
Improving Quantum Query Complexity of Boolean Matrix

Multiplication Using Graph Collision

Stacey Jeffery∗1,2, Robin Kothari†1,2, and Frédéric Magniez‡3

1David R. Cheriton School of Computer Science, University of Waterloo, Canada
2Institute for Quantum Computing, University of Waterloo, Canada

3LIAFA, Univ. Paris Diderot, CNRS; Paris, France

Abstract

The quantum query complexity of Boolean matrix multiplication is typically studied as a
function of the matrix dimension, n, as well as the number of 1s in the output, `. We prove an
upper bound of Õ(n

√
`) for all values of `. This is an improvement over previous algorithms

for all values of `. On the other hand, we show that for any ε < 1 and any ` ≤ εn2, there is an
Ω(n
√
`) lower bound for this problem, showing that our algorithm is essentially tight.

We first reduce Boolean matrix multiplication to several instances of graph collision. We
then provide an algorithm that takes advantage of the fact that the underlying graph in all of
our instances is very dense to find all graph collisions efficiently.

1 Introduction

Quantum query complexity has been of fundamental interest since the inception of the field of
quantum algorithms [BBBV97, Gro96, Sho97]. The quantum query complexity of Boolean matrix
multiplication was first studied by Buhrman and Špalek [BŠ06]. In the Boolean matrix multiplica-
tion problem, we want to multiply two n× n matrices A and B over the Boolean semiring, which
consists of the set {0, 1} with logical or (∨) as the addition operation and logical and (∧) as the
multiplication operation.

For this problem it is standard to consider an additional parameter in the complexity: The
number of 1s in the product C := AB, which we denote by `. We study the query complexity as a
function of both n and `, and obtain improvements for all values of `.

The problem of Boolean matrix multiplication is of fundamental interest, in part due to its
relationship to a variety of graph problems, such as the triangle finding problem and the all-pairs
shortest path problem.

∗sjeffery@uwaterloo.ca
†rkothari@cs.uwaterloo.ca
‡frederic.magniez@univ-paris-diderot.fr

1

Classically, it was shown by Vassilevska Williams and Williams that “practical advances in
triangle detection would imply practical [Boolean matrix multiplication] algorithms” [VW10]. The
previous best quantum algorithm for Boolean matrix multiplication, by Le Gall, is based on a
subroutine for finding triangles in graphs with a known tripartition [Gal12], already suggesting that
the relationship between Boolean matrix multiplication and triangle finding might be more complex
for quantum query complexity. We give further evidence for this by bypassing the triangle finding
subroutine entirely.

Despite its fundamental importance, much has remained unknown about the quantum query
complexity of Boolean matrix multiplication and its relationship with other query problems in the
quantum regime. Even for the simpler decision problem of Boolean matrix product verification,
where we are given oracle access to three n × n Boolean matrices, A, B and C, and must decide
whether or not AB = C, the quantum query complexity is unknown. The best upper bound is
O(n3/2) [BŠ06], whereas the lower bound was recently improved from the trivial Ω(n) to Ω(n1.055)
by Childs, Kimmel, and Kothari [CKK11].

A better understanding of these problems may lead to an improved understanding of quantum
query complexity in general. We contribute to this by closing the gap (up to logarithmic factors)
between the best known upper and lower bounds for Boolean matrix multiplication for all ` ≤ εn2
for any constant ε < 1.

Previous Work. We are interested in the query complexity of Boolean matrix multiplication,
where we count the number of accesses (or queries) to the input matrices A and B. Buhrman and
Špalek [BŠ06, Section 6.2] describe how to perform Boolean matrix multiplication using Õ(n3/2

√
`)

queries, by simply quantum searching for a pair (i, j) ∈ [n] × [n] such that there is some k ∈ [n]
for which A[i, k] = B[k, j] = 1, where [n] = {1, . . . , n}. By means of a classical reduction relating
Boolean matrix multiplication and triangle finding, Vassilevska Williams and Williams [VW10] were
able to combine the quantum triangle finding algorithm of Magniez, Santha and Szegedy [MSS07]
with a classical strategy of Lingas [Lin09] to get a quantum algorithm for Boolean matrix multipli-
cation with query complexity Õ(min{n1.3`17/30, n2 + n13/15`47/60}).

