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Abstract

Given a positive integer n and a finite alphabet A, a word w over
A is said to guarantee minimal image if, for every homomorphism ϕ

from the free monoid A∗ over A into the monoid of all transformations
of an n-element set, the range of the transformation wϕ has the min-
imum cardinality among the ranges of all transformations of the form
vϕ where v runs over A∗. Although the existence of words guaran-
teeing minimal image is pretty obvious, the problem of their explicit
description is very far from being trivial. Sauer and Stone in 1991 gave
a recursive construction for such a word w but the length of the word
resulting from that construction was doubly exponential (as a function
of n). We first show that some known results of automata theory im-
mediately lead to an alternative construction which yields a simpler
word that guarantees minimal image: it has exponential length, more

precisely, its length is O(|A|
1
6
(n3

−n)). Then using a different approach,
we find a word guaranteeing minimal image similar to that of Sauer

and Stone but of the length O(|A|
1
2
(n2

−n)). On the other hand, we ob-
serve that the length of any word guaranteeing minimal image cannot
be less than |A|n−1.

Let X be a non-empty set. A transformation of the set X is an arbitrary
function f whose domain is X and whose range (denoted by Im(f)) is a non-
empty subset of X . The rank rk(f) of the function f is the cardinality of the
set Im(f). Transformations of X form a monoid under the usual composition
of functions; the monoid is called the full transformation monoid over X and
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is denoted by T (X). If the set X is finite with n elements, the monoid T (X)
is also denoted by Tn.

Now let A be a finite set called an alphabet. The elements of A are called
letters, and strings of letters are called words over A. The number of letters
forming a word v is called the length of v and is denoted by ℓ(v). Words
over A (including the empty word) form a monoid under the concatenation
operation; the monoid is called the free monoid over the alphabet A and is
denoted by A∗.

Both words over a finite alphabet and transformations of a finite set are
classical objects of combinatorics. On the other hand, their interaction is
essentially the main subject of the theory of finite automata. One of the
aims of the present paper is to demonstrate how certain quite well known facts
about finite automata may be utilized to improve some recent combinatorial
results concerned with words and transformations. Vice versa, we shall also
apply certain purely combinatorial considerations to some questions which,
as we intend to show, are rather natural from the automata viewpoint.

The combinatorial results we have in sight group around the notion of a
word guaranteeing minimal image introduced by Sauer and Stone in [21]. To
describe it, let us first fix a positive integer n (the size of the domain X of our
transformations) and a finite alphabet A. Now suppose we have a mapping
ϕ : A → Tn. It extends in a unique way to a homomorphism of the free
monoid A∗ into Tn; we will denote the homomorphism by ϕ as well. Now,
with each word v ∈ A∗, we associate the transformation vϕ. A word w ∈ A∗

is said to guarantee minimal image if the inequality

rk(wϕ) ≤ rk(vϕ) (1)

holds for every word v ∈ A∗ and for every mapping ϕ : A → Tn.
Clearly, words guaranteeing minimal image exist [20, Proposition 2.3].

Indeed, for each mapping ϕ : A → Tn, there is a word wϕ such that

rk(wϕϕ) ≤ rk(vϕ) (2)

for all v ∈ A∗. Since there are only finitely many mappings between the finite
sets A and Tn and since the composition of transformations cannot increase
the size of its image, we can concatenate all words wϕ getting an (apparently
very long) word w satisfying (1).

Words guaranteeing minimal image have been proved to have some in-
teresting algebraic applications. In [20] they were used to find identities in
the full transformation monoids. Recently these words have been applied for
studying the structure of the free profinite semigroup, see [2]. Of course, for
application purposes, the pure existence statement is not sufficient, and one
seeks an explicit construction.



The only construction of words guaranteeing minimal image known so far
was due to Sauer and Stone [21, Corollary 3.5]. The construction makes an
elegant use of recursion but results in very long words such that, even over
a two-element alphabet, it is hardly possible to write down the Sauer–Stone
word that guarantees minimal image, say, in T5.

