
Université Paris Diderot Machines Virtuelles
L3 Info Année 2018-2019

Examen
vendredi 20 mai 2019

Tout document papier est autorisé. Les ordinateurs, les téléphones portables, comme tout
autre moyen de communication vers l’extérieur, doivent être éteints. Le temps à disposition est
de 2h.

On recommande de bien lire l’énoncé d’un exercice avant de commencer à le résoudre.

Exercice 1 (Compilation à la main de OCaml). Donner un bytecode de OCamlrun equivalent
à l’expression de OCaml suivante :

let a = 2 in let f g = g a in f (fun x -> x+1)

Exercice 2. Pour chacune des listes d’instructions suivantes, deviner l’expression de OCaml
qui l’a générée :

(i). (ii).

const 3

push

const 2

mulint

push

const 2

push

acc 1

modint

push

const 0

eqint

branchifnot L1

const 3

return 2

L1: const 4

return 2

closure L2, 0

push

const 3

push

closure L1, 0

push

acc 2

appterm 2, 4

L1: acc 0

offsetint 1

return 1

restart

L2: grab 1

acc 1

push

acc 2

push

acc 2

apply 1

addint

return 2

Exercice 3. Considerons une methode f dans une classe MaClasse qui est de la forme

class MaClasse{

public static int f(int x, int y){

....

....

}

}

Pour chacune des portions de code octet JVM suivantes :

1. détailler le fonctionnement de JVM, notamment l’évolution des variables et de la pile de
calcul des blocs d’activation lorsque la méthode est appelée avec les paramètres 2 et 3.

2. Trouver des instructions JAVA pour f qui génèrent le byte-code.

1.

public static int f(int, int);

descriptor: (II)I

flags: ACC_PUBLIC, ACC_STATIC

Code:

stack=2, locals=2, args_size=2

0: iload_0

1: iload_1

2: if_icmpge 9

5: iload_1

6: iload_0

7: isub

8: ireturn

9: iload_0

10: iload_1

11: isub

12: ireturn

2.

public static int f(int, int);

descriptor: (II)I

flags: ACC_PUBLIC, ACC_STATIC

Code:

stack=2, locals=3, args_size=2

0: iload_1

1: istore_2

2: iload_0

3: iconst_1

4: if_icmple 17

7: iinc 0, -1

10: iload_2

11: iload_2

12: imul

13: istore_2

14: goto 2

17: iload_2

18: ireturn

3.

public static int f(int, int);

descriptor: (II)I

2

flags: ACC_PUBLIC, ACC_STATIC

Code:

stack=3, locals=2, args_size=2

0: iload_0

1: iconst_1

2: if_icmpgt 7

5: iload_1

6: ireturn

7: iload_0

8: iinc 0, -1

11: iload_1

12: iload_1

13: imul

14: invokestatic #2 // Method f:(II)I

17: ireturn

Exercice 4 (Comparaison OCamlrun et JVM). Comparer la pile d’exécution de JVM avec celle
de OCamlrun. Détailler en particulier les points en communs et les différences. (Répondre en
max 5 lignes).

Annexe OCamlrun

acc n Peeks the n+1-th element of the stack and puts it into the accumulator.

envacc n Sets the accumulator to the field of index n of the environment.

apply n Sets extraArgs to n-1. Sets pc to the code value of the accumulator. Then sets the environ-
ment to the value of the accumulator.

appterm n, s Slides the n top elements from the stack towards bottom of s - n positions. Then
sets pc to the code value of the accumulator, the environment to the accumulator, and increases
extraArgs by n-1.

return n Pops n elements from the stack. If extraArgs is strictly positive then it is decremented,
pc is set to the code value of the accumulator, and the environment is set to the value of the
accumulator. Otherwise, three values are popped from the stack and assigned to pc, environment
and extraArgs.

restart Computes n, the number of arguments, as the size of the environment minus 2. Then pushes
elements of the environment from index n - 1 to 2 onto the stack. Environment is set to the
element of index 1 of the environment and extraArgs is increased by n.

grab n If extraArgs is greater than or equal to n, then extraArgs is decreased by n. Otherwise,
creates a closure of extraArgs+3 elements in the accumulator. Code of this closure is set to pc -
3, element of index 1 is set to the environment and other elements are set to values popped from
the stack. Then pc, environment, and extraArgs are popped from the stack.

closure ofs, n If n is greater than zero then the accumulator is pushed onto the stack. A closure of
n + 1 elements is created into the accumulator. The code value of the closure is set to pc + ofs.
Then, the other elements of the closure are set to values popped from the stack.

branchifnot ofs Performs an conditional jump by adding ofs to pc if the accumulator is zero.

eqint Sets the accumulator to a non-zero value or to zero whether the accumulator is equal to the
value popped from the stack or not.

const n Sets the accumulator to n.

3

addint Sets the accumulator to the sum of the accumulator and the value popped from the stack.

mulint Sets the accumulator to the product of the accumulator by the value popped from the stack.

modint Sets the accumulator to the modulo of the accumulator by the value popped from the stack.

gtint Sets the accumulator to a non-zero value or to zero whether the accumulator is greater than
the value popped from the stack or not.

offsetint ofs Adds ofs to the accumulator.

pop n Pops n elements from the stack.

push Pushes the accumulator onto the stack.

