundations
of Computer Science, pages 2—-13, Pittsburgh, Pennsylvania, October 1992.
IEEE.

S. Arora and M. Sudan. Improved low—degree testing and its applica-
tions. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 485-495, El Paso, Texas, May 1997. ACM.

M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and M. Sudan. Linearity
testing in characteristic two. In Proceedings of the 36th Annual Symposium
on Foundations of Computer Science, pages 432-441, Milwaukee, Wiscon-
sin, October 1995. IEEE.

L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time
has two—prover interactive protocols. In Proceedings of the 31st Annual
Symposium on Foundations of Computer Science, pages 16-25, St. Louis,
Missouri, October 1990. IEEE. Final version in [BFLI1].

L. Babai, L. Fortnow, and C. Lund. Non—deterministic exponential time
has two—prover interactive protocols. Computational Complezity, 1:3—40,
1991.

[BFLS91]

[BGLR93]

[BKS9]

[BK95]

[BLRYO]

[BLR93]

[Bluss]

[BROO]

[BS94]

[BW97]

[Cop89]

[DGL*99]

[DMMS00]

[EKR96]

[Erg95]

[ESKO00]

L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Sympo-
sium on Theory of Computing, pages 21-31, New Orleans, Louisiana, May
1991. ACM.

M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilisti-
cally checkable proofs and applications to approximation. In Proceedings
of the 25th Annual ACM Symposium on Theory of Computing, pages 294—
304, San Diego, California, May 1993. ACM.

M. Blum and S. Kannan. Designing programs that check their work. In
Proceedings of the 21st Annual ACM Symposium on Theory of Comput-
ing, pages 86-97, Seattle, Washington, May 1989. ACM. Final version
in [BK95].

M. Blum and S. Kannan. Designing programs that check their work. J. of
the Association for Computing Machinery, 42(1):269-291, 1995.

M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with appli-
cations to numerical problems. In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, pages 73-83, Baltimore, Maryland,
May 1990. ACM. Final version in [BLR93].

M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with ap-
plications to numerical problems. J. of Computer and System Sciences,
47(3):549-595, 1993.

M. Blum. Designing programs to check their work. Technical Report
TR-88-009, International Computer Science Institure, 1988.

M. Bender and D. Ron. Testing acyclicity of directed graphs in sublin-
ear time. In Proceedings of the 27th International Colloquium on Au-
tomata, Languages and Programming, volume 1853 of LNCS, pages 809—
820. Springer—Verlag, 2000.

M. Bellare and M. Sudan. Improved non—approximability results. In Pro-
ceedings of the 26th Annual ACM Symposium on Theory of Computing,
pages 184-193, Montréal, Québec, Canada, May 1994. ACM.

M. Blum and H. Wasserman. Reflections on the Pentium division bug.
IEEE Trans. Comp., 26(5):1411-1473, April 1997.

D. Coppersmith. Manuscript. Result described in [BLR90], December
1989.

Y. Dodis, O. Goldreich, E. Lehman, S. Rsakhodnikova, D. Ron, and
A. Samorodnitsky. Improved testing algorithms for monotonicity. In Pro-
ceedings of RANDOM’99, volume 1671 of LNCS, pages 97-108. Springer—
Verlag, 1999.

W. van Dam, F. Magniez, M. Mosca, and M. Santha. Self-testing of
universal and fault-tolerant sets of quantum gates. In Proceedings of the
82nd Annual ACM Symposium on Theory of Computing, pages 688696,
Portland, Oregon, May 2000. ACM.

F. Ergilin, S. Ravi Kumar, and R. Rubinfeld. Approximate checking of
polynomials and functional equations. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, pages 592—601, Burling-
ton, Vermont, October 1996. IEEE.

F. Ergiin. Testing multivariate linear functions: Overcoming the generator
bottleneck. In Proceedings of the 27th Annual ACM Symposium on Theory
of Computing, pages 407-416, Las Vegas, Nevada, May 1995. ACM.

F. Ergiin, S. Sivakumar, and S. Ravi Kumar. Self-testing without the
generator bottleneck. SIAM J. on Computing, 29(5):1630-1651, 2000.

[FFT]

[FGL*91]

[For95]

[GGLROS]

[GGRY6]

[GLR™91]

[Gol9g]

[Gol00]

[GRO7]

[GROS]

[GROO]

[Has96]

[Has97]

[HR92]
[Hye41]

[Kiw96]

[KMS99]

FFTW is a free collection of fast C routines for computing the Dis-
crete Fourier Transform in one or more dimensions. For more details see
www.fftw.org.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approxi-
mating clique is almost NP—complete. In Proceedings of the 32nd Annual
Symposium on Foundations of Computer Science, pages 2—-12, San Juan,
Puerto Rico, October 1991. IEEE.

G. L. Forti. Hyers—Ulam stability of functional equations in several vari-
ables. Aequationes Mathematicae, 50:143-190, 1995.

O. Goldreich, S. Goldwasser, E. Lehman, and D. Ron. Testing mono-
tonicity. In Proceedings of the 39th Annual Symposium on Foundations of
Computer Science, pages 426-435, Palo Alto, California, November 1998.
IEEE.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its con-
nection to learning and approximation. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, pages 339348, Burling-
ton, Vermont, October 1996. IEEE.

