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and open sets of the Hall topology
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1. Introduction.

The aim of this paper is to show that the two classes of recognizable (or regular)
languages of the title are actually the same. But a title has to be short and ours does not
mention two other important characterizations given in this paper: an algebraic character-
ization, on which our proofs rely, and a more algorithmic one in terms of finite automata.
This gives four possible points of view to look at our class and so, the reader may choose
between combinatorics, topology, algebra or automata according to her or his preferences.
We present the language perspective, the topological aspects, the algebraic characterization
and the connections with automata in this order.

The polynomial closure of a class of languages £ of A™ is the set of languages that are
finite unions of languages of the form ga1 1l - - - a, Ly, where the a;’s are letters and the ;s
are elements of £. The fact that letters are inserted between the L,’s is a technical facility
that makes life easier. The terminology polynomial closure, first introduced by Schutzen-
berger [23], comes from the algebraic notation for the rational expressions, in which union
is denoted by +. This closure operation leads to natural hierarchies among recognizable
languages. Define a boolean algebra as a set of languages of A* closed under finite union
and complement. Now, start with a given boolean algebra of recognizable languages, and
call it the level 0. Then define recursively the higher levels as follows: the level n 4 1/2 is
the polynomial closure of the level n and the level n 4 1 is the boolean closure of the level
n 4+ 1/2. Note that a set of level m is also a set of level n for every n > m. The main
problems concerning these hierarchies is to know whether they are infinite and whether each
level is decidable.

At least three different hierarchies of this type were proposed in the literature and the
three of them were proved to be infinite. Tf one starts with finite or cofinite languages™®),
one gets the famous “dot-depth hierarchy”. This hierarchy was presented for instance in the
invited lecture of I. Simon at the TCALP 1993 [24]. If one starts with the trivial boolean
algebra (A* and (}) one gets the Straubing-Thérien concatenation hierarchy. These hierar-
chies have some nice connections with quantifiers hierarchies in formal logic [25,17]. The
third hierarchy, called the group languages hierarchy [10], is obtained by taking the group
languages as level 0. A group language is simply a recognizable language accepted by a
permutation automaton, that is, a complete deterministic finite automaton in which each
letter induces a permutation on the set of states. Thus our class, the polynomial closure of
group languages, is exactly the level 1/2 of this hierarchy. It may seem a little disappointing
to stay below level 1 of a hierarchy, but the reader should be aware that the decidability
problem is an open problem (for the three hierarchies) for all levels > 1... The decidability
of level 1 is now proved for the three hierarchies, but it is an extremely difficult result for
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the group languages hierarchy [8,7]. Ome of the non-trivial consequences of the results of
this paper is that level 1/2 is also decidable.

The Hall topology (also called profinite group topology) was first introduced for the free
group by M. Hall [6] and extended to the case of free monoids by Reutenauer [19]. The group
languages form a basis for this topology, that is, the open sets are finite or infinite unions
of group languages. There are several other equivalent definitions for this topology, that are
detailed in section 3. Of course, an open set is not in general recognizable and there are also
recognizable languages which are not open. Our main result states that a recognizable set
is open if and only if it belongs to the polynomial closure of group languages. This result
looks like a conjuring trick since it amounts to replace infinite union by finite union and
product.

A simple characterization can also be given in terms of syntactic monoids. Recall
that a monoid is a set equipped with an associative multiplication and an identity (denoted
by 1) for this multiplication. An ordered monoid (M, <) is a monoid M equipped with a
(partial) stable order relation <: for every u, v, € M, v < v implies uz < vz and ru < zv.
An order ideal of (M, <) is a subset I of M such that, if ¥ <y and y € I, then z € I.

