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Abstract

The closure of a regular language under a [partial] commutation I has
been extensively studied. We present new advances on two problems of
this area: (1) When is the closure of a regular language under [partiall
commutation still regular? (2) Are there any robust classes of languages
closed under [partial] commutation? We show that the class Pol(G) of
polynomials of group languages is closed under commutation, and under
partial commutation when the complement of I in A2 is a transitive re-
lation. We also give a sufficient graph theoretic condition on I to ensure
that the closure of a language of Pol(G) under I-commutation is regular.
We exhibit a very robust class of languages VW which is closed under com-
mutation. This class contains Pol(G), is decidable and can be defined as
the largest positive variety of languages not containing (ab)*. It is also
closed under intersection, union, shuffle, concatenation, quotients, length-
decreasing morphisms and inverses of morphisms. If [ is transitive, we
show that the closure of a language of V¥V under I-commutation is regu-
lar. The proofs are nontrivial and combine several advanced techniques,
including combinatorial Ramsey type arguments, algebraic properties of
the syntactic monoid, finiteness conditions on semigroups and properties
of insertion systems.

The closure of a regular language under commutation or partial commutation
has been extensively studied [37, 25, 1, 17, 18, 19], notably in connection with
regular model checking [2, 3, 9, 10] or in the study of Mazurkiewicz traces, one
of the models of parallelism [20, 21, 26, 27, 28, 29, 38]. We refer the reader to
the book [16] and to the survey [15] for further references.

In this paper, we present new advances on two problems of this area. The
first problem is well-known and has a very precise statement. The second prob-
lem is more elusive, since it relies on the somewhat imprecise notion of robust
class. By a robust class, we mean a class of regular languages closed under some
of the usual operations on languages, such as Boolean operations, product, star,
shuffle, morphisms, inverses of morphisms, quotients, etc. For instance, regular
languages form a very robust class, commutative languages (languages whose
syntactic monoid is commutative) also form a robust class. Finally, group lan-
guages (languages whose syntactic monoid is a finite group) form a semi-robust
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class: they are closed under Boolean operations, quotients and inverses of mor-
phisms, but not under product, shuffle, morphisms or star.
Here are the two problems:

Problem 1. When is the closure of a regular language under [partial]commu-
tation still regular?

Problem 2. Are there any robust classes of languages closed under [partial]
commutation?

Apart from group languages, the classes considered in this paper are all
closed under polynomial operations. Taking the polynomial closure usually
increase robustness. For instance, the class Pol(G) of polynomials of group lan-
guages is closed under union, intersection, quotients, product, shuffle, length-
preserving morphisms and inverses of morphisms. There is also a very robust
class of languages, denoted W, which contains Pol(G) and is closed under union,
intersection, quotients, product, shuffle, length-decreasing morphisms and in-
verses of morphisms [7]. This class is decidable and can be defined as the
largest positive variety of languages not containing (ab)*.

Let I be a partial commutation and let D be its complement in A x A. Our
main results on Problems 1 and 2 can be summarized as follows:
(1) The class Pol(G) is closed under commutation. If D is transitive, it is also
closed under I-commutation.

(2) Under some simple conditions on the graph of I, the closure of a language

of Pol(G) under I is regular.

(3) The class W is closed under commutation.

(4) If T is transitive, the closure of a language of W under I is regular.
Result (3) is probably the most important of these results. It is, in a sense,
optimal since (ab)* is the canonical example of a regular language whose com-
mutative closure is not regular.

The proofs are nontrivial and combine several advanced techniques, including
combinatorial Ramsey type arguments, algebraic properties of the syntactic
monoid [6, 7], finiteness conditions on semigroups [14] and properties of insertion
systems [4]. A part of these results were first presented in [5].

Our paper is organised as follows. We first survey the known results in
Section 2. Then we establish some combinatorial properties, notably on group
languages in Section 3. In Section 4, we present two results to compute the
closure under I-commutation of a given language. Section 5 is devoted to poly-
nomials of group languages and Section 6 to our main results on the class W.
We conclude the paper by presenting some open problems in Section

1 Definitions and notation

1.1 Words and subwords

In this paper, A denotes a finite alphabet and A* is the free monoid on A. The
empty word is denoted by 1. For each letter a, we denote by |u|, the number
of occurrences of a in u. Thus, if A = {a,b} and u = abaabd, one has |u|, = 3
and |u|, = 2. The sum



is the length of the word u.
A word v is a subword of v if v can be written as

V= VoU101UQV2 - - - UL VL

where u; and v; are words (possibly empty) such that wjug---up = u. For
instance, the words baba and acab are subwords of abcacbab.

1.2 Partial commutations

Let A be an alphabet. A partial commutation is a symmetric and irreflexive
relation on A, often called the independence relation in the literature. We denote
by ~ the congruence on A* generated by the relations

{(ab,ba) | (a,b) € I}

If L is a language on A*, we denote by [L]; the closure of L under ~;. A class
C of languages is closed under I-commutation if L € C implies [L]; € C. When
I is the relation {(a,b) € A x A | a # b}, we simplify the notation to ~ and [L],
respectively. Thus ~ is the commutation relation and [L] is the commutative
closure of L. A class of languages C is closed under commutation if L € C
implies [L] € C.

The non-commutation relation (also called dependence relation) associated
with I, is the relation D = {(a,b) € A x A| (a,b) ¢ I}. The relations I and D
define two (undirected) graphs (A, I) and (A, D) with A as set of vertices.

1.3 Operations on languages

The marked product of k+ 1 languages Lg, L1, ..., Ly of A* is a product of the
form L = LoayL1 - --ap Ly, where aq,...,a; are letters of A.

The shuffle product (or simply shuffle) of two languages Ly and Lo over A
is the language

Ly wls={we A" | w=uyv;y - unv, for some words uq, ..., U,

v1,...,0, of A" such that uy---u, € Ly and vy -+ v, € La}.

The shuffle product defines a commutative and associative operation over the
set of languages over A.

Given a class £ of regular languages, the polynomial closure of L, denoted
by Pol(£L), consists of the finite unions of languages of the form LoaiL; - - ay Ly
where a1, ..., ay are letters and Ly, ..., Ly are languages of L. For instance, if 7
is the trivial class of languages defined by Z(A*) = {0, A*} for each alphabet A,
then Pol(Z) is the class of finite unions of languages of the form A*ay A* - - - aj A*,
with aq,...,a; € A.

A morphism between two free monoids A* and B* isamap ¢ : A* — B* such
that, for all u,v € A*, p(uv) = @(u)e(v). This condition implies in particular
that p(1) = 1. We say that ¢ is length-preserving if, for each u € A*, the words
u and @(u) have the same length. Equivalently, ¢ is length-preserving if, for
each letter a € A, p(a) € B. Similarly, ¢ is length-decreasing if the image of
each letter is either a letter or the empty word.



1.4 Syntactic ordered monoid

Let L be a regular language of A*. The syntactic preorder of L is the relation
<y, defined on A* by : u <, v iff, for every z,y € A*,

zvy € L=zuy €L

The syntactic congruence of L is the relation ~j, defined on A* by : u ~, v iff,
for every z,y € A*,
zvy € L& zuy e L

The syntactic ordered monoid of L is (A*/~p,<rp /~1), where <y, /~p denotes
the order induced by <, on the quotient set A*/~.

The syntactic ordered monoid can be computed from the minimal automaton
as follows. First observe that if A= (Q, A4, -,q—, F) is a minimal deterministic
automaton, the relation < defined on Q by p < ¢ if for all u € A*,

qgqueF=pueckF

is an order relation, called the syntactic order. Then the syntactic ordered
monoid of a language is the transition monoid of its ordered minimal automaton.
The order is defined by u < v if and only if, for all ¢ € Q, ¢-u < ¢-v.

Example 1.1 The minimal deterministic automaton of (ab)* is represented in
Figure

a

a,b

3

>
S

Figure 1.1: The minimal deterministic automaton of (ab)*

The order on the set of states is 1 < 0 and 2 < 0. Indeed, one has 0-u = 0 for
all u € A* and thus, the formal implication

OueF=quekF

holds for any state q. One can verify that there is no other relations among
the states. For instance, 1 and 2 are incomparable since 1-ab = 1 € F but
22ab=0¢ Fand 1-b=0¢ Fbut2-b=1¢€ F.

