# Symbolic learning of automata 

Peter Habermehl

# 0 ? <br> INFORMATIQUE <br> Sciences <br> Université Paris Cité 

Université Paris Cité<br>Faculté des Sciences<br>UFR Informatique<br>Laboratoire IRIF<br>Peter.Habermehl@irif.fr

## Organisation

- Webpage of this part of the course: http://www.irif.fr/~haberm/cours/mpri
- Warning : The slides do not contain everything (far from that)
- Schedule: Mondays 8h45-11h45
- Grades: Written exam
- Required knowledge: Basic formal language and automata theory (DFA, NFA)


## General references

- Colin de la Higuera. Grammatical Inference. Learning Automata and Grammars. Cambridge University Press. 2010 www.cambridge.org/core/books/grammaticalinference/CEEB229AC5A80DFC6436D860AC79434F pagesperso.lina.univ-nantes.fr/~cdlh/book/
- Sicco Verwer. Efficient Identification of Timed Automata - Theory and Practice. PhD Thesis. TU Delft (Netherlands). 2010. repository.tudelft.nl/islandora/object/uuid:61d9f199-7b01-45be-a6ed04498113a212/?collection=research


## Introduction

on the board

## Learning (Identifying) languages

The setting:

- $\mathcal{L}$ : a language class
- $\mathcal{G}$ : a class of representations of objects in a language class
- $L: \mathcal{G} \mapsto \mathcal{L}$ : a naming function $(L(G)$ is the language denoted, accepted, recognised, represented by $G$, a "grammar").
- For example, regular (rational) languages over a finite alphabet $\Sigma$ form a language class $\mathcal{R E G}(\Sigma)$ and can be represented by $\mathcal{D F \mathcal { A }}(\Sigma)$ or $\mathcal{N F} \mathcal{A}(\Sigma)$ or $\mathcal{U F A}(\Sigma)$ or $\mathcal{A F A}(\Sigma)$ or $\mathcal{R E G E X} \mathcal{P}(\Sigma)$ or etc.
- Important decision problems:
- Membership: Given $w \in \Sigma^{*}$ and $G \in \mathcal{G}$ is $w \in L(G)$ ?
- Equivalence: Given $G_{1}$ and $G_{2}$ in $\mathcal{G}$ is $L\left(G_{1}\right)=L\left(G_{2}\right)$ ?


## Learning (Identifying) languages

- What class of languages to learn ?
- How languages are represented ?
- Which information is made available ?
- How the information is made available ?


## Which information is made available and how ?

- Passive learning
- A presentation for a language is given
* (Infinite) sequence of information about the language
- The learning algorithm uses the information to infer a representation
- The learner has no control over the information
- Active learning (Query learning)
- The learner can query an oracle


## Identification in the limit (Gold 67)

- Let $\mathcal{L}$ be a language class
- A presentation is a function $\varphi: \mathbb{N} \mapsto X$ where $X$ is a set. $\operatorname{Pres}(\mathcal{L})$ is the set of all allowed presentations.
- There exists a function YIELDS: $\operatorname{Pres}(\mathcal{L}) \mapsto \mathcal{L}$
- $\operatorname{Pres}(L):=\{\varphi \in \operatorname{Pres}(\mathcal{L}): \operatorname{YIELDS}(\varphi)=L\}$
- Examples of presentations of a language $L$ :
- $\operatorname{TEXT}(L)=\left\{\varphi: \mathbb{N} \mapsto \Sigma^{*} \mid \varphi(\mathbb{N})=L\right\}$
- INFORMANT $(L)=\left\{\varphi: \mathbb{N} \mapsto \Sigma^{*} \times\{0,1\} \mid \varphi(\mathbb{N})=L \times\{1\} \cup \bar{L} \times\{0\}\right\}$
- The setting is said to be valid when given two presentations $\varphi$ and $\psi$, whenever their range is equal (i.e. if $\varphi(\mathbb{N})=\psi(\mathbb{N})$ ) then $\operatorname{YIELDS}(\varphi)=\operatorname{YIELDS}(\psi)$.
- One learns a representation of a language and not the language itself.
- Can be generalised to other concepts to be learnt (for example logical formulas)