Let (M, <) be an ordered monoid and let 5 be a surjective semigroup morphism from
A* onto M, which can be considered as a morphism of ordered monoid from (A*,=) onto
(M, <). Tn this paper, the postfix notation zn (resp. #n~ ") will be used in place of the more
standard notation n(z) (resp. n71(x)). A language of A* is said to be recognized by n if
L = Pn~! for some order ideal P of M. By extension, L is said to be recognized by (M, <)
if there exists a surjective morphism from A* onto M that recognizes L. If M is a finite
group, then the only stable order relation is the equality relation (see Lemma [?7]) and thus
every subset of M is an order ideal. It follows that a language L is a group language if and
only if there exists a monoid morphism 5 from A* onto a finite group G and a subset P of
G such that L = Pp~1.

Let I be a language of A*. One defines a stable quasiorder <y and a congruence
relation ~; on A* by setting

u <y v if and only if, for every z,y € A*, xrvy € L implies zuy € L

u~p vifand only if u <p v and v <p u

The congruence ~, is called the syntactic congruence of L and the quasiorder < induces a
stable order <z on M (L) = A*/~r. The ordered monoid (M (L), <r) is called the syntactic
ordered semigroup of L. the relation <y is called the syntactic order of L and the canonical
morphism 5z from A* onto M (L) is called the syntactic morphism of L. Finally, the subset
P = Lyg of M(L) is called the syntactic image of L. Tt is a well-known fact that a language
is recognizable if and only if its syntactic monoid is a finite monoid. Similarly, a language
is a group language if and only if its syntactic monoid is a finite group. Now, the author
conjectured in [11] that a recognizable language L is open if and only if its syntactic image P
satisfies the following property: for every s,t € M (L) and for every idempotent e € M (L),
st € P implies set € P. This 1s equivalent to saying that the ordered syntactic monoid of T,
satisfies the simple identity

e <1 for every idempotent ¢ € M (1.1

This conjecture was proved by Ribes and Zalesskii [21] using sophisticated algebraic tools
(profinite trees acting on groups). Now by our main result, condition 1.1 also characterizes
the polynomial closure of group languages. We also prove two topological properties: two



disjoint recognizable open sets can be separated by a clopen set and the closure of a recog-
nizable open set of A* is a recognizable clopen set. Again, the proof makes use of algebraic
and combinatorial arguments.

Finally, we show that a recognizable language belongs to the polynomial closure of
the group languages if and only if the graph which is the direct product of two copies of the
reflexive and transitive closure of its minimal automaton contains no configuration of the

form
)

where ¢; is a final state and ¢, 1s a non final state. This result leads to a polynomial time
algorithm for testing, given an n-state deterministic automaton A, whether the language
accepted by A belongs to the polynomial closure of the group languages, or, equivalently, is
open in the Hall topology.

We tried to keep the paper self-contained. The techniques of semigroup theory re-
quired in the proofs are introduced in section 2. The Hall topology is defined in section 3,
the main result is presented in section 4 and the algorithms are discussed in section 5. The
separation property is presented in section 6. Some open problems are discussed in section

7.

2. Useful facts about monoids

In this section, we state without proof three results of semigroup theory that are
needed in this paper.

If M and N are monoids, a monoid morphism « : M — N 1s a map from M into N
such that (ua)(va) = (uv)a for every u,v € M. An idempotent of M is an element e such
that e = e. The set of idempotents of a monoid M is denoted by E(M).

Proposition 2.1. In a finite monoid, every element has a unique idempotent power.

The unique idempotent power of an element z 1s usually denoted . Our second result can
be considered as a weak form of Ramsey’s theorem in combinatorics [12].

Proposition 2.2. Let v be a monoid morphism from A* onto a finite monoid M and
let k be a positive integer. Then there exists an integer N and an idempotent ¢ of M
such that every word of A* of length greater that N factorizes as u = uguy -+ upy1 with
ug, g, ..., up € AT and upy =usy = ... = upy = e.