Recently, Le Gall [Gal12] improved on their work by noticing that the triangle finding needed
for Boolean matrix multiplication involves a tripartite graph with a known tripartition. He then
recast the known quantum triangle finding algorithm of [MSS07] for this special case and improved
the query complexity of Boolean matrix multiplication. He then further improved the algorithm
for large ` by adapting the strategy of Lingas to the quantum setting.

Our Contributions. Since previous quantum algorithms for Boolean matrix multiplication are
based on a triangle finding subroutine, a natural question to ask is whether triangle finding is a
bottleneck for this problem. We show that this is not the case by bypassing the triangle finding
problem completely to obtain a nearly tight result for Boolean matrix multiplication.

A key ingredient of the best known quantum algorithm for triangle finding is an efficient al-
gorithm for the graph collision problem. Our main contribution is to build an algorithm directly

2

on graph collision instead, bypassing the use of a triangle finding algorithm. Surprisingly, we do
not use the graph collision algorithm that is used as a subroutine in the best known quantum
algorithm for triangle finding. That algorithm is based on Ambainis’ quantum walk for the element
distinctness problem [Amb04]. Our algorithm, on the other hand, does not have any quantum
walks.

There are two main ideas we would like to impress upon the reader. First, we can reduce the
Boolean matrix multiplication problem to several instances of the graph collision problem. Second,
the instances of graph collision that arise depend on `; in particular, they have at most ` non-edges.
Furthermore, we need to find all graph collisions, not just one. We provide an algorithm to find a
graph collision in query complexity Õ(

√
`+
√
n), or to find all graph collisions in time Õ(

√
`+
√
nλ),

where λ ≥ 1 is the number of graph collisions. Combining these ideas yields the aforementioned
Õ(n
√
`) upper bound.

A lower bound of Ω(n
√
`) for all values of ` ≤ εn2 for any constant ε < 1 follows from a simple

reduction to `-Threshold, which we state formally in Theorem 4.2.
This paper is organized as follows. After presenting some preliminaries in Section 2, we describe

in Section 3, the graph collision problem, its relationship to Boolean matrix multiplication, and a
subroutine for finding all graph collisions when there are at most ` non-edges. In Section 4, we apply
our graph collision subroutine to get the stated upper bound for Boolean matrix multiplication,
and then describe a tight lower bound that applies to all values of ` ≤ εn2 for ε < 1.

2 Preliminaries

2.1 Quantum Query Framework

For a more thorough introduction to the quantum query model, see [BBC+01]. For Boolean matrix
multiplication, we assume access to two query operators that act as follows on a Hilbert space
spanned by {|i, j, b〉 : i, j ∈ [n], b ∈ {0, 1}}:

OA : |i, j, b〉 7→ |i, j, b⊕A[i, j]〉 OB : |i, j, b〉 7→ |i, j, b⊕B[i, j]〉

In the quantum query model, we count the uses of OA and OB, and ignore the cost of implementing
other unitaries which are independent of A and B. We call OA and OB the oracles, and each access
a query. The query complexity of an algorithm is the maximum number of oracle accesses used by
the algorithm, taken over all inputs.

We denote a problem P by a map X → 2Y , where P(x) ⊆ Y denotes the set of valid outputs on
input x. We say a quantum algorithm A solves a problem P: X → 2Y with bounded error δ(|x|) if
for all x ∈ X , Pr[A(x) ∈ P(x)] ≥ 1− δ(|x|), where |x| is the size of the input. The quantum query
complexity of P is the minimum query complexity of any quantum algorithm that solves P with
bounded error δ(|x|) ≤ 1/3.