## Identification in the limit

- Given a presentation $\varphi$ we denote $\varphi_{n}=\{\varphi(i) \mid i \leq n\}$
- $G$ is called consistent with $\varphi_{n}$ if $G$ does not contradict $\varphi_{n}$
- A learning algorithm $A / g$ is a program which takes $\varphi_{n}=\{\varphi(i) \mid i \leq n\}$ as input and produces a grammar $G$
- Definition: $\mathcal{G}$ is identifiable in the limit from $\operatorname{Pres}(\mathcal{G})$ if there exists a learning algorithm $\operatorname{Alg}$ such that for all $G \in \mathcal{G}$ and any presentation $\varphi \in \operatorname{Pres}(\mathcal{G})$ of $L(G)$ there exists $n$ such that for all $m \geq n$ : $L\left(A \lg \left(\varphi_{m}\right)\right)=L(G)$ and $\operatorname{Alg}\left(\varphi_{m}\right)=\operatorname{Alg}\left(\varphi_{n}\right)$.
- for behaviourally correct identification, the last point is not needed.
- A learning algorithm is called consistent, if it changes its mind as soon as the current hypothesis is erroneous with the presented element.


## Two general results

Gold. Language identification in the limit. Information and Control 1967 www.sciencedirect.com/science/article/pii/S0019995867911655

- A super-finite class of languages is a class which contains all finite languages and at least an infinite one.
- No super-finite class of languages is identifiable in the limit from text
- Any recursively enumerable class of recursive languages is identifiable in the limit from an informant (by which learning algorithm ?)


## Complexity aspects

- Counting time
- Counting the number of examples
- Counting the number of mind changes


## Counting time

- An algorithm Alg is said to have overall polynomial time if there exists a polynomial $p()$ such that $\forall G \in \mathcal{G} \forall n \geq p(\|G\|) \forall \varphi \in \operatorname{Pres}(L(G)) \cdot L\left(\operatorname{Alg}\left(\varphi_{n}\right)\right)=L(G)$.
- An algorithm $\operatorname{Alg}$ is said to have polynomial update time if there is a polynomial $p()$ such that, for every presentation $\varphi$ and every integer $n$, constructing $\operatorname{Alg}\left(\varphi_{n}\right)$ requires $O\left(p\left(\left\|\varphi_{n}\right\|\right)\right)$ time.


## Counting the number of examples

- Counting the number of examples needed to identify
- Counting the number of good examples to identify
- A grammar class $\mathcal{G}$ admits polynomial characteristic samples, if there exist an algorithm $A l g$ and a polynomial $p()$ such that $\forall G \in \mathcal{G}$, $\exists C S \subseteq X$ such that
(1) $\|C S\| \leq p(\|G\|)$ and
(2) $\forall \varphi \in \operatorname{Pres}(L(G)) \forall n \in \mathbb{N}: C S \subseteq \varphi_{n}$ implies $L\left(\operatorname{Alg}\left(\varphi_{n}\right)\right)=L(G)$.

Such a set $C S$ is called a characteristic sample of $G$ for $A l g$. If such an algorithm $\operatorname{Alg}$ exists, we say that $\operatorname{Alg}$ identifies $\mathcal{G}$ in the limit in CS-polynomial time.

- Note: the sample is specific for an algorithm and the size $\|C S\|$ takes into account also the size of strings


## Counting the number of mind changes

- Given a learning algorithm $A l g$ and a presentation $\varphi$, we say that $A l g$ changes its mind at time $n$, if $\operatorname{Alg}\left(\varphi_{n}\right) \neq \operatorname{Alg}\left(\varphi_{n-1}\right)$.
- An algorithm that never changes its mind when the current hypothesis is consistent with the new presented element is said to be conservative.
- Algorithm Alg makes a polynomial number of mind changes (MC) if there is a polynomial $p()$ such that, for each grammar $G$ and each presentation $\varphi$ of $L=L(G)$, $\left|\left\{k \in \mathbb{N} \mid \operatorname{Alg}\left(\varphi_{k}\right) \neq \operatorname{Alg}\left(\varphi_{k+1}\right)\right\}\right| \leq p(\|G\|)$.
- An algorithm Alg identifies a class $\mathcal{G}$ in the limit in MC-polynomial time if
(1) Alg identifies $\mathcal{G}$ in the limit,
(2) Alg has polynomial update time,
(3) Alg makes a polynomial number of mind changes.