The last result may appear somewhat artificial to the reader. Tt is in fact connected to
one of the deepest results in semigroup theory, but it would take us too far afield to present
this topic. The interested reader is referred to the survey article [7]. Let M be a finite
monoid and let D(M) be the smallest submonoid of M closed under weak conjugation, that
is, such that the conditions a@a = a and n € D(M) imply ana € D(M) and ana € D(M).
One can see D(M) as the subset of M generated by the following context-free grammar

{S—>SS—|—1

S— aSa + aSa for each pair (a,a) such that eaa = a.
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Notice that since M is finite, D(M) can be effectively calculated. Tt is easy to see that D(M)
always contains E(M). Indeed, if e is an idempotent, then one can take ¢ = a = e and
n = 1. Then since 1 € D(M) (because D(M) is a monoid), one has ana = ee = e € D(M).

The deep result of Ash [1,2], first conjectured by Rhodes, states that this submonoid

D(M) is related to finite groups as follows.

Theorem 2.3. Let a : A* — M be a surjective monoid morphism. Then there exists
a finite group G and a monoid morphism f# : A* — G such that D(M) = {ua | u €
A* and up = 1}.

Notice that nothing is said about the size of the group GG, which can actually be rather
large.

3. The Hall topology

We define in this section the Hall topology. It follows from a well known result of
algebra (the free group is residually finite [6]) that two distinct words w and v of A* can
always be separated by a finite group in the following sense: there exists a finite group GG
and a monoid morphism ¢ : A* — (7 such that ue # vp. We give here a self-contained proof
of this fact. Consider the minimal deterministic (but non complete) automaton recognizing
the language {u,v}. For instance, if u = abbab and v = ababb, this automaton is drawn in

figure 3.1.

~O—-0-

O—+—0—0~

Figure 3.1. The minimal automaton of {abbab, ababb}.

In this automaton, each letter induces an injective map from the set of states into itself.
Complete these injective maps into permutation of the set of states in an arbitrary way and
remove the final state corresponding to the letter . One such completion is shown in figure

3.2 below.
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Figure 3.2. A possible completion.

The resulting automaton is a permutation automaton, which recognizes a group language
L. By construction, u € L but v ¢ L. Therefore, the syntactic monoid of L, which is a finite
group, separates u and v.

Set, for every u,v € A,

r(u,v) = min { Card() | G is a finite group that separates u and v }

and
d(?l, ?)) - (377'(“77’)

with the usual conventions min@) = co and e = 0. Then d is a distance (in fact an
ultrametric distance) which defines a topology on A*| called the profinite group topology of
the free monoid. This topology, introduced by Reutenauer [19], is an analogue for the free
monoid to the topology of the free group introduced by M. Hall [6]. Tt is the coarsest topology
such that every monoid morphism from A* into a discrete finite group is continuous. The
group languages form a basis for this topology and the concatenation product is a continuous
operation. The interested reader is referred to [11,19] for a more detailed study of the Hall
topology. An example of a converging sequence is given by the following proposition, due

to [19].

Proposition 3.1. For every word u € A*, lim v = 1.

N —00

As the multiplication is continuous and a closed set contains the limit of any converg-
ing sequence, it follows that if L is a closed set, and if zu™'y € L for all n > 0, then zy € L.
This gives the following corollary [11,16]. Recall that u™ = {u™ | n > 0}.

Corollary 3.2. Let L be a closed set and u be a word of A*. If zuTy C L, then zy € L.

In fact, the converse of Corollary 3.2 1s also true. This was first conjectured by the
author and recently proved by Ribes and Zalesskii [21] (see also [1,2] and the survey [7] for
related problems).

Theorem 3.3. A recognizable set of A* is closed if and only if for every u € A*, zuty C L
implies xy € .

Since an open set is the complement of a closed set, one can also state:
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Theorem 3.4. A recognizable set of A* is open if and only if for every u € A*, vy € I,
implies xuty N L # 0.

These conditions can be easily converted in terms of ordered syntactic monoids.

Theorem 3.5. Let . be a recognizable language of A* and let (M, <) be its ordered
syntactic monoid.

(1) L is closed if and only if for every e € E(M), 1 < e.

(2) L is open if and only if for every e € E(M), e < 1.