We will use the phrase with high probability to mean probability at least 1− 1
poly for some super-

linear polynomial. We ensure that all our subroutines succeed with high probability, to achieve

3

a bounded-error algorithm at the end. To achieve such high probability, we will necessarily incur
polylog factors. We will use the notation Õ to indicate that we are suppressing polylog factors.
More precisely, f(n) ∈ Õ(g(n)) means f(n) ∈ O(g(n) logk n) for some constant k.

Boolean Matrices. We let B denote the Boolean semiring, which is the set {0, 1} under the
operations ∨,∧. The problem we will be considering is formally defined as the following:

Boolean Matrix Multiplication
Oracle Input: Two Boolean matrices A,B ∈ Bn×n.
Output: C ∈ Bn×n such that C = AB.

In Bn×n, we say that C = AB if for all i, j ∈ [n], C[i, j] =
∨n

k=1A[i, k] ∧ B[k, j]. We will use
the notation A+B to denote the entry-wise ∨ of two Boolean matrices.

2.2 Quantum Search Algorithms

In this section we examine some well-known variations of the search problem that we require. The
reader familiar with quantum search algorithms may skip to Section 3.

Any search problem can be recast as searching for a marked element among a given collection,
U . In order to formalize this, let f : U → {0, 1} be a function whose purpose is to identify marked
elements. An element is marked if and only if f(x) = 1. Define tf = |f−1(1)|. In Grover’s search
algorithm, the algorithm can directly access f , and the overall complexity can be stated as the
number of queries to f . In the following t ≥ 1 is an integer parameter.

Theorem 2.1 ([Gro96]). There is a quantum algorithm, GroverSearch(t), with query complexity
Õ(
√
|U |/t) to f , such that, if t/2 ≤ tf ≤ t, then GroverSearch(t) finds a marked element with

probability at least 1− 1/poly(|U |).
Moreover, if tf = 0, then GroverSearch(t) declares with probability 1 that there is no marked element.

There are several ways to generalize the above statement when no approximation of t is known.
Most of the generalizations in the literature are stated in terms of expected query complexity, such
as in [BBHT98]. Nonetheless, one can derive from [BBHT98, Lemma 2] an algorithm in terms of
worst case complexity, when only a lower bound t on tf is known. The algorithm consists of T
iterations of one step of the original Grover algorithm where T is chosen uniformly at random from
[0,
√
|U |/t]. This procedure is iterated O(log |U |) times in order to get bounded error 1/poly(|U |).

Corollary 2.2. There is a quantum algorithm Search(t) with query complexity Õ(
√
|U |/t) to f ,

such that, if tf ≥ t, then Search(t) finds a marked element with probability at least 1− 1/poly(|U |).
Moreover, if tf = 0, then Search(t) declares with probability 1 that there is no marked element.

One consequence of Corollary 2.2 is that we can always apply Search(t) with t = 1, when no
lower bound on tf is given. In that case, we simply refer to the resulting algorithm as Search. Its

query complexity to f is then Õ(
√
|U |).

4

Another simple generalization is for finding all marked elements. This generalization is stated
in the literature in various ways for expected and worst case complexity. For the sake of clarity we
explicitly describe one version of this procedure using GroverSearch as a subroutine. This version
is robust in the sense that it works even when the number of marked elements may decrease
arbitrarily. This may occur, for example, when the finding of one marked element may cause
several others to become unmarked. This situation will naturally occur in the context of Boolean
matrix multiplication. Then the complexity will only depend on the number of elements that are
actually in the output, as opposed to the number of elements that were marked at the beginning
of the algorithm.

SearchAll

1. Let t = |U |, and V = U

2. While t ≥ 1

(a) Apply GroverSearch(t) to V

(b) If a marked element x is found: Output x; Set V ← V − {x} and t← t− 1
Else: t← t/2

3. If no marked element has been found, declare ‘no marked element’

Corollary 2.3. SearchAll has query complexity Õ(
√
|U |(tf + 1)) to f , and finds all marked elements

with probability at least 1− 1/poly(|U |).
Moreover, if tf = 0, then SearchAll declares with probability 1 that there is no marked element.