## Learning from text

In this context, $\varphi_{n}$ is typically denoted as a sample $S$, a finite set of words included in the language to be learnt.
Some examples of languages classes identifiable in the limit from text

- The class $\mathcal{S I N G} \mathcal{L E}(\Sigma)$ of all singleton languages of the form $L=\{w\}$ where $w \in \Sigma^{*}$
- Exercise: Give a learning algorithm. What are its properties ?
- The class $\mathcal{F I N} \mathcal{I} \mathcal{T}(\Sigma)$ of all finite languages over some alphabet $\Sigma$
- Exercise: Give a learning algorithm. What are its properties ?
- The class $\mathcal{A B O}(\Sigma)$ of all "all-but-one"-languages $L$ of the form $L=\Sigma^{*} \backslash\{w\}$ where $w \in \Sigma^{*}$
- Exercise: Give a learning algorithm. What are its properties ? Characteristic sample?


## Some other examples of learning algorithms from text

- Regular languages can not be identified in the limit from text
- follows from Gold's general result
- Subclasses of regular languages
- $k$-testable languages
- reversible languages
- Pattern languages


## (strictly) $k$-testable languages (aka window languages)

- A $k$-testable language is given by four sets $I, F, T, C \subseteq \Sigma^{*}$ with
- $I, F \subseteq \Sigma^{k-1}$ (prefixes and suffixes of length $k-1$ )
- $C \subseteq \Sigma^{<k}$ (short strings) such that $I \cap F=C \cap \Sigma^{k-1}$
- $T \subseteq \Sigma^{k}$ (allowed segments)
- Given such a representation the language is $C \cup\left(I \Sigma^{*} \cup \Sigma^{*} F\right) \backslash\left(\Sigma^{*}\left(\Sigma^{k} \backslash T\right) \Sigma^{*}\right)$
- Example: $k=2, I=\{a, b\}, F=\{b\}, C=\{b\}$ and $T=\{a b, b b\}$ represents the language: $b b^{*}+a b b^{*}$
- Exercice: Give an algorithm to build an automaton directly from $I, F, C, T$
- Exercice: Propose a learning algorithm from text for $k$-testable languages and apply it on the sample $S=\{\lambda, a, a b b a, a b b b b a\}$ for $k=1, k=2$ and $k=3$. What are the properties of your algorithm ?


## Reversible languages

Dana Angluin. Inference of reversible languages. Journal of the ACM, 1982. dl.acm.org/doi/pdf/10.1145/322326.322334

- Given a DFA $A, A^{T}$ is the automaton obtained by reversing the transition relation (and the initial and final states).
- A DFA $A$ is reversible if $A^{T}$ is deterministic.
- A regular language $L$ is reversible if there exists a DFA $A$ with $L(A)=L$ which is reversible.
- Sketch of a learning algorithm given a sample $S$ :
- Build prefix-tree acceptor (see below) for $S$
- Merge all final states
- Merge states $q, q^{\prime}$ as long as there is a transition with the same letter to $q$ and $q^{\prime}$ or from $q$ and $q^{\prime}$
- There is a polynomial-size CS (Which one ?)
- It can be made incremental (How ?)


## Pattern languages

- Let $\Sigma$ be an alphabet and $X=\left\{x_{1}, x_{2}, \ldots\right\}$ a set of variables. A pattern is a string over $\Sigma \cup X$.
- A matching is a function $\sigma: X \mapsto \Sigma^{*} . \sigma$ is extended to a pattern $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ by $\sigma(\pi)=\sigma\left(\pi_{1}\right) \sigma\left(\pi_{2}\right) \ldots \sigma\left(\pi_{n}\right)$ For a letter $a \in \Sigma$, $\sigma(a)=a$.
- A string $w \in \Sigma^{*}$ fits a pattern $\pi$ if there is a matching $\sigma$ such that $\sigma(\pi)=w$.
- The language defined by a pattern $\pi$ (noted $L(\pi)$ ) is the set of all words $w \in \Sigma^{*}$ which fit $\pi$
- The pattern is called non-erasing if only $\sigma: X \mapsto \Sigma^{+}$is allowed
- Let $\mathcal{P A T} \mathcal{T E R N S}(\Sigma)$ be the class of non-erasing pattern languages over $\Sigma$.
- Exercice: Show that $\mathcal{P A T} \mathcal{T E} \mathcal{R N} \mathcal{S}(\Sigma)$ is identifiable in the limit from text.
- Example sample: $S=\{a b c b b, a a b b a, a a c b b a c$, aaaba, $a c b b b a c\}$.


## Learning from an informant

Recall: Any recursively enumerable class of recursive languages is identifiable in the limit from an informant.