To build a word guaranteeing minimal image in Tn, Sauer and Stone make
use of an intermediate notion which is also of independent interest. Given a
transformation f of a finite set X , we denote by df(f) its deficiency, that is,
the difference |X | − rk(f). For a homomorphism ϕ : A∗ → T (X), we denote
by df(ϕ) the maximum of the deficiencies df(vϕ) where v runs over A∗; in
other words, df(ϕ) = df(wϕϕ) where wϕ is any word satisfying (2). Now we
say that a word w ∈ A∗ witnesses for deficiency k (has property ∆k in Sauer
and Stone’s terminology), provided that, for all homomorphisms ϕ : A∗ →
T (X) where X is a finite set, df(wϕ) ≥ k whenever df(ϕ) ≥ k. The following
easy observation explains how the two properties under consideration relate:

Lemma 1. If a word w witnesses for deficiency k for all 0 ≤ k < n, then it

guarantees minimal image in Tn.

Proof. Take an arbitrary homomorphism ϕ : A∗ → Tn and apply it to an
arbitrary word v ∈ A∗ thus obtaining a transformation vϕ ∈ Tn. Suppose
that rk(vϕ) = r. Then 1 ≤ r ≤ n and

df(ϕ) ≥ df(vϕ) = n − r

whence df(wϕ) ≥ n − r as w witnesses for deficiency n − r. Therefore

rk(wϕ) = n − df(wϕ) ≤ n − (n − r) = r = rk(vϕ),

as the definition of a word guaranteeing minimal image requires.

Since the cardinality of the set X is not fixed in the definition of a word
which witnesses for deficiency k, it is not obvious that such a word should
exist for every k. However, it is clear that if A = {a1, . . . , at}, then the
product w1 = a1 · · · at witnesses for deficiency 1. (Indeed, if df(ϕ) ≥ 1, then
at least one of the letters a1, . . . , at should be evaluated at a transformation
which is not a permutation whence w1ϕ is not a permutation as well). Using
this observation as the induction basis, Sauer and Stone then proceed by
defining

wk+1 = wk

∏

v∈Qk

(vwk) (3)

where Qk denotes the set of all words v over A such that ℓ(v) ≤ 1 + 3
42k.

Their main results say that, for each k, the word wk witnesses for deficiency



k [21, Theorem 3.3] and, given any n > 1, the word wn−1 guarantees minimal
image in Tn [21, Corollary 3.5].

Using (3), it is rather easy to see that the growth of ℓ(wk) as a func-
tion of k is double exponential; more precisely, it can be calculated that the
leading monomial in the expansion of ℓ(wk) as a polynomial of t (the size of

the alphabet) equals t3·2
k−2+k−2 for all k ≥ 2. The reader may verify that

applying that construction to produce a word over a 2-letter alphabet guar-
anteeing minimal image in T5 results in a word of length 216 248; thus, we
were not exaggerating as we said that it would be rather hard to write down
this word! Sauer and Stone formulate in [21] the following open problem:
for a given alphabet with t letters, determine for each positive integer k the
length µk(t) of the shortest word that witnesses for deficiency k. Obviously
µ1(t) = t for any t; besides that, the only value of the function µk(t) known
so far is µ2(2) = 8 — it is shown in [21, Corollary 3.4] that the word aba2b2ab

witnesses for deficiency 2, and it can be checked that no shorter word does
the job. We notice that the word over {a, b} with the same property obtained
via (3) is much longer — its length is 24. This gap is large enough to suggest
that there should be more economic constructions than (3). We are going to
present two approaches to such constructions.

Our first approach is based on certain developments in finite automata
theory which arose from numerous attempts to resolve a (still open) problem
by Černý [4] on synchronizing automata. A finite automaton A may be
thought of as a triple (X, A, ϕ) where X is a finite set (called the state set

of A), A is another finite set (called the alphabet of A), and ϕ is a mapping
which assigns a transformation of the set X to each letter a ∈ A. As above,
ϕ extends to a homomorphism of the free monoid A∗ into T (X) so one
may speak about words over A acting on the state set X via ϕ. With this
convention, a synchronizing automaton is one such that there exists a word
w ∈ A∗ whose action resets the automaton, that is, brings all its states to
a particular one: x(wϕ) = x′(wϕ) for all x, x′ ∈ X . Any word w with this
property is said to be a reset word for the automaton. It is rather natural to
ask how long such a word may be. We refer to the question of determining the
length of the shortest reset word as to the Černý problem. Černý conjectured
in [4]—that is, almost 40 years ago—that for any synchronizing automaton
with n states there exists a reset word of length (n − 1)2. Although being
confirmed in some special cases (cf. [5, 16, 9, 8, 11, 14], to mention a few most
representative papers only), this conjecture still constitutes an open problem.