Proof. We give the proof for the open sets. The case of closed sets is dual. By Theorem
3.4, it suffices to verify that condition 1.1 is equivalent with condition 3.1

for every u € A*, xy € L implies zuTy N L # 0. (3.1)

Let n : A* — M be the syntactic morphism of L and let P = Ly. Let e € E(M). By
definition of the order on M, e < 1 if and only if, for every s,t € M, st € P implies set € P.

Assume that condition 1.1 is satisfied and let u € A*. By Proposition 2.1, there exists
an integer w > 0 such that (un)* is idempotent. Therefore, for every @,y € A* 2y € L
implies zu*y € L and zuTy N L # @. Thus condition 3.1 is verified.

Conversely, assume that condition 3.1 is satisfied. Let e € E(M) and s,t € M be
such that st € P. Let x € sp™!, y € tn~' and u € en™!. Then zy € L and by 3.1, there
exists n > 0 such that zu”y € L. Since u and u? are syntactically equivalent, this implies
ruy € I and thus condition 1.1 is verified. O

Corollary 3.6. A recognizable language is clopen if and only if it is a group languge.

Proof. By Theorem 3.5, a recognizable language is clopen if and only if the identity is the
unique idempotent of its syntactic monoid. Now a finite monoid with a unique idempotent
is a group. O

We also need a slightly stronger condition on the syntactic image.

Corollary 3.7. Let P be the syntactic image of a recognizable open set of A*. Then
$182 - sy € P implies D(M)s1D(M)--- D(M)s,D(M) C P.

Proof. It suffices to prove that
for every 5,1 € M, st € P implies sD(M)t C P. (3.2)

Tndeed, 3.2 applied with # = 1 (vesp. s = 1) shows that s € P implies sD(M) C P
and D(M)s C P. Therefore, s € P implies D(M)sD(M) C P. Next, assume by induc-
tion that sysy---s, 1 € P implies D(M)s1D(M) - D(M)s,_1D(M) C P and suppose
that sys5---s, € P. Then, for each dg,dy,...,d, € D, dosidy---dn_98p_15,d, € P by
the induction hypothesis. Set s = dysi1dy - dn_2s,—1 and t = s,d,. Property 3.2 gives
dosidy - dp_28p_1dp_18,d, € P and thus D(M)sy D(M)--- D(M)s, D(M) C P.

We now prove 3.2. Let N be the set of all n € M such that st € P implies snt € P.
Then N is a submonoid of M which contains E(M) by Theorem 3.5. Now if aaa = a and



n € N, then st € P implies saat € P and saal € P since aa and aa are idempotents (hecause
(aa)(aa) = (aaa)a = aa and (aa)(aa) = a(ada) = aa). Now the condition (sa)(at) € P
implies (sa)n(at) € P and thus ana € N. Similarly, (sa)(at) € P implies (sa)n(at) €

whence ana € N. Therefore N is closed under weak conjugation and thus contains D(M). ©

Theorem 3.5 also has some strong consequences on the algebraic structure of M.
Recall that an element z of a monoid M is an wnverse of an element z if zzez = x and
xxx = x. A block group 1s a monoid such that every element has at most one inverse.

Theorem 3.8. Let L be a recognizable language of A*. If L is open or closed, then its
syntactic monoid is a block group.

Proof. Let (M, <) be the ordered syntactic monoid of L. Suppose that an element x has
two inverses 1 and x5, Then (z 2)(x12) = (z1221)x = z12 and similarly, 2, 2.2 and
zay are idempotent. Thus if L is closed, Theorem 3.5 shows that z; < (zex)zy(22s) =
zo(xr12)re = Xoxxs = @9 and similarly x2 < x;. Thus 27 = 23 and M is a block group.
The proof is similar for I, open. O

A subset I of a monoid M is an ideal if, for every x € I and y € M, zy,yx € I. Ideals
are naturally ordered by inclusion. Tt is not difficult to see that in a finite monoid, there is
a smallest non-empty ideal, called the minimal ideal of M. Standard results of semigroup
theory show that the minimal ideal of a block group is a group. Therefore Theorem 3.8
gives the following corollary.