P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self—
testing/correcting for polynomials and for approximate functions. In Pro-
ceedings of the 23rd Annual ACM Symposium on Theory of Computing,
pages 3242, New Orleans, Louisiana, May 1991. ACM.

O. Goldreich. Combinatorial property testing — A survey, volume 43 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, pages 45-60. ACM/AMS, 1998.

O. Goldreich. Talk given at the DIMACS Workshop on Sublinear Algo-
rithms, September 2000.

O. Goldreich and D. Ron. Property testing in bounded degree graphs. In
Proceedings of the 29th Annual ACM Symposium on Theory of Computing,
pages 406-415, El Paso, Texas, May 1997. ACM.

O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded
degree graphs. In Proceedings of the 30th Annual ACM Symposium on
Theory of Computing, pages 289-298, Dallas, Texas, May 1998. ACM.

O. Goldreich and D. Ron. On testing expansion in bounded—degree graphs.
Technical Report ECCC TR00-020, Electronic Colloquium on Computa-
tional Complexity, 2000. (Available at www.eccc.uni-trier.de/eccc/).
J. Hastad. Testing of the long code and hardness of clique. In Proceedings of
the 3"nd Annual IEEE Symposium on Foundations of Computer Science,
pages 11-19, Burlington, Vermont, October 1996. IEEE.

J. Hastad. Getting optimal in—approximability results. In Proceedings of
the 31st Annual ACM Symposium on Theory of Computing, pages 1-10,
El Paso, Texas, May 1997. ACM.

D. H. Hyers and T. M. Rassias. Approximate homomorphisms. Aequa-
tiones Mathematicae, 44:125-153, 1992.

D. H. Hyers. On the stability of the linear functional equation. Proceedings
of the National Academy of Science, U.S.A., 27:222-224, 1941.

M. Kiwi. Probabilistically Checkable Proofs and the Testing of Hadamard—
like Codes. PhD thesis, Massachusetts Institute of Technology, February
1996.

M. Kiwi, F. Magniez, and M. Santha. Approximate testing with relative
error. In Proceedings of the 81st Annual ACM Symposium on Theory of
Computing, pages 51-60, Atlanta, Georgia, May 1999. ACM.

[KR97]

[Lip91]

[Mag00a]

[Mag00b]

[MOPOO]

[New(00]

[PROY]

[PS94]

[Ron00]

[Rub90]

[Rub94]

[Rub99)]

[RS92a]

[RS92b]

[RS96]

[Sko83]

[Tre9s]

M. Kiwi and A. Russell. Linearity testing over prime fields. Unpublished
manuscript, 1997.

R. J. Lipton. New directions in testing, volume 2 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 191-202.
ACM/AMS, 1991.

F. Magniez. Auto—test pour les calculs approché et quantique. PhD thesis,
Université Paris—Sud, France, 2000.

F. Magniez. Multi-linearity self-testing with relative error. In Proceed-
ings of the 17th Annual Symposium on Theoretical Aspects of Computer
Science, volume 1770 of LNCS, pages 302—-313. Springer—Verlag, 2000.

M. Mishra, D. Oblinger, and L. Pirtt. Way—sublinear time approximate
(PAC) clustering. Unpublished, 2000.

I. Newman. Testing of functions that have small width branching pro-
grams. In Proceedings of the 41st Annual Symposium on Foundations of
Computer Science. IEEE, 2000. (To appear).

M. Parnas and D. Ron. Testing the diameter of graphs. In Proceedings of
RANDOM’99, volume 1671 of LNCS, pages 85-96. Springer—Verlag, 1999.
A. Polishchuk and D. Spielman. Nearly—linear size holographic proofs. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
pages 194-203, Montréal, Québec, Canada, May 1994. ACM.

D. Ron. Property testing (A tutorial), 2000. (Available at
www.eng.tau.ac.il/~danar/papers.html). To appear in Handbook on
Randomization.

R. Rubinfeld. A mathematical theory of self-checking, self-testing and
self-correcting programs. PhD thesis, University of California, Berkeley,
1990.

R. Rubinfeld. On the robustness of functional equations. In Proceedings of
the 35th Annual Symposium on Foundations of Computer Science, pages
288-299, Santa Fe, New Mexico, November 1994. IEEE. Final version
in [Rub99].

R. Rubinfeld. On the robustness of functional equations. SIAM J. on
Computing, 28(6):1972-1997, 1999.

T. M. Rassias and P. Semrl. On the behaviour of mappings which do not
satisfy Hyers—Ulam stability. Proceedings of the American Mathematical
Society, 114(4):989-993, April 1992.

R. Rubinfeld and M. Sudan. Testing polynomial functions efficiently and
over rational domains. In Proceedings of the 3rd Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 23-32, Orlando, Florida, January
1992. ACM/SIAM. Final version in [RS96].

R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM Journal of Computing, 25(2):252—
271, April 1996.

F. Skopf. Sull’approssimazione delle applicazioni localmente d—additive.
Atti della Accademia delle Sciencze di Torino, 117:377-389, 1983. (In
Italian.).

L. Trevisan. Recycling queries in PCPs and in linearity tests. In Proceed-
ings of the 30th Annual ACM Symposium on Theory of Computing, pages
299-308, Dallas, Texas, May 1998. ACM.