The second-named author has extended Černý’s problem in the following
way (see [17, 18]). Suppose that in the automaton A = (X, A, ϕ), the defi-
ciency of ϕ is no less than k, where 1 ≤ k < |X |. Then the problem (which
we shall refer to as the generalized Černý problem) is to determine the length



of the shortest word w ∈ A∗ verifying df(wϕ) ≥ k. Clearly, the initial Černý
problem corresponds to the case k = |X |−1. (The second-named author also
generalized the Černý conjecture in the following natural way: if df(ϕ) ≥ k,
then there exists a word w ∈ A+ of length k2 for which df(wϕ) ≥ k. In
[17, 18] he proved this generalized conjecture for k ≤ 3, but recently J. Kari
[13] exhibited a counter example in the case k = 4.)

A comparison between the generalized Černý problem and the aforemen-
tioned problem of determining the shortest word witnessing for deficiency k

immediately reveals an obvious similarity in them. In fact, the only difference
between the two situations in question is that in the former case we look for
the shortest rank-decreasing word for a given homomorphism of deficiency
≥ k while in the latter case we are interested in a word with the same prop-
erties but with respect to an arbitrary homomorphism of deficiency ≥ k. In
the language of automata theory, we may alternatively describe this differ-
ence by saying that in the second situation we also look for the shortest word
decreasing rank by k for an automaton, but in contrast with the generalized
Černý problem situation, the automaton is a black-box about which we only
know that it admits a word of deficiency k. If thinking of a real computa-
tional device as a composite made from many finite automata, each a with
relatively small number of states, a reasonable construction for an input sig-
nal which would simultaneously reset all those automata and which could be
generated without analyzing the structure of each particular component of
the device might be of some practical interest.

As far as theoretical aspects are concerned, the connection just discussed
leads to the following conclusion:

Theorem 2. For each k ≥ 3 and for each finite alphabet A, there exists a

word of length |A|
1
6k(k+1)(k+2)−1 +

1

6
k(k+1)(k+2)−2 over A that witnesses

for deficiency k.

Proof. We utilize a result by the second-named author [19]. This result which
is based on a combinatorial theorem by Frankl [10] yields the best approxi-
mation to the size of the shortest reset word known so far:

Proposition 3. Suppose that the automaton (X, A, ϕ) is such that the defi-

ciency of the mapping ϕ is no less than k, where 3 ≤ k < |X |. Then there

exists a word w ∈ A∗ of length
1

6
k(k+1)(k+2)−1 verifying df(wϕ) ≥ k.

For brevity, let m =
1

6
k(k + 1)(k + 2) − 1. By a well known result of

DeBruijn [7], there is a cyclic sequence over A, of length |A|m, such that
each word over A of length m appears as a factor of the sequence. Cut this



cycle in an arbitrary place and make it a word u of the same length |A|m.
Since our cut goes through exactly m − 1 factors of length m, the word u

still contains all but m − 1 words of length m as factors. Now let v be the
prefix of u of length m− 1 and let w = uv. Note that the word w has length
|A|m + m − 1. Clearly, this procedure restores all those factors of length m

that we destroyed by cutting the initial DeBruijn sequence, and therefore
each word over A of length m appears as a factor in w. We note that there is
an efficient procedure that, given A and m, builds DeBruijn’s sequences so,
if necessary, the word w may be explicitly written.

By Proposition 3, for any finite set X and for any homomorphism ϕ :
A∗ → T (X) with df(ϕ) ≥ k, there exists a word wϕ ∈ A∗ of length m such
that df(wϕϕ) ≥ k. By the above construction of the word w, the word wϕ

must appear as a factor in w so df(wϕ) ≥ k as well, and thus, w witnesses
for deficiency k.