The syntactic monoid of (ab)* and its syntactic order are represented below :



Syntactic order

Elements @
1

2
11172 Relations
al2]0 bb=aa =0
bl o1 doea () (o) (0) ()
aa 010 bab=1>
ab | 110
ba | 0 | 2 a

Let M be a finite monoid. The exponent of M is the least integer w such that
for all z € M, z¥ is idempotent. Its period is the least integer p such that for
all x € M, z¥tP = z¥. By extension, the period (respectively exponent) of a
regular language is the period (respectively exponent) of its syntactic monoid.
The definition of the star-free languages follows the same definition scheme as
the one of rational languages, with the difference that the star operation is re-
placed by the complement. Thus the star-free languages of A* are obtained from
the finite languages by using Boolean operations and concatenation product. A
well-known result of Schiitzenberger states that a regular language is star-free
if and only if its syntactic monoid has period 1.

Opposite to the star-free languages are the group languages. Recall that a
group language is a language whose syntactic monoid is a group, or, equivalently,
is recognised by a finite deterministic automaton in which each letter defines a
permutation of the set of states. Note that if a group language is recognised by
a group G, then its period divides |G|.

Example 1.2 The set of words over A = {a,b} having an even number of
subwords equal to ab is a group language whose syntactic monoid is the dihedral
group of order 8. A regular expression for this language is

(b + a(b(ab*a)*b)*a)" (1 + a(b(ab*a)*b)*)

and its minimal automaton is represented below.

2 Known results

In this section, we briefly survey the kwown results on our two problems. We
also include two easy results, Corollary and Proposition



2.1 The first problem

For the commutative closure, the problem is solved [37, 17, 18, 19]:

Theorem 2.1 One can decide whether the commutative closure of a given reg-
ular language is reqular.

The commutative closure of the language (ab)* is not regular since [(ab)*] =
{v € {a,b}* | |u|a = |ulp}. Unfortunately, the class of languages whose commu-
tative closure is regular is not robust. In particular, it is not even closed under
intersection as shown in the next example.

Example 2.1 Consider the languages L1 = (ab)*+(ab)*a™bt and Ly = (ab)*+
(ab)*bTa™. The commutative closure of these languages is regular, since

[L1] = [Lo] = {a,b}"\ (a™ +b7)
However, Ly N Ly = (ab)* and [(ab)*] is not regular.

For partial commutations, the result of Sakarovitch [38] concluded a series
of previous partial results.

Theorem 2.2 One can decide whether the closure [L]; of a regular language L
is regular if and only if I is a transitive relation.

The following useful result also holds [12, 11].

Theorem 2.3 Let I be a partial commutation on A and let Ly, ..., Ly, be lan-
guages of A*. If the languages [L1]1, ..., [Ln|r are reqular, then [Ly --- Ly]r is
regular.

Corollary 2.4 Let I be a partial commutation on A and let L be a set of regular
languages on A*. If, for each language L of L, [L]; is regular, then for each
language L of Pol(L), [L]; is regular.

Proof. Suppose that, for each language L of £, [L]; is regular. We claim that
for each language L of Pol(L), [L]; is regular. Since, for each family (L;);es of

languages, one has
Uz, = UL &)
jed jed

it suffices to establish the result for a language L of the form LgaiLy - an Ly,
where Lo, ..., L, € L and aq,...,a, are letters. Now, since [a]; = {a} for each
letter a, the result follows directly from Theorem 2.3. 0O

2.2 The second problem

Only a few results are known for the second problem. They concern the following
classes of languages:
(1) the class Pol(Z) of finite unions of languages of the form A*ay A* - - - a A*,
with ai,...,ax € A,



(2) the class J of piecewise testable languages (the Boolean closure of Pol(7)),

(3) the class Pol(J), which consists of finite unions of languages of the form
Afar1 AT - - apAf with A; € A and aq,...,a; € A, also called APC (Al
phabetic Pattern Constraints) in [2],

(4) the class Pol(Com) of polynomials of commutative languages.

Syntactic characterizations are known for J [39] and for Pol(J) [35]. The
following theorem summarises the results of Guaiana, Restivo and Salemi [20,
21], Bouajjani, Muscholl and Touili [2, 3] and Cécé, Héam and Mainier [9, 10].

Theorem 2.5 The following properties hold:
(1) the class Pol(T) is closed under commutation,
(2)
(3) the class Pol(J) is closed under any partial commutation,
(4)

the class J s closed under commutation,

the class Pol(Com) is closed under any partial commutation.

Note that neither Pol(Z) nor J are closed under partial commutation [21, The-
orem 15].

We now exhibit another small class closed under any partial commutation.
It follows from the definition of Pol that a language belongs to Pol(Z) if and
only if it is a shuffie ideal, that is, a language of the form L i A* for some
language L.

Let J~ be the class of all complements of shuffle ideals. It is a positive
variety of languages and the corresponding variety of ordered monoids is defined
by the identity 1 < z (see the dual version of [32, Theorem 6.4]). Further, a
language belongs to J ~ if and only if it is closed under taking subwords.

Proposition 2.6 The class J~ is closed under any partial commutation.

Proof. Let L be a language of A* closed under taking subwords and let I be
a partial commutation on A. Let v € L. We claim that if u ~; v, then for
each subword v’ of v, there is a subword u’ of u such that u' ~; v’. It suffices
to prove the statement for v and v such that u = zaby and v = zbay for some
(a,b) € I. Then a simple induction will conclude the proof. Let v’ be a subword
of v. If v/ is a subword of zay or of xby, then it is also a subword of u. Let us
now assume that v’ = 2’bay’ for some subword z’ of z and some subword y’ of
y. Let ' = 2’aby’. Then v’ is a subword of u and u’ ~ v’, which proves the
claim. It follows that [L]; is closed under taking subwords. O

2.3 Star-free languages

Two nice results on star-free languages were proved by Muscholl and Petersen
[26]. The first one is the counterpart of Theorem 2.2 for star-free languages.

Theorem 2.7 Let I be a partial commutation. One can decide whether the
closure [L]1 of a star-free language L is star-free if and only if I is a transitive
relation.

The second result is related to our second problem.



Theorem 2.8 Let I be a partial commutation and let L be a star-free language.
If D is transitive, then [L]; is either star-free or non regular. If D is not
transitive, then there exist star-free languages such that [L]; is regular but not
star-free.

Let us remind the example given in [26]. The language (abcbac)* is star-free,
whereas the language [L]ap=pa = (((ab + ba)c)?)* is regular but not star-free.

3 Some combinatorial properties

In this section, we gather together the combinatorial properties that are used
in this paper. We first state some consequences of Ramsey’s theorem, then we
prove some properties of group languages. Finally, we establish a few results on
insertion systems.

3.1 Ramsey type properties

In this section, we briefly survey a few consequences of a celebrated result in
combinatorics on words, Ramsey’s theorem. Similar results can be found for
instance in [14, 23, 31], with a slightly different formulation.

Proposition 3.1 Let M be a finite monoid and let ™ : A* — M be a surjective
morphism. For any n > 0, there exists N > 0 and an idempotent e in M
such that, for any ug,u,...,uny € A* there exists a sequence 0 < ig < i1 <

. < ip < N such that m(wigtigy1 -+ Uiy—1) = T(Usy Ujy g1 Ujp—1) = .. =
m(wg, - Ui, —1) = €.

When M is a finite group, 1 is the unique idempotent of M and Proposition
can be simplified as follows:

Corollary 3.2 Let G be a finite group and let m : A* — G be a surjec-
tive morphism. Then for any n > 0, there exists N > 0 such that, for any
Uy, U1, - .., Uy € A* there exists a sequence 0 < ig < i1 < ... < ip < N such
that W(uioui0+1 s -uil_l) = W(Uil’uiﬁ_l tee uiz_l) =...= F(uin71 s uin_l) =1.

3.2 Properties of group languages

In this section, we establish some simple properties of group languages. Let us
start with an elementary lemma.

Lemma 3.3 Let g1,92,...,9)q| be a sequence of elements of G. Then there
exist two indices i, j with i < j < |G| such that g;---g; = 1.