We end this section with an improvement of GroverSearch when we are looking for an optimal
solution for some notion of maximization.

Theorem 2.4 ([DH96, DHHM06]). Given a function g : U → R, there is a quantum algorithm,
FindMax(g), with query complexity Õ(

√
|U |) to f , such that FindMax(g) returns x ∈ f−1(1) such

that g(x) = maxx′∈f−1(1) g(x′) with probability at least 1 − 1/poly(|U |). Moreover, if tf = 0, then
FindMax(g) declares with probability 1 that there is no marked element.

3 Graph Collision

In this section we describe the graph collision problem, and its relation to Boolean matrix multi-
plication. We then describe a method for solving the special case of graph collision in which we are
interested.

5

3.1 Problem Description

Graph collision is the following problem. Let G = (A,B, E) be a balanced bipartite graph on 2n
vertices. We will suppose A = [n] and B = [n], though we note that in the bipartite graph, the
vertex labelled by i in A is distinct from the vertex labelled by i in B.

Graph Collision(G)
Oracle Input: A pair of Boolean functions fA : A → {0, 1} and fB : B → {0, 1}.
Output: (i, j) ∈ A×B such that fA(i) = fB(j) = 1 and (i, j) ∈ E, if such a pair exists,
otherwise reject.

The graph collision problem was introduced by Magniez, Santha and Szegedy as a subprob-
lem in triangle finding [MSS07]. The subroutine used to solve an instance of graph collision is
based on Ambainis’ quantum walk algorithm for element distinctness [Amb04], and has query
complexity O(n2/3). The same subroutine is used in the current best triangle finding algorithm of
Belovs [Bel11]. However, the best known lower bound for this problem is Ω(

√
n). It is an important

open problem to close this gap.
To obtain our upper bound, we do not use the quantum walk algorithm for graph collision, but

rather, a new algorithm that takes advantage of two special features of our problem. The first is
that we always know an upper bound, `, on the number of non-edges. When ` ≤ n, we can find a
graph collision in O(

√
n) queries. The second salient feature of our problem is that we need to find

all graph collisions.

3.2 Relation to Boolean Matrix Multiplication

Recall that the Boolean matrix product of A and B, can be viewed as the sum (entry-wise ∨) of
n outer products: C =

∑n
k=1A[·, k]B[k, ·], where A[·, k] denotes the kth column of A and B[k, ·]

denotes the kth row of B.
For a fixed k, if there exists some i ∈ [n] and some j ∈ [n] such that A[i, k] = 1 and B[k, j] = 1,

then we know that C[i, j] = 1, and we say that k is a witness for (i, j). We are interested in finding
all such pairs (i, j). For each index k, we could search for all pairs (i, j) with A[i, k] = B[k, j] = 1;
however, this could be very inefficient, since a pair (i, j) may have up to n witnesses. Instead, we
will keep a matrix C̃ such that C̃[i, j] = 1 if we have already found a one at position (i, j). Thus,
we want to find a pair (i, j) such that A[i, k] = B[k, j] = 1 and C̃[i, j] = 0. That is, we want to find

a graph collision in the graph with bi-adjacency matrix C̃, the entry-wise complement of C̃, and
fA = A[·, k], fB = B[k, ·].

This gives the following natural algorithm for Boolean matrix multiplication, whose details and
full analysis can be found in Section 4.1:

First, let C̃ = 0.

Search for an index k such that the graph collision problem on k with C̃ as the underlying
graph has a collision.

6

If no such k is found then we are done, and C̃ is the product of A and B.

Otherwise, find all the graph collisions on the graph defined by C̃ with oracles A[·, k]
and B[k, ·] and record them in C̃.
Eliminate this k from future searches and search for another index k again.

3.3 Algorithm for Graph Collision

When G is a complete bipartite graph, then the relation between A and B defined by G is trivial.
In that case, there is a very simple algorithm to find a graph collision: Search for some i ∈ [n]
such that fA(i) = 1. Then search for some j ∈ [n] such that fB(j) = 1. Then (i, j) is a graph
collision pair. The query complexity of this is O(

√
n +
√
n). However, when G is not a complete

bipartite graph, there is a nontrivial relation between A and B. The best known algorithm solves
this problem using a quantum walk.