It should be mentioned that the natural idea used in the above proof (of
“gluing together” individual reset words in order to produce an “universal”
reset word) first appeared in a paper by Ito and Duske, cf. [12, Theorem 3.1].

Corollary 4. Over each finite alphabet A and for each n > 3, there exists a

word of length |A|
1
6 (n3−n)−1 +

1

6
(n3 − n) − 2 that guarantees minimal image

in Tn.

Proof. As in the proof of Theorem 2, we construct a word w of length

|A|
1
6 (n3−n)−1 +

1

6
(n3−n)−2 that has every word of length

1

6
(n3−n)−1 as a

factor. Then of course w has also every word of length
1

6
k(k + 1)(k + 2)− 1,

1 ≤ k < n, as a factor and, as such, witnesses for deficiency k for all 1 ≤ k < n

by Proposition 3. We may also assume w witnessing for deficiency 0 as every
word does so. The corollary now immediately follows from Lemma 1.

Obviously, the constructions to which Theorem 2 and Corollary 4 refer
are asymptotically (that is, for sufficiently large values of k and respectively
n) more economic than the Sauer–Stone construction. Still, the length of
the resulting words is exponential as a function of k. Can we do essentially
better by finding some words of polynomial length doing the same job? The
following result answers this question in the negative:

Theorem 5. Any word over a finite alphabet A guaranteeing minimal image

in Tn contains every word over A of length n − 1 as a factor and has the

length at least |A|n−1 + n − 2.



Proof. We recall the construction of the minimal automaton of a language of
the form A∗wA∗, where w ∈ A∗. This construction can be readily obtained
from the well-known construction of the minimal automaton of A∗w, which
is used, for instance, in pattern matching algorithms (implicitly in [15], and
explicitly in [1, 3, 6]).

Given two words u and v words of A∗, we denote by overlap(u, v) the
longest word z ∈ A∗ such that u = u′z, v = zv′ for some u′, v′ ∈ A∗. In
other terms, overlap(u, v) is the longest suffix of u which is at the same time
a prefix of v.

u
︷ ︸︸ ︷

u′ z v′

︸ ︷︷ ︸

v
Figure 1: z = overlap(u, v)

Now given a word w = a1 · · · am ∈ A∗, the minimal automaton of A∗wA∗ is
A(w) = (X, A, ϕ), with the set of states X = {a1 · · · ai | 0 ≤ i ≤ m}, that is,
the set of all prefixes of the word w, and the function ϕ : A → T (X) defined
as follows: for all a ∈ A

a1 · · · am(aϕ) = a1 · · · am, (4)

a1 · · ·ai(aϕ) = overlap(a1 · · · aia, w) for 0 ≤ i < m. (5)

The initial state is the empty word, and the unique final state is the word w.

Lemma 6. The automaton A(w) is synchronizing, and u ∈ A∗ is a reset

word for A(w) if and only if the word w is a factor of u.

Proof. Since the final state is stabilized by each letter, a reset word u in A(w)
necessarily sends every state on the final state. In particular, it sends the
initial state to the final state, and thus is accepted by A(w). It follows that
w is a factor of u.

Conversely, if w is a factor of u, and x is a state, then w is a factor of xu.
It follows that the word xu is accepted by A(w), whence x(uϕ) = w. Thus u

is a reset word.

Now take an arbitrary word v ∈ A∗ of length n − 1 and consider the
automaton A(v) = (X, A, ϕ). By Lemma 6, the mapping ϕ : A → T (X) = Tn

verifies rk(vϕ) = 1. By the definition, any word w ∈ A∗ that guarantees
minimal image in Tn should satisfy rk(wϕ) ≤ rk(vϕ) whence rk(wϕ) = 1.
Thus, w should be a reset word for automaton A(v). By Lemma 6, w then
has the word v as a factor.



Since there are |A|n−1 different words over A of length n − 1 and since a
word of length m ≥ n−1 has m−n+2 factors of length n−1, any word over
A containing every word over A of length n − 1 as a factor has the length
at least |A|n−1 + n − 2. (This is, in fact, an exact bound—see the reasoning
with the DeBruijn sequences in the proof of Theorem 2.)