Proof. Consider the sequence g1,g192,--.,9192 " g|q- Either one of these
elements is equal to 1, or two of them are equal, say g1 ---¢gi—1 = g1 - - - g; With
t < j. In this case, g;---g; = 1. O

The next lemma is a kind of insertion property. Let = be a morphism from A*
onto a finite group G, let R = 7~1(1) and let L be a language recognised by 7.



Lemma 3.4 Let x be a word of R and let u and v be two words. Then uv € L
if and only if uxv € L.

Proof. If x € R, then 7(z) = 1. It follows that
7(uzv) = w(u)m(x)r(v) = 7(u)w(v) = 7(uv)
which proves the lemma. O

We shall also need the following consequence of the previous lemma.

Lemma 3.5 Let ay,...,a, be letters, let x be a word of R and let u and v be
two words. If uwv € Ra1RasR--- Ra, R, then uxv € RajRasR - Ra,R.

Proof. If uv € RajRasR - -- Ra, R, then there exist an index ¢ and two words
2’ 2" € A* such that v € Ray1R- -+ Ra;x’, v € 2”"a; .1 R+ - Ra,. R and 2’2" € R.
Since z'zxz” € R by Lemma 3.4, one gets uzv € RajRasR--- Ra,R. O

3.3 Insertion systems

An insertion system is a special type of rewriting system whose rules are of the
form 1 — r for all 7 in a given language R. We write u —g v if v = v'u” and
v =u'ru” for some r € R. We denote by = the reflexive transitive closure of
the relation — . The closures of a language L of A* under —x and S g are

respectively the languages
[L]=, = {v € A" | there exists u € L such that u —g v}
(L], ={ve€A"| there exists u € L such that u SR}

Recall that a well quasi-order on a set E is a reflexive and transitive relation
< such that for any infinite sequence zg, x1, ... of elements of F, there are two
integers ¢ < j such that 2; < x;. The results of this section rely on an important
result of [4] which extends Higman’s theorem on the subword order:

Theorem 3.6 (Bucher, Ehrenfeucht and Haussler) If H is a finite set of

words such that the language A* \ A*HA* is finite, then the relation ~>p is a
well quasi-order on A*.

We are especially interested in the case R = 7~%(1), where 7 is a morphism
from A* onto a finite group G. In this case, the set of words that can be derived
from a given word has a simple expression. Let us introduce a convenient
(but nonstandard!) notation to state this result more easily. Given a word u =
ai - - - a, and a language K, let us denote by u 1 K the language Ka1 K --- Ka, K.

Proposition 3.7 For each word u of A*, one has [u] -, =uTR.

Proof. The inclusion of u 1R in [u] is an immediate consequence of the
definitions. For the opposite inclusion, since u € u 1T R, it suffices to prove that
the language u 1T R is closed under — . But this is just another formulation of
Lemma 3.5. O

Let F be the set of words of R of length < |G|. Then F is finite by con-
struction. The next lemma states that sufficiently long words contain a factor
in F.



Lemma 3.8 FEvery word of A* of length > |G| contains a nonempty factor in
F.

Proof. Let ay - --a, be a word of length n > |G|. By Lemma 3.3, there exist
two indices ¢, j, with ¢ < j < |G| such that m(a;)---7(a;) = 1. It follows that
7(a;---a;) =1 and hence a;---a; € F. O

The following result can be viewed as a special case of a well-known result
[24, Proposition 1.6.4].

Proposition 3.9 The relations i>p and —*>R coincide.

Proof. Since F C R, it is clear that u —p v implies © g v. Since —p is
transitive, it is now sufficient to show that v —g v implies u X p v. Thus

suppose that u = v/u”, and v = v/ru” for some r € R. We prove the result by

induction on the length of r. If |r| < |G|, then r € F' and u —p v. Otherwise,
Lemma shows that r contains a nonempty factor in F. Thus r = z fy with
f € F. Further, Lemma 3.4 shows that zy € R. Thus v —g v zyu” and by the
induction hypothesis, u —p v'zyu”. Now, since v'zyu” —p v'zfyu” = v, one
has u Spv. O

Theorem now leads to a key property of - p.

Proposition 3.10 The relation 5 is a well quasi-order on A*.

Proof. Lemma shows that A* \ A*FA* is finite and by Theorem 3.6, =5

is a well quasi-order on A*. Further, Proposition shows that —» is equal to
i>F. ]

We now derive an important consequence of Proposition

Proposition 3.11 For each language L of A*, the language [L]im is a poly-
nomial of group languages. '

Proof. Since g is a well quasi-order, the language [L]1>R is equal to [G]im
for some finite language G. Thus [L]—*m is a finite union of languages of the

form [u]im' It follows from Proposition 3.7 that [L]im is a polynomial of group
languages. O

Corollary 3.12 A language L that satisfies L = [L]—, , is a polynomial of group
languages.

Proof. Indeed, the equality L = [L]_,, implies L = [L]im and by Proposition
, the language [L]im is a polynomial of group languages. O

4 Computation of [L];
We have seen that if L is a regular language, then [L]; is not necessarily regular,

which makes the computation of [L]; a nontrivial problem. This section gathers
two results related to this problem.

10



4.1 Free products

Recall that the free product (or coproduct) of a family of monoids My, ..., M, is
the free monoid generated by the disjoint union of M, ..., M,, quotiented out
by the relations z; - y; = a;y; (1 <@ < n, 2;,y; € M;) and the relations 1; = 1,
where 1; denotes the identity of M; (1 < i < n).

Let (A1, ), ..., (Ak, Ix) be the connected components of the graph (A, I).
Then P = {As, ..., Ax} is a partition of A and A*/~j is isomorphic to the free
product A} /~p, % --- % A} /~p,. For instance, if A = {a,b,c,d,e, f,g} and I is
the partial commutation represented below

a b
f g
[ ] [ ]
c
d e
— o

then P = {{a,b,c},{d,e},{f},{g}}, and
A% f~r=Ha, b e} v+ {d e} v+ { T + {g}

where I; and I are defined by ab ~j, ba, bc ~1, ¢b and de ~, ed.

The aim of this section is to construct a generalized automaton recognising
[L]1, given the minimal automaton of L. By a generalized automaton, we mean
a finite automaton in which transitions are labelled by some (non necessarily
regular) languages.

Let A = (Q, A4, -,qo, F) be the minimal automaton of a language L of A*.
Recall that the states of @) are partially ordered by the relation < defined by
p < q if and only if,

for all u € A*, g-u € F implies p-u € F.

We now construct a generalized automaton B over the same set of states Q.
The automaton B also has the same initial state and the same final states as
A. The description of the transitions of B requires some further notation. For
each pair of states (p, q), let us set

Kp,q:{ueA* | p-u<q}

It is easy to see that K, 4 is actually an intersection of quotients of L. Let = be
a word such that ¢o-x = p.

Lemma 4.1 The following formula holds:

Kpq= ﬂ e Lyt (2)

q-yeFr
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Proof. If u € K, 4, then p-u < ¢ and thus go- zu < ¢q. Therefore, if ¢-y € F,
then qo- zuy € F by the definition of <, whence zuy € L and u € 2~ Ly~ 1.

In the opposite direction, suppose that u € z~!Ly~! for all words y such
that ¢-y € F. Let us show that p-u < ¢. Indeed, if g-y € F, thenu € 2 'Ly~!,
whence zuy € L and (p-u)-y € F. Since this holds for any y such that ¢-y € F,
we have p-u < ¢ and hence u € K, 4. O

Since a regular language has finitely many quotients, Lemma shows that
the languages K, , are regular. We now create a transition in B from p to ¢
labelled by the (non necessarily regular) language

Ryq = U [prq N Aﬂlj

1<k
Proposition 4.2 The generalized automaton B recognises [L].

Proof. Let v € [L];. Let us factorise u as w = uq - - - u,, where all the letters
of each u; belong to the same class of P, but the letters of two consecutive u;
belong to different classes of P. Continuing our example, the factorisation of
acbadebebagde f g would be (acba)(de)(beba)(g)(de)(f)(g). Since u € [L];, there
exist some words vy, ..., v, such that vy ~y vy, ..., up ~y v, and vy ---v, € L.

Let g1 = qo-v1, @2 = q1- V2, .., n = Gn_1-Vyn. Since vy - - - v, belongs to L,
Gn is a final state.