In our case, we can take advantage of the fact that the graph we are working with always has at
most ` non-edges — it is never more than distance ` from the complete bipartite graph, which we
know is easy to deal with. We are therefore interested in the query complexity of finding a graph
collision in some graph with m non-edges, which we denote GC(n,m). In our case, ` will always be
an upper bound on m.

For larger values of `, we will also make use of the fact that for some k, we will have multiple
graph collisions to find. We let GCall(n,m, λ) denote the query complexity of finding all graph
collisions in a graph with m non-edges, where λ is the number of graph collisions. It is not
necessary to know λ a priori.

Again we note that if G is a complete bipartite graph, then we can accomplish the task of
finding all graph collisions using SearchAll to search for all marked elements on each of fA and fB,
and output f−1A (1)×f−1B (1). Letting tA =

∣∣f−1A (1)
∣∣ and tB =

∣∣f−1B (1)
∣∣, so the total number of graph

collision pairs is λ = tAtB, the query complexity of this method is O(
√
ntA +

√
ntB) ∈ O(

√
nλ). So

if G is close to being a complete bipartite graph, we would like to argue that we can do nearly as
well. This motivates the following algorithm.

7

AllGCG(fA, fB)

Let m denote the number of non-edges in G. Let di be the degree of the ith vertex in A, and let
ci := n − di. Let the vertices in A be arranged in decreasing order of degree, so that d1 ≥ d2 ≥
. . . ≥ dn. We will say a vertex i in A (resp. B) is marked if fA(i) = 1 (resp. fB(i) = 1).

1. Find the highest degree marked vertex in A using FindMax. Let r denote the index of this
vertex. Õ(

√
n)

2. Case 1: If cr ≤
√
m

(a) Find all marked neighbors of r by SearchAll. Output any graph collisions found. Õ(
√
nλ)

(b) Delete all unmarked neighbors of r. Read the values of all non-neighbors of r. O(
√
m)

(c) Let A′ denote the subset of A consisting of all i ∈ A with a marked neighbour in B.
Find all marked vertices in A′ by SearchAll. Õ(

√
nλ)

3. Case 2: If cr ≥
√
m

(a) Delete the first r − 1 vertices in A since they are unmarked.

(b) Read the values of all remaining vertices in A. O(
√
m)

(c) Let B′ denote the subset of B consisting of all j ∈ B with a marked neighbour in A.
Find all marked vertices in B′ by SearchAll. Õ(

√
nλ)

Theorem 3.1. For all λ ≥ 1, GCall(n,m, λ) ∈ Õ(
√
nλ+

√
m) and GC(n,m) ∈ Õ(

√
n+
√
m).

Proof. We will analyze the complexity of AllGCG(fA, fB) step by step.
Step 1 has query complexity Õ(

√
n) by Theorem 2.4. Steps 2a, 2c and 3c have query complexity

Õ(
√
nλ) by Corollary 2.3. In Case 1, r has cr ≤

√
m non-neighbours, so we can certainly query

them all in step 2b with O(
√
cr) ∈ O(

√
m) queries.

Consider Case 2, when cr ≥
√
m. We can ignore the first r−1 vertices, since they are unmarked.

Since the remaining n − r + 1 vertices all have ci ≥ cr ≥
√
m, and the total number of non-edges

is m, we have (n− r+ 1)×
√
m ≤ m⇒ (n− r+ 1) ≤

√
m. Thus, there are at most

√
m remaining

vertices and querying them all costs at most O(
√
m) queries.

The query complexity of this algorithm is therefore Õ(
√
nλ +

√
m), and it outputs all graph

collisions. To check if there is at least one graph collision, instead of finding them all, we can replace
finding all marked vertices using SearchAll in steps 2a, 2c and 3c, with a procedure to check if there
is any marked vertex, Search, and this only requires Õ(

√
n) queries by Corollary 2.2, rather than

Õ(
√
nλ).