Another natural question concerns the behavior of the constructions for
small values of k and for small sizes of the alphabet A. Here the Sauer–
Stone construction is often better as the following table shows. In the table,
t denotes the size of the alphabet A and we omit some of the summands in
the second column to fit onto the page.

Table 1: The Sauer–Stone construction vs. Theorem 2

The length of the word from:
k

the Sauer–Stone construction Theorem 2

3 t7 + 4t6 + 6t5 + 10t4 + 9t3 + 7t2 + 3t t9 + 8
4 t14 + 5t13 + 11t12 + 21t11 + 30t10 + 37t9 + · · · + 4t t19 + 18
5 t27 + 6t26 + 17t25 + 38t24 + 68t23 + 105t22 + · · · + 5t t34 + 33
6 t52 + 7t51 + 24t50 + 62t49 + 130t48 + · · · + 6t t55 + 54
7 t101 + 8t100 + 32t99 + 94t98 + 224t97 + · · · + 7t t83 + 82

Using the values collected in this table, one can easily calculate that,
for any t > 2, the Sauer–Stone construction produces shorter words than the
construction based on Proposition 3 for k = 3, 4, 5, 6. The case t = 2 deserves
some special attention. Here the following table, in which all words are meant
to be over a two-letter alphabet, collects the necessary information:

Table 2: The case of a two-letter alphabet

The length of the word from:
k

the Sauer–Stone construction Theorem 2

3 842 520
4 216 248 524 306
5 3542 987 594 17 179 869 217
6 237 765 870 667 058 360 36 028 797 018 964 022



We see that, for k = 4, 5, the Sauer–Stone construction over a two-letter
alphabet is more economic than one arising from Theorem 2. Moreover, we
recall that Sauer and Stone have found a word of length 8 that witnesses
for deficiency 2. Though this is not explicitly mentioned in [21], it is pretty
obvious that starting a recursion analogous to (3) with that word, one obtains
a sequence of words over a two-letter alphabet such that the (k−1)th member
of the sequence witnesses for deficiency k for each k ≥ 2 and is shorter than
the word wk arising from (3). A straight calculation shows that this produces
a word of length 346 witnessing for deficiency 3, a word of length 89 768
witnessing for deficiency 4, a word of length 1470 865 754 witnessing for
deficiency 5, a word of length 98 708 129 987 190 440 witnessing for deficiency
6, etc. Comparing the data in Table 2 with these figures, we observe that the
Sauer–Stone construction modified this way yields shorter words than the
construction Theorem 2 for k = 3, 4, 5.

Yet, having in mind the benchmark we mentioned above, that is, of pro-
ducing, over a two-letter alphabet, a word of reasonable size that guarantees
minimal image in T5, we cannot be satisfied with a word of length 89 768.
A more important motivation for further efforts is provided by the crucial
question if any “simultaneous” Černý word which resets all synchronizing
automata with n states must indeed consist of all “individual” Černý words
(one for each synchronizing automaton) somehow put together. We shall an-
swer this question by exhibiting a better construction than one which we got
from the automata-theoretical approach. The behavior of this construction
for small deficiencies/alphabet sizes will be also better than that of any of
the constructions above.

Given a transformation f : X → X , we denote by Ker(f) its kernel, that
is, the partition of the set X into rk(f) classes such that x, y ∈ X belong to
the same class of the partition if and only if xf = yf . By a cross-section of
a partition π of X we mean any subset of X having a singleton intersection
with each π-class. We need an obvious and well known lemma:

Lemma 7. Let f, g : X → X be two transformations of rank r. Then the

product fg has rank r if and only if Im(f) is a cross-section of Ker(g).

Let ϕ : A∗ → T (X) be a homomorphism, w ∈ A∗ a word with rk(wϕ) = r.
Suppose that there exists a word v ∈ A∗ such that rk(wvwϕ) < r and let
u = a1a2 · · · am be a shortest word with this property. Setting, for 0 ≤ i ≤ m,

πi = Ker((am−i+1 · · · amw)ϕ),

Ci = Im((wa1 · · ·ai)ϕ),

we have the following proposition:



Proposition 8.