—~()= (o)) (D=2
Now, it follows from the definition of the sets R, 4 that u; € Ry g1, ..., Un €

Rq,_1.q,- Consequently u is accepted by B.
In the opposite direction, consider a word u accepted by B and let

be a successful path of B labelled by u. This means that g, is a final state and

that w1 € Rgy,q15 ---» Un € Ry, _,,q,.- Consequently, for 1 <7 < n, there is a sin-
gle class A, ;) of the partition P such that u; € [Kq,_, 4, ﬂA;(i)} L According
to the definition of the sets K g, there exist some words vy € A7 ;... ,vn €
A;(n) such that

(1) w1 ~1,, V1, oo Un ~1,,, Vo and

(2) go-vr <1y -vy Gno1-Vn < Q.

Setting v = vy - - - vy, Property (1) shows that u ~; v and Property (2) that
qo- v < ¢n. Now, by the definition of the order <, the condition ¢, € F implies
go-v € F and hence v € L. It follows that u € [L];. O

4.2 The case where D is transitive

It is easy to see that D is transitive if and only if A*/~ is isomorphic to a direct
product of free monoids. For instance, if A = {a,b,¢,d,e, f,g}, and I and D are
the relations represented below, then A*/~; = {a,b, c}* x {d,e}* x {f}* x {g}*.
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Suppose that A*/~; = A} x --- x A}. In this case, it is possible to express [L];
as a shuffle product of k languages (one for each component). Denote by 7; the
projection from A* onto A7, which is the morphism defined by

(a) a ifaeA;
mi(a) =
J 1 otherwise

and let 77 be the morphism from A* onto A} x --- x A} defined by
mr(u) = (m1(u), ..., mk(u))
This morphism is intimately connected to our problem, since u ~; v if and only

if 77(u) = 7w (v). In particular, recall that [L]; is regular if and only if 77(L) is
a recognisable subset of A7 x --- x Aj.

Proposition 4.3 Let L be a language of A*. If

F[(L): U Li,lx"'XLi,k (3)
1<i<n
where for 1 < j <k, the languages L1 j, ..., Ly, j are languages of A}, then
L= |J Lizw- wLix (4)
1<i<n

Proof. Let K denote the right hand side of (4). We first show that [L]; is a
subset of K. Let u € [L];. Then there is a word v € L such that u ~ v. Let, for
1<j<k vi=mj(v). Thenv € vy w --- w v and thus (vi,...,vx) € mr(L).
Therefore, one has (v1,...,v;) € Li1 X -++ X L; , for some ¢ € {1,...,n}. Now,
since u ~y v, the projections of u and v on each A} coincide. It follows that
uw€E€v w---wuvg and hence u € L1 w -+ w L and finally u € K.

To prove the opposite inclusion, consider a word v € K. Then one has

w€ Ly w--+w Ly forsomed € {1,...,n}. Therefore, there exist some words
vy € Li1, ..., v € L i, such that v € vy w -+ w vg. Now, since (vy,...,v;) €
L;1%---x Ly, one gets by (3) (v1,...,v,) € mr(L). Consequently, there exists
a word v € L such that 7;(v) = (v1,...,v%), that is v € v1 w -+ w vk Tt

follows that the projections of v and v on each A;f coincide and hence u ~j v.
Thus v € [L];. O
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5 Polynomials of group languages

Let us first recall some basic facts about polynomial of group languages. Recall
that a positive variety of languages is a class of regular languages closed under
union, intersection, quotients and inverses of morphisms.

Theorem 5.1 The class Pol(G) is a positive variety of languages closed under
shuffie, product and marked product.

Proof. It was shown in [36] that Pol(G) is a positive variety of languages corre-
sponding to the variety of finite ordered monoids PG ™. It follows then from the
results of [7] that Pol(G) is closed under shuffle. It is also closed under marked
product by construction.

Let L and L’ be two languages. Then

LI — Uaea La(a™'L) ifl1¢L
" \Usea La(a™'L)UL if1el

Let now L and L’ be two group languages. Since group languages are closed
under quotients, a 'L’ is a group language. It follows that LL’ belongs to
Pol(G) and it follows immediately that Pol(G) is closed under product. o

We now prove a result which should be compared to Corollary

Theorem 5.2 Let I be partial commutation on A. If, for each group language
K of A*, [K]; is a polynomial of group languages, then for each polynomial of
group languages L of A*, [L]; is a polynomial of group languages.

The short proof below was communicated to us by Pierre-Cyrille Héam.

Proof. Suppose that for each group language K of A*, [K]; is a polynomial
of group languages. Let now L be a polynomial of group languages of A*. By
Corollary 2.4, [L]; is regular. Further, [33, Theorem 7.1] shows that L is open
in the pro-group topology, which means that L is a (possibly infinite) union
of group languages. By assumption, if K is a group language, then [K]; is a
polynomial of group languages and hence is open. It follows that [L]; is a union
of open sets and hence is also open. Therefore [L]; is an open regular language
and by [33, Theorem 7.1] again, it is a polynomial of group languages. O

5.1 Commutative closure

The main result of this section states that the commutative closure of a group
language is regular, and is in fact a polynomial of group languages. We start
with a proof of the weaker property, which relies only on Ramsey type arguments
and will serve as a guide for the more technical proof of Theorem

Theorem 5.3 The commutative closure of a group language is reqular.

Proof. Let L C A* be a group language and let 7w : A* — G be its syntactic
morphism. Let n = |G| and let N be the integer given by Corollary 3.2. We
claim that for any letter a € A, v ~IL) aVNt". Let g = 7(a).
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Suppose that za™y € [L]. Then there exists a word w of L commutatively
equivalent to za™y. It follows that wa™ is commutatively equivalent to za™¥ T"y.
Further, since G is a finite group, one has g™ = 1 by Lagrange’s theorem,
whence 7(wa™) = w(w)w(a™) = w(w). Thus the words w and wa™ have the
same syntactic image by 7 and hence wa™ € L. Therefore za™¥ ™"y € [L].

Conversely, assume that za™*"y € [L]. Then za™*"y is commutatively
equivalent to some word of L, say w = ugauia - - uy—_jauyaun+1. By applying
Corollary to the sequence of words ugpa, uia, ..., uya, we obtain a sequence
0<ipg<iy1 <...<i, <N such that

m(ujpa- - au;, —1a) = w(u,a- - au,—1a) = ... =7w(u;,_,a---au;, —1a) =1

(5)

This implies in particular
T(wiga - aws, 1) = 7(uz @ auiy 1) = ... =m(u;,_a---au;, 1) =g+ (6)
Let 7 and s be the words defined by
w=1r(upa- - auy—10)(uya- - au,—10)(u;,_,a---au;, —1a)s
Since w is commutatively equivalent to za™¥ "y, the word
w =r(uga-auy 1) (U a-aug, 1) (ug,_a---au;, _1)s

is commutatively equivalent to xa’¥y. Furthermore, Formulas (5) and (
that 7(w) = 7(r)n(s) and w(w’) = w(r)(g~1)"m(s). Since (g-1)" = 1
grange’s theorem, 7(w) = m(w’) and thus w’ € L. Tt follows that za™y € [L],
which proves the claim.

Now, the syntactic monoid of [L] is a commutative monoid in which each
generator has a finite index. Since the alphabet is finite, this monoid is finite
and thus [L] is regular. O

Theorem indicates that the commutative closure of a group language
is a commutative regular language. One may wonder whether, in turn, any
commutative regular language is the commutative closure of a group language.
The answer is no, but requires an improved version of Theorem

Theorem 5.4 The commutative closure of a group language is a polynomial of
group languages.

Proof. Let L be a group language, let 7 : A* — G be its syntactic morphism
and let R = 77 1(1). Let K be the commutative closure of L. We claim that
K = [K]_,. It suffices to prove that if zy € K and r € R, then zry € K. Since
zy € K, there exists a word v € L which is commutatively equivalent to xy.
Thus the word vr is commutatively equivalent to zry. Now, since 7(r) = 1, one
gets

w(vr) = w(v)w(r) = 7(v)

Therefore vr € L and xry € K, which proves the claim. It follows by Corollary
that K is a polynomial of group languages. O
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Example 5.1 Let A = {a,b} and let L be the group language of A* accepted
by the automaton represented below.

e a
a,b e‘ b
(2)—74
Thus L is recognised by the group of all permutations of a three-element set.
Its commutative closure is the language L1 + (a®)* + (b%)* + (b%)*ab(b?)* +

(b%)*ba(b?)*, where Ly = A*aA*aA*bA* + A*aA*bA*aA* + A*bA*aA*aA*. Tts

minimal automaton is the following

Finally, one can write [L] as a polynomial of group languages as follows: [L] =
Ly + Ly where Ly is the group language defined by

Lo ={u€ A" | |u|]e =0mod 3 and |u|, = 0 mod 2 or |u|, =1 mod 3 and |u|, = 1 mod 2}.