- A partial presentation is a sample $S=\left(S^{+}, S^{-}\right)$with $S^{+}, S^{-} \subseteq \Sigma^{*}$ such that $S^{+} \cap S^{-}=\emptyset$.
- A DFA $A=\left(\Sigma, Q, q_{\lambda}, F_{a}, F_{r}, \delta\right)$ is a finite-state automaton defined as usual.
- $F_{a}$ is the set of accepting states and
- $F_{r}$ the set of rejecting states (not always used)
- $A$ is consistent with $S=\left(S^{+}, S^{-}\right)$if $\delta\left(q_{\lambda}, w\right) \in F_{a}$ for all $w \in S^{+}$ and $\delta\left(q_{\lambda}, w\right) \notin F_{a}$ for all $w \in S^{-}$
- $A$ is strongly consistent with $S=\left(S^{+}, S^{-}\right)$if $\delta\left(q_{\lambda}, w\right) \in F_{a}$ for all $w \in S^{+}$and $\delta\left(q_{\lambda}, w\right) \in F_{r}$ for all $w \in S^{-}$
- A learning algorithm typically constructs an automaton (strongly) consistent with $S$ at each stage.


## A fundamental complexity result

- Problem: Given a sample $S=\left(S^{+}, S^{-}\right)$of strings over some alphabet $\Sigma$ and $n \in \mathbb{N}$, is there a DFA with $n$ states consistent with $S$ ?
- This problem is NP-complete for binary alphabets.
- There a several proofs in the literature which are wrong. see Lingg at al. Learning from Positive and Negative Examples: New Proof for Binary Alphabets. LearnAut 2022. arxiv.org/abs/2206.10025
- Proof on the board.
- Exercice: What about unary alphabets ?
- This means that learning a minimal DFA from a sample can (probably) not be done in polynomial time.
- However, we can still hope for CS-polynomial time.


## Main ingredients of algorithms

- Given a sample $S=\left(S^{+}, S^{-}\right)$the prefix-tree acceptor (PTA) for $S$ is the smallest DFA with a tree-like structure where states are prefixes of the strings of $S^{+}$and which is (strongly) consistent with $S$.
- BUILDPTA(S) constructs the PTA for a sample $S$
- RED states: have been analysed, are part of the result
- BLUE states: not yet analysed, but are considered
- Myhill-Nerode congruence: $u \sim_{L} v:$ for all $w \in \Sigma^{*}$. $u w \in L$ iff $v w \in L$. Two strings which are not equivalent must lead to different states in any DFA for $L$. In a minimal DFA all states are pairwise distinguishable by a word $w$ which is accepted from one and rejected from the other.


## Gold's algorithm

E Mark Gold. Complexity of Automaton identification from given data. Information and Computation 37, 1978.
www.sciencedirect.com/science/article/pii/S0019995878905624

- From $S=\left(S^{+}, S^{-}\right)$find a set of prefixes which must lead to different states
- Try to fold in the rest of the states of the PTA.
- Example: $S^{+}=\{b b, a b b, b b a, b b b\}, S^{-}=\{a, b, a a, b a b\}$
- Main data structure: Observation table (STA, EXP, OT) where
- STA $\subseteq \Sigma^{*}$ is a prefix closed disjoint union of BLUE (no extension of a BLUE state is BLUE) and RED (the others)
- $E X P \subseteq \Sigma^{*}$ is a suffix closed set
- A function $O T: S T A \times E X P \mapsto\{0,1, *\}$ defined as $O T[u][e]=1$, if $u e \in S^{+}, O T[u][e]=0$, if $u e \in S^{-}$, else $*$.
- The table should be non-contradictory: $O T[u][v w]=O T[u v][w]$ (when defined) for all $u, v, w \in \Sigma^{*}$


## Main concepts

- An observation table is complete if it has no holes $(O T[u][v]=*)$
- Two rows of an observation table are compatible $(u \sim O T v)$ if there is no $e$ such that $(O T[u][e]=0$ and $O T[v][e]=1)$ or $(O T[u][e]=1$ and $O T[v][e]=0$ )
- Two rows are obviously different $(O D)$ if they are not compatible.
- A complete observation table is closed if for all rows $v$ in BLUE there is a row $u$ in RED with $O T[u]=O T[v]$
- One can build an automaton from a closed and complete observation table: BUILDAUTO (STA, EXP, OT)
- This automaton is consistent with the data in the table.
- How to get a complete and closed observation table from $S$ ?
- One can construct a table from $S$ with holes and try to fill the holes, but that's difficult as it should not lead to a contradictory table.