8

4 Boolean Matrix Multiplication

In this section we show how the graph collision algorithm from the previous section can be used to
obtain an efficient algorithm for Boolean matrix multiplication and then prove a lower bound.

4.1 Algorithm

What follows is a more precise statement of the high level procedure described in Section 3.2.

BMM(A,B)

1. Let C̃ = 0, t = n, and V = [n]

2. While t ≥ 1

(a) GroverSearch(t) for an index k ∈ V such that the graph collision problem on k with C̃
as the underlying graph has a collision.

(b) If such a k is found

Compute AllGC on the graph defined by C̃ with oracles A[·, k] and B[k, ·] and record
all output graph collisions in C̃.

Set V ← V − {k} and t← t− 1.

(c) Else: t← t/2

3. Output C̃.

Theorem 4.1. The query complexity of Boolean Matrix Multiplication is Õ(n
√
`).

Proof. We will analyze the complexity of the algorithm BMM(A,B). We begin by analyzing
the cost of all the iterations in which we don’t find a marked k. We have by Theorem 2.1 that
GroverSearch(t) costs Õ(

√
n/t) queries to a procedure that checks if there is a collision in the graph

defined by C̃ with respect to A[·, k] and B[k, ·], each of which costs GC(n,mi), where mi ≤ ` is
the number of 1s in C̃ at the beginning of the ith iteration. The cost of these steps is at most the
following:

Õ

(
logn∑
i=0

√
n

2i
GC(n,mi)

)
∈ Õ

(
logn∑
i=0

√
n

2i
(
√
n+
√
mi)

)

∈ Õ

(
(n+

√
n`)

logn∑
i=0

(
1√
2

)i
)
∈ Õ

(
n+
√
n`
)

We now analyze the cost of all the iterations in which we do find a marked witness k. Let T be
the number of witnesses found by BMM. Of course, T is a random variable that depends on which
witnesses k are found, and in which order. We always have T ≤ min{n, `}.

9

Let i1, . . . , iT be the indices of rounds where we find a witness. Let tj be the value of t in round
j. Since there must be at least 1 marked element in the last round in which we find a marked
element, we have tiT ≥ 1. Since we find and eliminate at least 1 marked element in each round, we
also have ti(T−j−1)

≥ ti(T−j)
+ 1, which yields ti(T−j)

≥ j + 1⇒ tij ≥ T − j + 1.

Let λj be the number of graph collisions found on the jth successful iteration, that is, the

number of pairs witnessed by the jth witness, kj , that have not been recorded in C̃ at the time we
find kj . Then λj is also a random variable depending on which other witnesses k have been found

already, but we always have
∑T

j=1 λj = `.
Then we can upper bound the cost of all the iterations in which we do find a witness by the

following:

Õ

 T∑
j=1

(√
n

tij
GC(n,mij) + GCall(n,mij , λj)

) (1)

∈ Õ

 T∑
j=1

(√
n

T − j + 1
GC(n,mij) + GCall(n,mij , λj)

) (2)

∈ Õ

√nTGC(n,mij) +

T∑
j=1

GCall(n,mij , λj)

 (3)

∈ Õ

√nT (√`+
√
n
)

+

T∑
j=1

(√
nλj +

√
`
) (4)

∈ Õ
(√

nT`+ n
√
T +
√
n`T + T

√
`
)

(5)

∈ Õ
(√

nmin{n, `}`+ n
√

min{n, `}+
√

min{n, `}n`+ min{n, `}
√
`
)

(6)

∈ Õ
(
n
√
`
)

(7)

In (4), we use the fact that mij ≤ `, and in (5), we use
∑T

j=1

√
λj ≤

√
T
√∑

j λj =
√
`T , which

follows from the Cauchy–Schwarz inequality.

4.2 Lower Bound

Theorem 4.2. The query complexity of Boolean Matrix Multiplication is Ω(n
√

min{`, n2 − `}).