The next example shows that the commutative closure of a group language is
not in general a group language.

Example 5.2 Let L be the set of words over A = {a, b} having an odd number
of subwords equal to ab. Then L is a group language, but its commutative
closure A*aA*bA* U A*bA*aA* is not a group language.

Theorem can be extended to polynomials of group languages.

Corollary 5.5 The commutative closure of a polynomial of group languages is
also a polynomial of group languages.

Proof. This is an immediate consequence of Theorems and 5.4. Here is
another proof, which does not rely on topological arguments.

It is shown in [33] that for any polynomial of group languages L, there
exists a morphism 7 : A* — G from A* onto a finite group G such that L is a
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finite union of monomials of the form RaiR --- Ra,R, where R = 7~1(1) and
ai,...,a, are letters of A. Clearly, it suffices to prove the theorem when L is
one of these monomials. Let K be its commutative closure. By Corollary ,
it suffices to prove that K = [K]_, g to show that K is a polynomial of group
languages.

Let z, y and r be words such that zy € K and r € R. Let v be a word
of L commutatively equivalent to xy. Then vr is commutatively equivalent to
xry. As an element of L, v can be written as rqairy - - - apr, for some words
r0,...,Tn € R. Thus vr € L since r,r € R. It follows that xry € K and hence
K= [K]_>R O

5.2 Closure under partial commutations

Some of the results of Section can be extended to partial commutations,
usually under some restrictions on the set I. We consider the following subcases:
first when D consists of a clique and some isolated vertices, then the more general
case where D is transitive and finally an extension of this latter case.

5.2.1 A simple case

We first consider the case when D consists of a clique and some isolated vertices.
An example is represented below, with A = {a,b, ¢, d, e}.

¢ a b
I c D :
° °
c e
d d

In this case, it is not too hard to modify the proofs of Theorem 5.4 and Corollary
to obtain the following results:

Theorem 5.6 Let I be a partial commutation such that D consists of a clique
and some isolated vertices. If L is a group language, then [L]; is a polynomial
of group languages.

Proof. Let L be a group language, let 7 : A* — G be its syntactic morphism
and let R = 7=1(1). We also denote by B the set of vertices of the clique D
and by C the set A\ B. For instance, in our example, we get B = {a,b,c} and
C = {d,e}. We claim that the language K = [L]; satisfies K = [K|_,,. Let

uw € K and let r € R. Let us write u as ugbyuy - - - byug, where by,...,by € B
and ug, ..., u € C*. If u = zy, there is an index ¢ and a factorisation u; = uju}
such that = wpbjur --- byu} and y = ulbipiuiyr - - - bruy.

Since u € K, there exists a word v € L such that u ~; v. It follows that
mp(u) ~r mp(v) and since the restriction of I to B x B is the equality, one
can write v as vobivy - -+ bpvg with vg,...,vp € C*. Further, since wo(u) ~;
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me(v) and since the restriction of I to C' x C' is a total commutation, one has
UgUY ** * Uk ~] VU1 * * * Vk.

Consider the word w = (vobyvy « -+ v;—1b;)r(vibit1 -+ brvk). Since 7w (r) =1,
one gets
m(w) = w(vobyvy -+ - vi—1b)T(r)w(vibiy1 -+ brvk)
= W(Uobl?}l s 'Ui—lbi)ﬂ'(vibi-i-l s bk’l}k) = 7T(’U)

and hence w € L. Further, since the letters of C' commute with any other letter
and since uguj - - - Uk ~y Vou1 - - - Vg, one gets

wegby o birbigy - brvg - v
f\/[bl birbi+l bkuO cesUR T TTY
It follows that w ~j zry and hence zry € K, which proves the claim. The

result now follows from Corollary . O

Corollary 5.7 Let I be a partial commutation such that D consists of a clique
and some isolated vertices. If L is a polynomial of group languages, then [L];
is a polynomial of group languages.

Proof. The proof is similar to that of Corollary 5.5. O

5.2.2 The case where D is transitive

In this section we extend the results of Section to the more general case
where D is transitive, already considered in Section
The proof we present is totally different from that of Theorem 5.6, which does

not seem to generalize easily to the transitive case. We adapt an argument from
[6, Proposition 9.6] to compute 77(L) in the special case of a group language.
Let m: A* — G be the syntactic morphism of a group language L.

Proposition 5.8 Let N = k|G|**? and, for 1 <i <k, let R; = AX na~1(1).
Then the following formula holds:

WI(L):U(UlTRﬁX o X (up T Ry) (7)
where the union runs over the set E of k-tuples of words (u1,...,u) € my(L)
such that |usl, ..., |ug) < N.

Proof. First observe that the conditions
(up...,ug) € (L) and LN (upw - wug)# 0

are equivalent. We shall use freely this remark in the remainder of the proof.
Let K denote the right hand side of (7). We first prove that K is a subset
of mr(L). If t is a k-tuple of K, there is a k-tuple (uy ..., u) € E such that

t=(r1,001,171,1 *** G1na Ty« - s Th,00k 1Tk *** QkonpThong)

where, for 1 <i <k, usy = a;1---a5n, and r;; € R; for 0 < j < ny.
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Since (u1,...,ux) € E, there exists a word u € L such that m;(u) =
(u1,...,uk).

Thus u belongs to u; w --- w ug. Let us replace each letter a; ; in u by
the word r; j_1a;; if j < n; and by 75, -10in;Tin, if 7 = n;. Let us do this
operation for 1 < ¢ < k and 1 < j < n;. Since 7(r;;) = 1 for all 4,7, the
resulting word v has the following properties:

(1) for 1 <i <k, m(v) =70a51751 ** Qin;Tin; and hence mp(v) =t,
(2) m(v) = m(u) and thus v € L.
It follows that ¢ € m;(L) and therefore K is a subset of 7 (L).

In the opposite direction, consider a k-tuple t = (uy,...,ux) € 77(L). We
prove that ¢ € K by induction on |¢| = |ui| + ... + |ug|. First assume that
[t| < N. Then t € F and thus t € (ug T Ry) X -+ X (ur T Rg), since 1 € R; for
1 < i < k. Tt follows that ¢ belongs to K.

We may now assume that |t| > N. By assumption, there is a word u € L such
that 77 (u) = (uq,...,ur). First suppose that, for some ¢, u contains a factor of
length > |G| in Af. Then by Lemma 3.8, this factor contains a nonempty factor
in R; and thus v = v/zu” with x € R; N AT. It follows by Lemma that
uw'v” € L. Further, z is also a factor of u;, so that u; = ujzul. Let t' = 7y (u'u").
Then t' = (u1,...,ui—1, wiu, uiy1,. .., ux) and since |t'| < [¢[, one gets ' € K
by the induction hypothesis. Therefore, there is a k-tuple (v1,...,v;) € E such
that t' € (v1 T R1) X -+ x (vx T Rg). In particular, wju! € v; T R; and by Lemma

, u; = uizul! € v; T R;. It follows that ¢t € (v1 T R1) x -+ X (vx T Ry) and
hence t € K.