Annexe JVM

aload n The n must be an index into the local variable array of the current frame. The local variable
at n must contain a reference. The objectref in the local variable at n is pushed onto the operand
stack.

iaload The arrayref must be of type reference and must refer to an array whose components are of
type long. The index must be of type int. Both arrayref and index are popped from the operand
stack. The long value in the component of the array at index is retrieved and pushed onto the
operand stack.

istore n The n must be an index into the local variable array of the current frame. The value on
the top of the operand stack must be of type int. It is popped from the operand stack, and the
value of the local variable at n is set to value.

areturn The objectref must be of type reference and must refer to an object of a type that is
assignment compatible with the type represented by the return descriptor of the current method.
If the current method is a synchronized method, the monitor entered or reentered on invocation
of the method is updated and possibly exited as if by execution of a monitorexit instruction in
the current thread. If no exception is thrown, objectref is popped from the operand stack of the
current frame and pushed onto the operand stack of the frame of the invoker. Any other values
on the operand stack of the current method are discarded.

The interpreter then reinstates the frame of the invoker and returns control to the invoker.

goto branchbyte1 branchbyte2 The unsigned bytes branchbyte1 and branchbyte2 are used to
construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2.
Execution proceeds at that offset from the address of the opcode of this goto instruction. The
target address must be that of an opcode of an instruction within the method that contains this
goto instruction.

iadd Both value1 and value2 must be of type int. The values are popped from the operand stack.
The int result is value1 + value2. The result is pushed onto the operand stack.

iconst n Push the int constant n (-1, 0, 1, 2, 3, 4 or 5) onto the operand stack.

idiv Both value1 and value2 must be of type int. The values are popped from the operand stack.
The int result is the value of the Java programming language expression value1 / value2. The
result is pushed onto the operand stack.

isub Both value1 and value2 must be of type int. The values are popped from the operand stack.
The int result is value1 - value2. The result is pushed onto the operand stack.

if icmp<cond> branchbyte1 branchbyte2 Both value1 and value2 must be of type int. They
are both popped from the operand stack and compared. All comparisons are signed. The possible
comparisons are : eq, ne, lt, le, gt, ge.

If the comparison succeeds, the unsigned branchbyte1 and branchbyte2 are used to construct
a signed 16-bit offset, where the offset is calculated to be (branchbyte1 << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the opcode of this if icmp<cond>
instruction. The target address must be that of an opcode of an instruction within the method
that contains this if icmp<cond> instruction.

4

Otherwise, execution proceeds at the address of the instruction following this if icmp<cond>
instruction.

if<cond> branchbyte1 branchbyte2 The value must be of type int. It is popped from the ope-
rand stack and compared against zero. Cfr if icmp<cond>.

ifnonnull branchtype1 branchtype2 The value must be of type reference. It is popped from the
operand stack. If value is not null, the unsigned branchbyte1 and branchbyte2 are used to construct
a signed 16-bit offset, where the offset is calculated to be (branchbyte1 << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the opcode of this ifnonnull instruction.
The target address must be that of an opcode of an instruction within the method that contains
this ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnonnull instruction.

iinc index const The index is an unsigned byte that must be an index into the local variable array
of the current frame. The const is an immediate signed byte. The local variable at index must
contain an int. The value const is first sign-extended to an int, and then the local variable at
index is incremented by that amount.

imul Both value1 and value2 must be of type int. The values are popped from the operand stack.
The int result is value1 * value2. The result is pushed onto the operand stack.

invokestatic indexbyte1 indexbyte2 The unsigned indexbyte1 and indexbyte2 are used to construct
an index into the run-time constant pool of the current class, where the value of the index is (in-
dexbyte1 << 8) | indexbyte2. The run-time constant pool item at that index must be a symbolic
reference to a method, which gives the name and descriptor of the method as well as a symbolic
reference to the class in which the method is to be found. The named method is resolved. The re-
solved method must not be an instance initialization method or the class or interface initialization
method. It must be static, and therefore cannot be abstract.

On successful resolution of the method, the class that declared the resolved method is initialized
if that class has not already been initialized.

The operand stack must contain nargs argument values, where the number, type, and order of
the values must be consistent with the descriptor of the resolved method.

....

If the method is not native, the nargs argument values are popped from the operand stack. A
new frame is created on the Java Virtual Machine stack for the method being invoked. The nargs
argument values are consecutively made the values of local variables of the new frame, with arg1
in local variable 0 (or, if arg1 is of type long or double, in local variables 0 and 1) and so on.
Any argument value that is of a floating-point type undergoes value set conversion prior to being
stored in a local variable. The new frame is then made current, and the Java Virtual Machine pc
is set to the opcode of the first instruction of the method to be invoked. Execution continues with
the first instruction of the method.

ireturn cfr areturn.

iload n cfr aload n.

5