## BUILDAUTO(STA, EXP, OT)

input : A closed and complete observation table (STA, EXP, OT) output: A DFA $A=\left(\Sigma, Q, q_{\lambda}, F_{a}, F_{r}, \delta\right)$
$Q \leftarrow\left\{q_{u} \mid u \in R E D\right\} ;$
$F_{a} \leftarrow\left\{q_{u e} \mid O T[u][e]=1\right\} ;$
$F_{r} \leftarrow\left\{q_{u e} \mid O T[u][e]=0\right\} ;$
for $q_{u} \in Q$ do
for $a \in \Sigma$ do
$\delta\left(q_{u}, a\right) \leftarrow q_{v}$ if $v \in R E D$ and $O T[u a]=O T[v]$
end
end
return $A$
Lemma: The automaton $A$ is consistent with the information in STA, EXP, OT (i.e. OT $[u][v]=1$ implies that $A$ accepts $u v$ and $O T[u][v]=0$ implies that $A$ rejects $u v$ )

## BUILDTABLE $(S, R E D)$

input : A Sample $S=\left(S^{+}, S^{-}\right)$, A set of strings $R E D$ prefix-closed output: An observation table (STA, EXP, OT)
EXP $\leftarrow \operatorname{SUFFIXES(S);~}$
$B L U E \leftarrow R E D . \Sigma \backslash R E D ;$
for $u \in R E D \cup B L U E$ do
for $e \in E X P$ do
if $u e \in S^{+}$then $O T[u][e] \leftarrow 1$;
else
if $u e \in S^{-}$then $O T[u][e] \leftarrow 0$ else $O T[u][e] \leftarrow * ;$ end
end
end
return $(R E D \cup B L U E, E X P, O T)$

## Gold's algorithm

input : A Sample $S$
output: A DFA consistent with $S$
$R E D \leftarrow\{\lambda\} ; B L U E \leftarrow \Sigma$;
$(S T A, E X P, O T) \leftarrow B U I L D T A B L E(S, R E D)$;
while there exist $v \in B L U E$ such that $v$ is $O D$ from all RED do $R E D \leftarrow R E D \cup\{v\} ;$ $B L U E \leftarrow(B L U E \backslash\{v\}) \cup\{v a: a \in \Sigma\} ;$ UPDATETABLE(STA, EXP, OT);
end
$A \leftarrow B U I L D A U T O G O L D(S T A, E X P, O T)$;
if $\operatorname{CONSISTENT}(A, S)$ then return $A$ else return $\operatorname{BUILDPTA(S);~}$
UPDATETABLE (STA, EXP, OT): fill the new rows with information from $S$ $\operatorname{CONSISTENT}(A, S)$ : checks that all strings in $S$ are correctly classified by $A$

## BUILDAUTOGOLD(STA, EXP, OT)

input : An observation table (STA, EXP, OT)
output: A DFA $A=\left(\Sigma, Q, q_{\lambda}, F_{a}, F_{r}, \delta\right)$
$Q \leftarrow\left\{q_{u} \mid u \in R E D\right\} ;$
for $q_{u} \in Q$ do
if $O T[u][\lambda]=1$ then Add $q_{u}$ to $F_{a}$ else if $O T[u][\lambda]=0$ then Add $q_{u}$ to $F_{r}$ else Add $q_{u}$ to either $F_{a}$ or $F_{r}$
end for $q_{u} \in Q$ do for $a \in \Sigma$ do
if $u a \in R E D$ then
$\delta\left(q_{u}, a\right) \leftarrow q_{u a}$
else
Choose $v \in R E D$ such that $v \sim o t u a ;$
$\delta\left(q_{u}, a\right) \leftarrow q_{v}$
end
end
end

## Properties of Gold's algorithm

- non-deterministic choices
- does not generalise at all sometimes (returns just the PTA)
- Given any sample $\left(S^{+}, S^{-}\right)$the algorithm
- outputs a DFA consistent with $S$
- admits a polynomial characteristic sample
- runs in time and space polynomial in $\|S\|$
- Gold's algorithm identifies $\mathcal{D} \mathcal{F} \mathcal{A}(\Sigma)$ in $C S$-polynomial time
- What is a characteristic sample ?