Corollary 3.9. [lLet I, be a recognizable language of A*. If I, is open or closed, then the
minimal ideal of its syntactic monoid is a group.

4. Main result

Denote by A*G the set of all group languages on A* and by Pol(A*G) the polynomial
closure of A*G. Thus a language is in Pol(A*G) if it is a finite union of languages of the
form Lgay Ly - ax Ly where the L;’s are group languages. The following result was proved
n [11,16].

Theorem 4.1. Every recognizable set of Pol(A*G) is open in the Hall topology.
Our main result states that the converse is also true.
Theorem 4.2. Every recognizable open set belongs to Pol(A*G).

Proof. Let X be a recognizable open set of A* and let o : A* — M be the syntactic monoid
of X. Let P = X« be the image of X in M. By theorem 2.3, there exist a finite group
G and a monoid morphism £ : A* — G such that D(M) = {ua | v € A* and uf = 1}.
Let R = 137!, By construction, R is recognized by G and thus is a group language.
Furthermore, for every u € R, uf = 1 and thus Ra = D(M). Tet v : A* — M x G he the
monoid morphism defined by my = (ma, mp) and let N = N () be the integer occurring in
Proposition 2.2 for k = 2. Thus every word of A* of length > N factorizes as u = uguyusus
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with uy,us € AT and w1y = usy = f where f is an idempotent of M x (G. Note that, since
1 is the unique idempotent of G, f = (e, 1) for some e € E(M). Therefore, the condition on
uy and us can be rewritten as ujc = usex = e and w18 = uz = 1. In particular, it follows
that uy, us € R. We claim that

X= |J RmRay - Ra,R (4.1)

1an€X
n<N

Let Y be the right hand side of the formula 4.1. To verify the inclusion Y C X, it suffices
to prove that Ye is contained in P. Tet ay---a, € X, with n < N. Then (ay---a,)a €
Xa = P. Now

(RayRas -+ - Ray, R)a = (Re)(aro)(Rex) - - - (ap o) (Rev)

C D(M)(ar0) D(M) -+ D(M)(an) D(M)
It follows, by Corollary 3.7, that (RajRas--- Ra, R)a is contained in P and thus Ya is
contained in P.

We now prove the inclusion X C Y. Let u € X. We show by induction on the length
of u that u € Y. If Ju| < N, then u = ay - - - a, with n < N. Since the empty word belongs
to R, one also has u € RajR---a,R and thus u € Y. Assume that |u| > N. Then u
factorizes as ugujusus as indicated above. It follows that ua = (uga)(ue)(uza)(use) =
(upar)ee(use) = (uga)e(usa) = (upar)(uie)(user) = (upuyuz)a. Thus ua = w'o where
u’ = ugujuz. Now, since u’ is shorter that u, one has v’ € Y by the induction hypothesis.
Therefore, there exists a word ay ---a, € X (with n < N) and words rg,ry,...,r, € R such
that v’ = rga ry -+ -a,r,. Thus uy, uy and us can be factorized as follows

!

Ug = roadq17y * - ClZ'TZ'

1 /
Uy = 7”2' ai+1 B ~a]'7°]-

1"
Uz = Tj Cl]'_|_1 o ApTp

with r{r{ = r; and #ir/ = r; for some ¢, j such that 0 <

since (rjusrf)f = (T}ﬁ)(uzﬁ)( riB8) = (r B} B) = (7

/
! 1" ]
U = Ul Uz = TodiTy - - 45 (rjuzrj )aj+1 Sap Ty Whence U

1< 7 < n. NOW r]uzr;’ € R
P8 =rf = It follows that
ERalR anR andueY. o

It is interesting to note that the integer N occurring in the proof of Theorem 4.2
depends on the cardinality of the group . Although we didn’t give any explicit bound on
the size of G, it suffices to know that (' is finite to prove the existence of the bound N.