Proof. We will reduce the problem of `-Threshold, in which we must determine whether an input
oracle f has ≥ ` or < ` marked elements, to Boolean Matrix Multiplication.

Consider an instance of `-Threshold of size n2, f : [n2] → {0, 1}. We can construct an
instance of Boolean Matrix Multiplication as follows. Set A to the identity, and let B

10

encode f . Finding AB then gives the solution to the `-Threshold instance. By [BBC+01], `-
Threshold (with inputs of size n2) requires Ω(

√
n2 min{`, n2 − `}) queries to solve with bounded

error.

This lower bound implies that our algorithm is tight for any ` ≤ εn2 for any constant ε < 1.
However, it is not tight for ` = n2−o(n). We can search for pairs (i, j) such that there is no k ∈ [n]
that witnesses (i, j) in cost n3/2. If there are m 0s, we can find them all in Õ(n3/2

√
m), which is

o(n
√
`) when m ∈ o(n). It remains open to close the gap between Õ(n3/2

√
m) and Ω(n

√
m) when

m ∈ o(n2).

5 Acknowledgements

This work was partially supported by NSERC, MITACS, QuantumWorks, the French ANR Defis
project ANR-08-EMER-012 (QRAC), and the European Commission IST STREP project 25596
(QCS).

References

[Amb04] A. Ambainis. Quantum walk algorithm for element distinctness. In Proceedings of the
45th IEEE Symposium on Foundations of Computer Science, pages 22–31, 2004. 3, 6

[BBBV97] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses
of quantum computing. SIAM Journal on Computing (special issue on quantum com-
puting), 26:1510–1523, 1997. arXiv:quant-ph/9701001v1. 1

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds
by polynomials. Journal of the ACM, 48, 2001. 3, 11

[BBHT98] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum searching.
Fortschritte der Physik, 46(4-5):493–505, 1998. 4

[Bel11] A. Belovs. Span programs for functions with constant-sized 1-certificates. Technical
Report arXiv:1105.4024, arXiv, 2011. 6

[BŠ06] H. Buhrman and R. Špalek. Quantum verification of matrix products. In Proceedings
of the 17th ACM-SIAM Symposium On Discrete Algorithms, pages 880–889, 2006. 1, 2

[CKK11] A. Childs, S. Kimmel, and R. Kothari. The quantum query complexity of read-many
formulas. Technical Report arXiv:1112.0548v1, arXiv, 2011. 2

[DH96] C. Dürr and P. Høyer. A quantum algorithm for finding the minimum. Technical
Report arXiv:quant-ph/9607014v2, arXiv, 1996. 5

11

[DHHM06] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. Quantum query complexity of some
graph problems. SIAM Journal on Computing, 35(6):1310–1328, 2006. 5

[Gal12] F. Le Gall. Improved output-sensitive quantum algorithms for Boolean matrix multi-
plication. In Proceedings of the 23rd ACM-SIAM Symposium On Discrete Algorithms,
pages 1464–1476, 2012. 2

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the 28th ACM Symposium on Theory of Computing, pages 212–219, 1996. 1, 4

[Lin09] A. Lingas. A fast output-sensitive algorithm for Boolean matrix multiplication. In
Proceedings of the 17th European Symposium on Algorithms, pages 408–419, 2009. 2

[MSS07] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem.
SIAM Journal on Computing, 37(2):413–424, 2007. 2, 6

[Sho97] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26:1484–1509, October 1997.
1

[VW10] V. Vassilevska Williams and R. Williams. Sub-cubic equivalences between path, matrix
and triangle problems. In Proceedings of the 51st IEEE Symposium on Foundations of
Computer Science, pages 645–654, 2010. 2

12

	Introduction
	Preliminaries
	Quantum Query Framework
	Quantum Search Algorithms

	Graph Collision
	Problem Description
	Relation to Boolean Matrix Multiplication
	Algorithm for Graph Collision

	Boolean Matrix Multiplication
	Algorithm
	Lower Bound

	Acknowledgements