Suppose now that u has no factor of length > |G| in A}. Let us factorize u
as

U=UL1UL,2 " UL EU21 * " U2k * " Un1 " Unk

where, for 1 < j < nand 1 < i <k, uj; € Af and uj1---ujr # 1. For
instance, if A; = {a,b}, A2 = {c} and A3 = {d, e}, the factorization of the word
cabddabeade would be (1)(c)(1)(ab)(1)(dd)(ab)(c)(1)(a)(1)(de). Since u has no
factor of length > |G| in A, the length of each word w; ; is strictly less than
|G|. On the other hand, |u| = |t| > N and thus n > |G|**!. Note that

ﬂ'[(u) = (U1,1 o Up,1,UL2 tt Up2, -ee S ULE Unk)

Let, for 1 < r < n, g, be the element of the group G¥*1 defined by

9r = (W(“T,l)a W(UT,Q)a . aﬂ'(unk)a F(unlurﬂ T unk))
By Lemma 3.3, applied to the group G**!, there exist two indices i and j, with
i < j <|G¥*! such that g; --- g; = (1,...,1) which means that for 1 < s <k,
uis - ujs € Ry and that (ujiuie - - uig) -+ (ujiujo - ujp) € 7 H(1).
Now, since u € L, it follows by Lemma that
(urg o) o (Uimg o wimi k) (Wit - jpnk) -0 (Una oo ung) € L

Therefore the k—tuple (Ul,l ot Ui—1,1U541,1 0 Un,dy -ee S ULE C Ui—1 Kk UG41E
belongs to 77(L) and by the induction hypothesis, also belongs to K. It follows
by Lemma that (u171 Ces Up1,UL2 c Un2, --. sULE cc Upk) belongs to

K. Therefore n;(L) = K. O
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Theorem 5.9 Let I be a partial commutation such that D is transitive. If L
is a group language, then [L]; is a polynomial of group languages.

Proof. It follows from Proposition that if L is a group language, then
m1(L) = Ujcicpn Lig X -+ X Li, where each language L;; is a polynomial
of group lang\uz;ges. Since Pol(G) is closed under shuffle, the result now follows
from Proposition and more precisely from (4). O

Corollary 5.10 Let I be a partial commutation such that D is transitive. If
L is a polynomial of group languages, then [L]; is also a polynomial of group
languages.

Proof. The result follows from Theorems and 5.9, but we give also a direct
proof.
Since Pol(G) is closed under shuffle, it suffices, by Proposition 4.3, to prove

that if L € Pol(G), then w;(L) is a finite union of languages of the form L; x
.-+ X Ly, where L; € Pol(G)(A}) for 1 <i < k.
Since 7y is a morphism, it preserves union and product. Therefore it suffices

to prove the result if L is of the form LgaiL;---anLy,, where Lg, ..., L, are
group languages. Theorem shows that the result holds for the languages
Ly, Ly, ..., L,, since they are group languages. Further, if a is a letter, then

mr(a) =(1,...,1,a,1,...,1), where the i-th component is a if and only if a € A;.
It follows that m;(LoaiLy - --anLy,) is a finite union of languages of the form
Ry x -+ - X Ry, where each language R; is a product of the form Syc1.51 - - - ¢S,
with So, ..., Sy € Pol(G)(A}) and each ¢; is either a letter of A; or the empty
word. But since Pol(G) is closed under product and marked product, R; belongs
to Pol(G)(A4}). O

5.2.3 A more general case

Let (A1, 1h), ..., (Ag, I;) be the connected components of the graph (A4, I') and
put, for 1 < 5 <k,

Dj={(a,b) € Aj x Aj | (a,b) & I;}

Theorem 5.11 Suppose that, for 1 < j < k, (A;, D;) is transitive. Then, if L
is a polynomial of group languages, [L]1 is regular.

Proof. Formula (2) shows that if L € Pol(G)(A*), then the language K, 4 is
also in Pol(G)(A*). Since Pol(G) is a positive variety of languages, it is closed
under inverse of morphisms. In particular, if + denotes the identity map from
A% into A*, one has K, , N A5 = 17'(K,,) and thus K, N A} belongs to
Pol(G)(Aj). If (A, D;) is transitive, it follows from Corollary that R, is
in Pol(G)(A*). Finally [L]; is regular by Proposition 4.2. O

Note that the condition on I given in the statement of Theorem is more
general than D be transitive. For instance, the partial commutation of Example

below satisfies the conditions of Theorem but the corresponding set D
is not transitive. We now give a simple graph theoretic interpretation of this
condition.

Let us adopt a standard graph terminology [22] and denote respectively
by Ps, Py and paw the graphs represented below:
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b
a b c
P — o o . p
paw
a b c d
P e——eo————e¢———9
a

The graph co-P5 is the complement of the graph Ps.

We recall a few definitions from graph theory. The distance between two
vertices of a graph is the number of edges in a shortest path connecting them.
The diameter of a graph is the greatest distance between two vertices of the
graph. Let G and H be two graphs. Let us say that a graph G is H -free if there
is no subgraph of G isomorphic to H. A P,-free graph is called a cograph.

Proposition 5.12 Let I be a partial commutation, let (A1, 11), ..., (A, Ix) be
the connected components of the graph (A,I) and let (A;, D;) be the complement
graph of (A;,1;). Then the following conditions are equivalent:

(1) for 1< j <k, (4;,Dy) is transitive,
(2) the graph (A,I) is a paw-free cograph.

Proof. (1) implies (2). Suppose that (1) is satisfied but (2) is not. If there
is a subgraph of (A, I) isomorphic to Py, then the four vertices a,b, ¢, d are in
the same connected component, say (A4;,I;). However, (a,d) and (d,b) are in
(Aj,D;) but (a,b) is not. This contradicts the fact that (A4;, D,) is transitive.

Suppose now there is a subgraph of (A, I') isomorphic to paw. Again, (a,d)
and (d,b) are in (Aj,D;), but (a,b) is not. This contradicts the fact that
(Aj, D;) is transitive.

(2) implies (1). First observe that (A4;, D;) is transitive if and only if the
graph (4;, I;) is (co-Ps)-free. Suppose that (4, I) is a paw-free cograph. Then
every graph (4;, I;) is a connected paw-free cograph and thus is either triangle-
free or (co-Ps)-free [30]. Therefore it suffices to show that if G is a connected
triangle-free cograph, then it is co-Ps-free. It follows from [13, Theorem 2] that
in a connected cograph, every subgraph has diameter < 2. Suppose that G
contains a copy of co-P3: an edge (a,b), a vertex ¢ such that nor (e¢,a) nor
(c,b) are edges of G. Since G is connected and has diameter < 2, there is
path of length 2 from ¢ to a, say (c,d),(d,a). Now, since G is triangle-free,
(d,b) is not an edge and (¢, d), (d, a), (a,b) form a subgraph isomorphic to Py, a
contradiction. O

Other characterizations of paw-free cographs can be found in [8]. We can now
state the last result of this section.

Theorem 5.13 Let L be a polynomial of group languages. If the graph (A, I)
is a paw-free cograph, then [L]; is reqular.

One may wonder whether under the conditions of Theorem , the lan-
guage [L]; is a polynomial of group languages. The following example gives a
negative answer to this question.

Example 5.3 Let A = {a,b,c} and let I be the partial commutation defined
by ab ~1 ba. Let L be the set of words having an even number of subwords
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equal to ab. Then L is a group language. We claim that [L]; is not a polynomial
of group languages. Indeed, one has aab € L, whence aba € [L];. However, for
each n > 0, one has abc"a ¢ [L];. Tt follows by [33, Theorem 7.1] that [L]; is
not a polynomial of group languages.

Example also shows that Pol(G) is not closed under partial commutation.

6 Languages of W

We now define the class of regular languages W first introduced and studied in
[6, 7].

The class W is the unique maximal positive variety of languages which does
not contain the language (ab)*, for all letters a # b. It is also the unique
maximal positive variety satisfying the two following conditions: it is proper,
that is, strictly included in the variety of regular languages, and it is closed
under the shuffle operation. It is also the largest proper positive variety closed
under length-preserving morphisms. Being closed under intersection, union,
quotients, shuffle, concatenation, length-decreasing morphisms and inverses of
morphisms, W is a quite robust class, which strictly contains the classes APC,
Pol(Com) and Pol(G).

The class W has an algebraic characterization [6, 7] which requires a few
auxiliary definitions. Recall that an ideal of a monoid M is a subset I C M such
that MIM C I. A nonempty ideal I is called minimal if, for every nonempty
ideal J of M, J C I implies J = I. Every finite monoid admits a unique minimal
ideal. Let a and b be two elements of a monoid. Then b is an inverse of a if
aba = a and bab = b. Now, a regular language belongs to W if and only if its
syntactic ordered monoid (M, <) satisfies the following condition (x):

For any pair (a,b) of mutually inverse elements of M, and any ele-
ment z of the minimal ideal of the submonoid generated by a and b,
(abzab)® < ab.