Another surprising consequence of the proof is the polynomial expression of X given
by the formula 4.1. Recall that a language is in Pol(A*G) if it is a finite union of languages
of the form Lgai/lq---apl; where the I;’s are group languages. But formula 4.1 shows
that the L,’s occurring in the expression for X are all equal to R. In other words, every
polynomial of group languages for X is equivalent to a polynomial in R. This surprising
result can be explained in two steps.

Lemma 4.3. TLet H be a finite group, P a subset of H and v : A* — H be a surjective
morphism. Then Py~! is equal to a polynomial in 1771,
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Proof. First, Py~ ! = UgEP gy~ ". Thus, it suffices the result for P = {¢g}. We claim that

o= U ey (1 a1y (4.2)

where F is the set of words a; - - - ap such that (ay - - az)y = ¢ and the k+1 elements 17, ay7,
(a1 ---ay)y are all distincts. Let L be the right hand side of 4.2. The inclusion L C gy~!
is clear. Conversely, if uy = g, there exists a unique factorization v = ugajuy - - - agug such
that

(1) wo,...,up € A% ay,... a; € A,

(2) for 1 < i<k, upay ... u;_1a;u; is the longest prefix of u such that (ugaq ... u;_1a;)y =

(upay ... u;_qa;u;)y and ug is the longest prefix such that wey = 1.

By construction, u;y = 1 and ay ---ap € E. Therefore u € L, which proves the claim and
the lemma. O

It follows that polynomial expressions of group languages are equivalent with poly-
nomial expressions of group languages of the form 1y~! (inverse image of the identity).
However this does not explain yet why only one group language occurs in formula 4.1. The
trick is that if Ly, ..., L, are group languages recognized by groups Gy, ..., Gy, respec-
tively, then the group G = Gy x ... x (G, recognizes Ly, ..., L,. Indeed, suppose that
L; = Pi'yi_l for some P; C (7; and some monoid morphism v; : A* — (; and let o; : G; — G
be the group morphism defined by go; = (1,....1,¢.1,...,1), where ¢ is in the é-th po-
sition. Finally, set ¢; = 7,4 and @; = Pja;. Then P, = Pioziaf = Qialﬂ and thus
Li = Qo7 77 = Qigy

5. Algorithms

In this section, we give a polynomial time algorithm for testing, given an n-state
deterministic automaton A, whether the language I accepted by A belongs to Pol(A*G),
or, equivalently, whether L is open in the Hall topology. First we may assume that A is a
complete, minimal, deterministic automaton, since completion and minimalization can be
achieved in polynomial time and do not increase the number of states by more than one.
Before giving the details of our algorithms, let us fix some convenient notations. Given a
finite (complete) deterministic automaton A = (@, A, -), we denote by A? = (Q?, A, ") the
direct product of two copies of A, where the action of A on Q? is given by

(Q1:Q2)'a= (91 ~a,q2-a)

We also denote hy G(A) (resp. GG5(A)) the reflexive and transitive closure of the transition
graph of A (resp. A?). For instance, if A is the automaton represented below

ab
gb
a

Figure 5.1.

then A? is the automaton
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and G5(A) is the graph

Figure 5.3.

A labelled graph G is a configuration of A if G is isomorphic to a subgraph of Ga(A). We

can now characterize the open recognizable subsets of A* as follows.

Theorem 5.1. Let A = (@, A, E,{i}, F) be the minimal automaton of a language L.
Then L is open if and only if there exist no configuration of A of the form

v

Figure 5.4.
with ¢ € F' and ¢2 ¢ F.

Proof. Suppose that I is open, and consider a configuration in A of the form above. Then
there exist two words u and y such that, in A, p-u=¢q-u=¢q,p-y = ¢y and q-y = ¢5. Since
A is minimal, every state of A is accessible and in particular, there exists a word « € A*
such that ¢ - = p. On the one hand, i -2y = p-y = ¢¢ € F and thus zy € L. On the
other hand, for every n > 0, i -zu"y =p-u"y = q-y = q2 ¢ F. Therefore zutynL =0, in
contradiction with Theorem 3.4.