(1) π0, π1, . . . , πm−1 are pairwise distinct partitions of X into r parts.

(2) C0, C1, . . . , Cm−1 are pairwise distinct subsets of X of cardinality r.

(3) If i + j < m, Ci is a cross-section of πj .

(4) If i + j = m, Ci is not a cross-section of πj.

Proof. Let i < m. If πi has less than r classes, then

rk((wam−i+1 · · ·amw)ϕ) < r,

a contradiction with the choice of u. Similarly, the set Ci should consist of r

elements. Thus, both (wa1 · · ·ai)ϕ, for 0 ≤ i ≤ m − 1, and (aj+1 · · ·amw)ϕ,
for 1 ≤ j ≤ m, are transformations of rank r. If i < j and the set Ci is not a
cross-section of the partition πm−j , then by Lemma 7, the product

(wa1 · · · ai)ϕ(aj+1 · · · amw)ϕ = (wa1 · · · aiaj+1 · · · amw)ϕ

has rank < r, again a contradiction with the choice of u. Furthermore, by
the same lemma, Ci cannot be a cross-section of πm−i since rk(wuwϕ) < r.
In particular, if i < j, the set Cm−j is a cross-section for πi, but not for
πj . It follows that the partitions πi and πj are different provided that i 6= j.
Similarly, all the sets Ci, for 0 ≤ i ≤ m − 1, are different.

It is Proposition 8 that allows us to improve the Sauer–Stone construc-
tion. If we mimic the strategy of [21] and want to create a sequence of words
witnessing for deficiency k by induction on k, then on each step, we may
assume that we have some word w of deficiency k and we seek for a bound
to the length of the shortest word v verifying df(wvwϕ) > k for a given eval-
uation ϕ of deficiency > k. Proposition 8 shows that the length of such a
minimal word is tightly related to the size of a specific combinatorial config-
uration involving subsets and partitions of an n-element set. According to
a well-known method in combinatorics, we now convert this combinatorial
problem into a problem of linear algebra.

Let X = {1, . . . , n}. We identify each subset C ⊆ X with its characteristic

vector (c1, . . . , cn) in R
n, defined by

ci =

{

1 if i ∈ C,

0 otherwise.

The notation |C|, originally used to denote the number of elements of C,
extends naturally to a linear form on R

n defined by

|C| =
∑

1≤i≤n

ci.



Finally, if C, D ⊆ X , then denoting by C ·D the scalar product
∑

1≤i≤n cidi,
we observe that

C · D = |C ∩ D|.

It follows that a subset C of X is a cross-section of the partition {D1, . . . , Dr}
if and only if C · Ds = 1 for all s = 1, . . . , r.

With this notation in hand, we can prove the following bound for the size
of the combinatorial configuration arising in Proposition 8:

Proposition 9. If the partitions π0, π1, . . . ,πm−1 and the subsets C0, C1,

. . . , Cm−1 of an n-element set satisfy the conditions (1)–(4) of Proposition

8, then m ≤ n − r + 1.

Proof. We first prove that the vectors C0, C1, . . . , Cm−1 are linearly indepen-
dent. Otherwise, one of the Cj ’s is a linear combination of the preceding
vectors C0, C1, . . . , Cj−1, say

Cj =
∑

0≤i≤j−1

λiCi.

It follows, since the map C 7→ |C| is linear,

r = |Cj | =
∑

0≤i≤j−1

λi|Ci| = r
∑

0≤i≤j−1

λi

whence
∑

0≤i≤j−1

λi = 1. Consider the partition πm−j = {D1, D2, . . . , Dr}.