The finite ordered monoids satisfying () form a variety of ordered monoids W
[7]. Condition (%) might appear quite involved, but has an important conse-
quence: the variety W is decidable. That is, given a regular language L, one
can decide whether or not L belongs to W. We also mention for the specialists
that W contains the variety of finite monoids DS.

6.1 Commutative closure of W

The main result of this section states that W is closed under commutative
closure. In fact, we prove a stronger result, which relates the period of a language
of W to the period of its commutative closure. We will need the following
proposition.

Proposition 6.1 Let L be a commutative language of A* and let d be a positive
integer. If there exists N > 0 such that, for each letter ¢ of A, cNT¢ <p eV,
then L is regular and its period divides d.

Proof. It follows from [14, Theorem 6.6.2, page 215] that, under these con-
ditions, L is a regular language. Let w be the exponent of L. The relation
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Nt <oV ogives N@—DeN+d < Nw=DeN - whence ¢V9td <p V% and
since ¢ ~p, ¢ ~p ¢N“, one gets finally td <. Tt follows that
Cw ~ Cerwd <L o <L cw+2d <L cmrd <L Cw

and hence ¢ ~p ¢t Since L is commutative, its syntactic monoid is com-
mutative and therefore u® ~ u“t for all u € A*. Tt follows that the period of
L divides d. O

The main result of this section can now be stated.

Theorem 6.2 Let L be a language of W(A*). Then [L] belongs to W(A*) and
its period divides that of L.

Proof. Let L be a language of W(A*) and let [L] be its commutative closure.
Since [L] is commutative and since W contains the variety of commutative
languages, proving that [L] belongs to W(A*) amounts to show that [L] is
regular.

Since L € W(A*), there exist an ordered monoid (M, <) € W, a surjective
monoid morphism 7 : A* — M and an order ideal P of (M, <) such that
77 Y(P) = L. Let w, p and n be respectively the exponent, the period and the
size of M. Let also d be any number such that, for all t € M, t? is idempotent.
In particular, d can be either w or w+ p. We claim that, for every such d, there
exists an integer N such that, for every letter ¢ € A, N+ < cV. If the claim
holds, then Proposition shows that [L] is regular and that its period divides
d. Taking d = w and d = w + p then proves that this period also divides p.

The rest of the proof consists in proving the claim. We need three combina-
torial results. The first one is almost trivial.

Proposition 6.3 For every m € M, there exists a word u of length < n such
that w(u) = m.

Proof. Let m € M and let v = ay-- Ay be a word of minimal length in
7~Y(m). Suppose that |u| > n. Then, by the pigeonhole principle, two of the
n + 1 elements 7(1),7(a1),7(ar1az2),...,7(a1---ay,) are equal, say w(ay---a;)
and 7m(ay ---a;) with ¢ < j. It follows that 7(u) = 7w(ai---aiaji1---aj)),
which contradicts the definition of u. Thus |u| < n. O

The second one is a slight variation of Proposition

Proposition 6.4 Let ¢ be a letter of an alphabet A. For any r > 0, there exists
an integer N = N(r) such that, for every word u of A* containing at least
N + 1 occurrences of ¢, there exist an idempotent e of M and a factorization
U = VgU1CU2C - - VpCUp41 SUch that, for 1 < i< r, m(v;c) =e.

Proof. Let u be a word containing at least N 4+ 1 occurrences of ¢. Let us
write this word as u = ugcuic---unycunt1, where, for 0 <i < N+ 1, u; € A*.
By Proposition , applied to the words ugc, ..., uyc, there exist integers
0<ip<i; <...<ir <N and an idempotent e of M such that

m(ujgC - ujy—1¢) = ... =w(us,_,¢ -+ U —1¢) =e€
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Setting

Vo = UQC -+ Ujyp—1C

V1 = U C * ** Ujy —2CUG; —1

Uy = uirflc e ’U,iT,QC’U,iT,1
Up4+1 = U;,.C -+ UNCUN 41

we obtain a factorization u = vgvic - - - v.cv,41 such that, for 1 <i < r, w(v;e) =
e. O

The third one requires an auxiliary definition. A word u of {a, b}* is said to
be balanced if |u|, = |ulp.

Proposition 6.5 Let B = {a,b}. There exists a balanced word z € B* such
that, for any morphism v : B* — M, v(z) belongs to the minimal ideal of the
monoid y(B*).

Proof. Let z be a balanced word of B* containing all words of length < n as
a factor. Let v : B* — M be a morphism and let m be an element of the
minimal ideal J of (B*). By Proposition 6.3, applied to v, there exists a word
u of length < n such that y(u) = m. Since |u| < n, u is a factor of z and (z)
belongs to M~y (u)M. Now, since m € J, My(u)M = MmM = J and hence
v(z)eJ. o

Let z be the balanced word given by Proposition 6.5. Let r = |z|q = |z]s,
ng = d(1 4 r), no = nns and ny = 3ny. Finally let N = N(n;) be the constant
given by Proposition

Let 7,y € A*. If zcVy € [L], there exists a word u of L commutatively equiv-
alent to zcVy and hence containing at least N occurrences of ¢. By Proposition

, there exist an idempotent e of M and a factorization

U = VoU1C * -+ Up,; CUpy+1
such that, for 1 < ¢ < nq, m(vic) = e.
Now, since n; = 3ng, one can also write u as

u = UO(lel) T (anan)UnlJrl

where, for 1 < i < no, f; = v3i_2cv3;—1 and g; = cvs;c. The next lemma is the
key argument to the proof of Theorem

Lemma 6.6 Forl < i < na, the elements w(f;) and w(g;) are mutually inverse.
Proof. The result follows from the following formulas:
m(fi)m(gi)m(fi)
= 7T(’L)3i,20)7'r(’03i,1C)W(Ugic)ﬂ(’l)gi,Q C)7T(’L)3i71>

= em(v3i—1) = m(v3i—20)T(v3i—1) = 7(f;)

m(gi)m(fi)m(g:)
= 7(e)m(vs;c)m(v3i—ac)m(vsi—1¢)T(V3iC)
=7(c)e = w(c)m(vsic) = w(gi) o
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Setting § = m(c)e, one gets m(g;) = § for 1 < i < ny. Further, by the choice of

ng and by the pigeonhole principle, one can find ng indices 7; < ... < i,, and
an element s € M such that 7(f;,) = ... = n(fi,,) = s. Setting
wo =vof191 -+ fiy-19i,-1 x1 = fi Y1 = Giy
w1 = fii 41941 - fia—19i-1 T2 =fi, Y2 =i
Wng—1 = firy 1 +1Ging 141 Jing=1Gin, =1 Tng = finy  Yng = Gin,

Wny = fing+19ing+1 = frafnaOni41

we obtain a factorization

U = WoT1Y1W1X2Y2W2 * -+ Wnz—1TnzYnzWny (8)

such that m(w1) = ... = m(wps—1) =€, (x1) = ... = 7(Xp,) = s and w(y1) =
oo =7(Yng) = 8.

Recall that ng = d(1 + r) where r = |z|, = |z]s. We now define words 27,
..., zq as follows: the word z; is obtained by replacing in z the first occurrence
of a by zqi(j—1)r4+1, the second occurrence of a by xgy(j_1)r42, .., the rth
occurrence of a by x4y ;- and, similarly, the first occurrence of b by yay(j—1)r+1,
the second occurrence of b by Y44 (j—1)r42, .-, the r* occurrence of b by Ydjr-
Finally, set

/
u = wo(v3i17200113¢171021v3i1 C) ('031'272001)31'271022”31'2 C) te (U3id7200U3id7102dv3z‘d0)w1 ce

9)

We are now ready for the three final steps.

N+d

Lemma 6.7 The word v’ is commutatively equivalent to xc Y.
Proof. It is clear that u’ is commutatively equivalent to
o (vai, —acv3iy —1cvsi, ) -+ (V31,23 —1CV3i,C) (21 -+ - 2a) (W -+ W)
Now,
V3iy —2CV34i, —1CV3i, € = [iy §iy = T1Y1
V34, -2CV3i,—1CV33,C = [i,Giy = Ta¥d
Further, by construction, zj -+- 24 ~ Zd11Yd+1 - TnsYns- Lherefore u' ~
clwz1yiwi Tayows - - - Wy —1TngYns Wy and finally o' ~ uc? ~ Nty o

Let T be the submonoid of M generated by s and 5 and let v : {a,b}* = T
be the morphism defined by v(a) = s and v(b) = 5. By Proposition 6.5, v(2)
belongs to the minimal ideal of T and since e = s5, the definition of W shows
that in M, (ey(2)e)? < e.