Conversely, suppose that A has no configuration of the form above. We show that I
is open by using Theorem 3.4. Let z, y and u be words such that zy € L. By Proposition
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2.1, there exists an integer n such that ¢ -u” =q-u® forall ¢ € Q. Set v =u”, p=1i -z,
g=p-v,¢g=p-yand go=¢q-y. Thenqg-v=p-v2 =p-v=qgand ¢ = ¢ zy € F since
zy € L. Therefore ¢; € F, otherwise 4 would contain a forbidden configuration. It follows
i-xvy = qs € F and thus zvy € L. Therefore zuTyN L # 0 and L is open. O

The previous result yields to a polynomial time algorithm to check whether the lan-
guage accepted by of a n-state deterministic automaton is open.

Corollary 5.2. There is a polynomial time algorithm for testing whether the language
accepted by an n-state minimal automaton is open.

Proof. One can check whether A contains a configuration of the form 5.4 by computing G
and by verifying there are no quadruples {p, ¢,q1,¢2} of states such that

(a) ((p,4),(q,4)) is an edge in Ga(A), and

(b) ((p,4),(q1.¢2)) is an edge in G(A),
(¢) ¢t EF and ¢ ¢ F.

2

Since (73 has n” vertices, this gives a polynomial algorithm. O

6. A separation result

A language K separates two (disjoint) languages Ly and Ly if either L; C K C A*\ Ly
or L, C K C A*\ ;. The aim of this section is to prove the following theorem:

Theorem 6.1. Any two digjoint languages of Pol(A*G) can be separated by a group
language.

Theorem 6.1 follows from a series of lemmee of independent interest. Let L; and Lo
be two disjoint languages of Pol(A*G).

Lemma 6.2. There exists a morphism 1 from A* onto an ordered monoid satisfying 1.1
which recognizes simultaneously .y and .

Proof. Let, for ¢ = 1,2, n; : A* — M, be the syntactic morphism of L;. Let n : A* —
M x Mz be the morphism defined by an = (an, ans) for every a € A and let M = A*y. By
Theorem 3.8, My and M- are ordered monoids satisfying 1.1 and thus M is also an ordered
monoid satisfying 1.1. For ¢ = 1,2, let I; = {(x1,22) € M | #; € L;yn; }. Then I; is an order
ideal of M : if (#1,22) € I; and (y1,y2) < (21, 22) for some (y;.y2) € M, then y; < 24
and since L;n; is an order ideal of M;, y; € L;n; and (y1,y2) € I;. Finally In~' = L; since
f/ﬂ]ﬂh_l = I;. Thus p sitimultaneously recognizes 1,1 and La. O

Let M be an ordered monoid satisfying 1.1 recognizing simultaneously L, and Ls.
Given a subset T of M, denote by T the smallest subset F/ of M containing 7 and such that,
if € F and y 1s comparable to z, then y € F.
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Lemma 6.3. If T is an order ideal of M, then T recognizes a group langiage.

Proof. Tt suffices to show that the syntactic monoid of I in M is a group. Let e € E(M).
Then e < 1 by definition of the order on M. We claim that e ~7 1. Indeed, for every
z,y € M, zey < zy and thus the conditions zey € I and xy € I are equivalent by definition
of T. Thus the identity is the unique idempotent of M/~7. Tt follows by Propostion 2.1
that, for each element x of M/~;, 2*~1 is an inverse of x and thus M /~; is a group. O

We now establish some properties of ordered monoids satisfying 1.1. We first consider
the case of ordered groups.

Lemma 6.4. The only stable order relation on a finite group is the equality relation.

Proof. Suppose that £ < y. Then z*~' < y*~! and thus z < y = z¥y = z2¥ "'y <

Lo

zy "y = zy¥ =, thatis, z = y. O

Lemma 6.5. If two elements of M have a common upper bound, they also have a common
lower bound.