Since each of the sets C0, C1, . . . , Cj−1 is a cross-section of this partition, we
obtain, for each s = 1, . . . , r,

Cj · Ds =
( ∑

0≤i≤j−1

λiCi

)

· Ds =
∑

0≤i≤j−1

λi(Ci · Ds) =
∑

0≤i≤j−1

λi = 1

whence Cj also is a cross-section of πm−j , a contradiction.
Now π0 = {B1, B2, . . . , Br}. Since the Bi’s are pairwise disjoint and non-

empty, their characteristic vectors are linearly independent. Furthermore,
since C0, C1, . . . , Cm−1 are cross-sections of π0, the relation Ci ·Bs = 1 holds
for 0 ≤ i ≤ m − 1 and 1 ≤ s ≤ r. It follows in particular that

Ci · (Bs − Bt) = 0 for 1 ≤ s, t ≤ r. (6)

Now, the vectors Bs − Bt, for 1 ≤ s, t ≤ r, generate a vector space of
dimension r− 1 and the relation (6) shows that each Ci is orthogonal to this
space. It follows that the rank of the family {Ci}0≤i≤m−1 is at most n−r+1,
whence m ≤ n − r + 1.



It is easy to see that the bound of Proposition 9 is exact. Applying
Proposition 9 to the situation of Proposition 8 yields

Corollary 10. Let k be a positive integer, ϕ : A∗ → T (X) a homomorphism

of deficiency > k. Then for any word w ∈ A∗ with df(wϕ) = k, there exists

a word v of length ≤ k + 1 such that df(wvwϕ) > k.

Now suppose that A = {a1, . . . , at} and let u1 = a1 · · ·at and

uk+1 = uk

∏

ℓ(v)≤k+1

(vuk). (7)

Theorem 11. For any positive integer k, the word uk defined via (7) wit-

nesses for deficiency k.

Proof. By induction on k. The case k = 1 is obvious. Suppose that uk

witnesses for deficiency k and take any homomorphism ϕ : A∗ → T (X) of
deficiency > k. We are to verify that df(uk+1ϕ) > k. If already df(ukϕ) > k,
we have nothing to prove. If df(ukϕ) = k, then by Corollary 10 there exists
a word v of length ≤ k + 1 such that df(ukvukϕ) > k. Since by (7) the
word ukvuk appears as a factor in uk+1, we also have df(uk+1ϕ) > k, as
required.

From Theorem 11 and Lemma 1 we obtain

Corollary 12. For each n > 1, the word un−1 guarantees minimal image in

Tn.

A comparison between the definitions (3) and (7) shows that the word
uk is shorter than the Sauer–Stone word wk (on the same alphabet) for each
k ≥ 3. In fact, the leading monomial in the expansion of ℓ(uk) as a polynomial

of t = |A| equals t
1
2 (k2−k); this means that asymptotically the construction

(7) is better than the construction from Theorem 2. Moreover, we see that
the shortest word in A∗ that resets all synchronizing automata with a fixed
number of states and with the input alphabet A does not need consisting of
all shortest “individual” reset words somehow put together.

The following table exhibits some data about the size of words arising
from (7) for small k and/or t. The data in the last column refer to a slight
modification for the construction in the case when the alphabet consists of
two letters; the modification is similar to the modification of the Sauer–Stone
construction discussed above. Namely, we can make the word aba2b2ab play
the role of u2 and proceed by (7) for k ≥ 3.

Viewing the data in Table 3 against the corresponding data in Tables 1
and 2 shows that the gain provided by the new construction is quite large



Table 3: The length of the words defined via (7)

k |A| = t |A| = 2 u2 = aba2b2ab

1 t 2
2 t3+3t2+2t 24 8
3 t6+4t5+6t4+9t3+7t2+3t 394 154
4 t10+5t9+11t8+20t7+27t6+29t5+ · · ·+4t 12 312 4872
5 t15+6t14+17t13+37t12+64t11+ · · ·+5t 775 914 307 194
6 t21+7t20+24t19+61t18+125t17+ · · ·+6t 98 541 720 39 014 280
7 t28+8t27+32t26+93t25+218t24+ · · ·+7t 25 128 140 138 9 948 642 938

even for small deficiencies and alphabet sizes. As for our “benchmark”, that
is, a word over a two-letter alphabet that guarantees minimal image in T5,
Table 3 indicates that there is such a word of length 4872. Yet too lengthy to
be written down here, the word appears to be much closer to what may be
called “a word of reasonable length” for its size is already well comparable
with the size of the monoid T5 itself (which is 3125).
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