Lemma 6.8 One has m(z1) = ... = m(zq) = (2).
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Proof. Each of the words z; is obtained by replacing in z the occurrences of a
by some xj, and each occurrence of b by some yi. Since all the x (resp. yi)
have the same image by 7, namely s (resp. 5), m(z;) is equal to y(z). O

Lemma 6.9 The word v’ belongs to L.

Proof. It follows from (8) that m(u) = 7(wo)em(wn,), and hence, since P =
(L), m(wo)em(wn,) € P. Now, observe that

7 (V34, —2CCU3;, —1€21V34, ¢) = T(V34, —2¢)T(c)m (V34 —1¢) (21 ) (V34 C)

= en(c)em(z1)e = esy(z)e by Lemma
By a similar argument, one has
7 (V34, —2CCU3;, —1€21V34, €) = ... = T(V34,-2CCU3;,—1CZ403;,¢) = eSy(z)e
Finally, since 7(w1) = ... = m(wny—1) = e, it follows from (9) that

m(u') = m(wo)(e3v(2)e) m(wn, )

Furthermore, since § € T, 5y(z) belongs to the minimal ideal of T and since
M is in W, one has (e5y(z2)e)? < e. Since m(L) is an order ideal, the element
7(wo)(e5y(2)e)?m(wy,) is also in 7(L) and hence v’ € L. ©

Putting Lemmas and together, we conclude that zc¢¥ %y € [L], which
proves the claim and the theorem. O

Note that there are regular languages outside of WW whose commutative closure is
in W. For instance the language (ab)*(a* 4 b*) is not in W but its commutative
closure is A*.

6.2 Partial commutations

In this section, we give two results on partial commutations applied to languages
of W. When I is transitive, we show that if L is a language of W, then [L]; is
regular. Our second result is similar to Theorem

It is also tempting to extend Corollary to the languages of W, but this
is not possible. Indeed we exhibit in Example a partial commutation I such
that D is transitive and a language L of W such that [L]; is not regular.

Example 6.1 Consider the alphabet A = {a,b, ¢, d} and the partial commuta-
tion relation I (with D transitive) defined by

ab ~1 ba ad ~1 da be ~1 cb cd ~g dc
a b b d
— o
I D:
a c
— o
d c
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Consider the language
L = (abed)*+A*aa A"+ A*bbA*+ A% cc A"+ A*dd A"+ A" ababA*+ A*bebe A"+ A* eded A"+ A* dada A™

We first show that L belongs to W and next that [L]; is not regular.

Let (M,<) be the syntactic ordered monoid of L. A short computation,
using the software Semigroupe 2.01 [34] shows that M is an aperiodic monoid
with zero, containing 170 elements grouped into 4 regular J-classes and some
nonregular J-classes. These regular J-classes comprise the singleton {1}, the
minimal ideal {0}, a unique O-minimal J-class with 12 R-classes and 12 £L-
classes and the regular J-class D represented below:

“beda | bedab | be bed
cda | cdab cdabe | cd
da dab |"dabe | dabed
abeda | ab abe | ¥ abed

The presentation of M computed by Semigroupe has 116 relations and cannot
be reproduced here. Similarly, we shall not give the syntactic order in detail,
but we mention that the relation 0 < = holds for all x € M. It follows that if =
and y are mutually inverse elements of M such that 0 belongs to the submonoid
generated by z and gy, then (2yOxy)¥ = 0 and Condition (x) defining W is
trivially satisfied. This covers the trivial case * = y = 1 and the cases where
z and y belong to the minimal ideal or to the unique 0-minimal ideal. The
only remaining case occurs when both x and y belong to D. If z and y are both
equal to the same idempotent e of D, Condition (x) is also trivially satisfied. The
remaining possibilities for the pair (z,y) are (abeda, bed), (bedab, cda), (ab, ed),
(abe, dabed), (be,da) and (cdabd, dab). But in all these cases, one gets either
22 =0 or y? = 0 and again, Condition () is trivially satisfied.

We now show that the language [L]; is not regular by showing that its
syntactic congruence has infinite index. For each n > 0, set z, = (ac)™.
We claim that if ¢ 7é J, then z; ), xj. Indeed, setting z; = (bd).i’ we
get z;2; = (ac)'(bd)" € [L]; since (abed)' € L and (abed)' ~p (ac)'(bd)*, but
z;2i = (ac)?(bd)’ & [L]; since no word u in L satisfies (ac)’(bd)" ~; u. This
proves the claim.

6.2.1 The case where [ is transitive

Suppose that I is transitive. Let (A1,11), ..., (Ag, ;) be the connected com-
ponents of the graph (A, T). Then each relation I; is a total commutation and
thus A*/~7 is isomorphic to a free product of free commutative monoids. For
instance, if A = {a,b,¢,d,e, f,g9}, and I and D are the relations represented
below, A*/~; is isomorphic to the free product of the four monoids N3, N2, N
and N.
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® —
@

Theorem 6.10 Let L be a language of W(A*) and let I be a transitive partial
commutation. Then [L]; is a regular language.

Proof. Since W is closed under quotients, it follows from (2) that K, , belongs

to W(A*). Since W is closed under total commutation by Theorem 6.2, Ry, , is
also in W(A*). Thus the transitions of the automaton B described in Section
are regular and [L]; is regular by Proposition 4.2. O

We do not know whether [L]; also belongs to W(A*).

6.2.2 Product and partial commutation

Let I be a partial commutation on A and let Ly, ..., L, be languages of A*.
Theorem 2.3 shows that if [Li]s,...,[Lys]r are regular languages, then the lan-
guage [Ly --- Ly]s is regular. We prove in this section a more precise result.

Proposition 6.11 If [L1]1,...,[Lys]r are languages of W, then [Ly - -+ Ly|s is
also in W.

Proof. Let Ay, ..., A, be n disjoint copies of A and let B = A; U---U A,.
For 1 <i<n,let \;: A— A; be a bijection, which extends to an isomorphism
from A* to A¥. Let X; = \;([Li]1r) C Af. Consider the partial commutation J
on B defined by

J={(a,b) e B*|a€ A;, be Aj,i#jand (A (a), ;' (b)) € I}
By [21, Theorem 6], we have
(X1 Xp]y=[47 - A%l N (X7 w - w Xy). (10)

Let ¢ : B* — A* be the morphism defined, for each a € B, by ¢(a) = \; *(a) if
a € A;. By [21, Theorem 8|, we have

[Ly -+ Lnlr = @([X1 -+ Xuly) (11)
Now, the language A7 --- A} is closed under taking subwords and thus belongs
to J~(B*). By Proposition 2.0, [A] --- Ay]; also belongs to J~ and hence

to W(B*), since J~ is contained in W. Since W is a positive variety closed
under length-preserving morphisms and under shuffle product, the languages
X, belong to W and (10) and (11) show that [L; --- Ly]r belongs to W. O
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7

Conclusion and open problems

Our results on commutations can be summarized in a nutshell as follows :

(1
(
(
(

) Both Pol(G) and W are closed under commutation.
2) If I transitive and if L is in W, then [L]; is regular.
3) If D transitive and if L is a polynomial of group languages, then so is [L];.
)

4) If (A, ) is a paw-free cograph and if L is a polynomial of group languages,
then [L]; is regular.

Many questions remain open.

(1

) If L is a group language, is [L]; always regular? The cases where the
graph (A, 1) is Py or paw are especially interesting. Note that a positive
answer to this question would also show that if L is a polynomial of group
languages, then [L]; is regular.

2) If I is a transitive partial commutation and if L is in W, does [L]; also

belong to W?

3) If D consists of a single clique and some isolated vertices and if L is in W,

is [L]; regular?

4) Let V be smallest variety of languages containing the commutative lan-

guages and the group languages. Is Pol(V) closed under [partial] commu-

tation?
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