Proof. By Corollary 3.9, the minimal ideal of M is a group (. Tet e be its identity. If » < z
and y < z, then ez < ez and ey < ez. Since G is an ideal, e € G implies ex, ey, ez € G. Now
by Lemma 6.4, the restriction of the order to GG is the equality relation. Thus ex = ez = ey
and since e < 1, ex < x and ey < y. Thus ex is a common lower bound of x and y. O

Lemma 6.6. Let I be an order ideal of M. Then x € T if and only if there exists y € T
such that y < x.

Proof. Let J = {x € M | Jy € I such that y < x#}. Then J contains I and is a subset of T
by definition. Let z,y € M be such that z < y. If # € J, there exists z € I such that z < z.
Tt follows z < y by transitivity and thus y € J. Conversely, if y € J, there exists z € T such
that z < y. Since y is a common upper bound of # and z, there exists by Lemma 6.5 an
element ¢ such that ¢t < z and ¢t < z. Now ¢ € I since z € I. Thus z € J. It follows that
z € J if and only if y € J and therefore I = J. O

Lemma 6.7. If Iy and Iy are two disjoint order ideals of an ordered monoid satisfying 1.1,
then I, and I5 are also digjoint.

Proof. Assume that I; and I, are not disjoint and let z € LN, By Lemma 6.6, there
exist 1, x9 € I such that z; < z and z; < z. Now, by Lemma 6.5, there exists ¢ such that
t <z and t < 4. Tt follows that + € T1 N I3, a contradiction. O

We can now conclude the proof of Theorem 6.1. Let K = I;n~'. Since I; contains

I, K contains L;. Furthermore, K is a group language by Lemma 6.3 and since I; and I
are digjoint by Lemma 6.7, K is disjoint from Ls. O

Theorem 6.1 has some interesting topological consequences.
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Corollary 6.8. Any two disjoint recognizable open sets can be separated by a recognizable
clopen set.

I am indebted to Daniel Lascar, from the Department of Logic, University of Paris
VII, for pointing out the next corollary. Let us first mention another consequence of the
conjecture on open sets mentionned in the introduction and recently proved by Ribes and
Zalesskii [21]. As it was shown in [16], this former conjecture implies that the closure of a
recognizable language is also recognizable. The next corollary shows that the closure of a
recognizable open language is a group language.

Corollary 6.9. The closure of a recognizable open set is a recognizable clopen set.

Proof. Let L be a recognizable open set and let L be its closure. Since L is recognizable,
its complement is a recognizable open set, disjoined from L. By Corollary 6.8, there exists
a clopen set C such that L C C' C L. Tt follows that C' = L, since L is by definition the
smallest closed set containing .. O

7. Conclusion and open problems

To sum up. we have proved the following theorem

Theorem 7.1. Let I, be a recognizable set of A*, let M be its syntactic monoid and let
P be its syntactic image. Then the following conditions are equivalent.

(a) L belongs to the polynomial closure of group languages,

(b) L is open in the group topology,

(c) for every u € A*, zy € L implies zuty N L # 0.

(d) for every s,t € M and e € E(M), st € P implies set € P,

(e) the minimal automaton of L doesn’t contain the configuration given in figure 5.4,

with ¢ € F' and ¢2 ¢ F.

and we have derived some topological consequences of this result. The Hall topology, as
defined in this article, is actually a special case of the topologies defined by Hall in his
seminal paper [6]. Indeed, one can attach a topology to each class of finite groups closed
under taking subgroups, quotients and finite direct products. For instance, one may consider
the p-groups (for some prime p), the solvable groups or the nilpotent groups. To have the
definition of the corresponding topology, just replace in the definition every occurrence of
“group” by “p-group” (resp. solvable group, nilpotent group). One can show. in these three
examples, that the topology can be defined by a distance. The question is now to characterize
the recognizable open sets with respect to these topologies and the polynomial closure of
the corresponding group languages. There 18 some hope to solve both questions in the case
of p-groups since Ribes and Zalesskii have recently proved an analogous of their result for
p-groups [22], but the problem seems to be more difficult for the two other classes. ..
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