## RPNI (Regular Positive and Negative Inference)

- Gold's algorithm might just output the PTA
- RPNI starts from the PTA and greedily chooses states to merge while guaranteeing consistency with the sample
- Example: $S^{+}\{a a a, a a b a, b b a, b b a b a\}$ et $S^{-}=\{a, b b, a a b, a b a\}$


## RPNI basic ingredients

- CHOOSE chooses a blue state for possible merging
- RPNIMERGE $\left(A, q_{r}, q_{b}\right)$ merge a red state $q_{r}$ with a blue state $q_{b}$ and recursively merges any states reached by the same letter from $q_{r}$ and $q_{b}$. A merge fails if an accepting and a rejecting state is merged.
- RPNIPROMOTE $\left(q_{b}, A\right)$ promotes a blue state $q_{b}$ to red and adds all successors of $q_{b}$ (which lead to a state which can reach an accepting state) to blue states
- Remark: In the original version the constructed DFA only contains accepting states and $S^{-}$is used to reject merges


## $R P N I M E R G E\left(A, q, q^{\prime}\right)$

input : A DFA $A$ and two states $q, q^{\prime}$ from $A$
output: a boolean and $A$ modified
if $q \in F_{a}$ and $q^{\prime} \in F_{r}$ or $q^{\prime} \in F_{a}$ and $q \in F_{r}$ then return false;
Add a new state $q^{\prime \prime}$ to $A$;
if $q \in F_{a}$ or $q^{\prime} \in F_{a}$ then set $q^{\prime \prime} \in F_{a}$;
if $q \in F_{r}$ or $q^{\prime} \in F_{r}$ then set $q^{\prime \prime} \in F_{r}$;
for each occurrence of $q\left(r e s p . q^{\prime}\right)$ as source or target of transition do replace $q$ (resp. $q^{\prime}$ ) by $q^{\prime \prime}$
end
while $A$ contains non-det. choice with target states $q_{n}$ and $q_{n}^{\prime}$ do
$b \leftarrow \operatorname{RPNIMERGE}\left(A, q_{n}, q_{n}^{\prime}\right)$;
if not $b$ then undo merge of $q$ with $q^{\prime}$; return false;
end
return true

## RPNI algorithm

input : A Sample $S$
output: A DFA consistent with $S$
$A \leftarrow B U I L D P T A(S) ; R E D \leftarrow\left\{q_{\lambda}\right\} ; B L U E \leftarrow\left\{q_{a} \mid a \in \Sigma \cap \operatorname{PREF}(S)\right\} ;$
while $B L U E \neq \emptyset$ do
$\operatorname{CHOOSE}\left(q_{b} \in B L U E\right) ; B L U E \leftarrow B L U E \backslash\left\{q_{b}\right\} ;$
for $q_{r} \in R E D$ do
$b \leftarrow R P N I M E R G E\left(A, q_{r}, q_{b}\right) ;$
if $b$ then break ;
end
if not $b$ then $A \leftarrow R P N I P R O M O T E\left(q_{b}, A\right)$;
end
return $A$

## Remarks

- In this formulation branches of the PTA containing only rejecting states are not folded into the automaton $A$. One could do it by adding these states to BLUE but this does not correspond to the original RPNI algorithm.
- There are two non-deterministic choices: $\operatorname{CHOOSE}\left(q_{b} \in B L U E\right)$ and $q_{r} \in R E D$.
- One can choose for example the lexlength-order of prefixes leading to states.
- The order should be fixed from the beginning !
- How to get a characteristic sample ?
- depends on the order states are choosen
- for each pair of states $q_{u}$ and $q_{v}$ in the automaton to be learnt, where $u$ and $v$ are the shortest strings reaching the states and each letter $a \in \Sigma$ identify the shortest distinguishing string $w=D S\left(q_{u}, q_{v}\right)$ and add strings $u w$ and vaw to $S^{+}$or $S^{-}$.
- RPNI identifies $\mathcal{D} \mathcal{F} \mathcal{A}(\Sigma)$ in CS-polynomial time.


## Other algorithms

- Evidence driven state merging
- The order of merges is not fixed
- Choose two states to merge and perform cascade of forced merges
- if inconsistent, undo and choose two other states
- Compute for each pair of red and blue states a score and choose the best one
- A score could be the number of strings of $S$ which would end up in the same state
- Other Al techniques: genetic programming, etc.
- typically learn NFA


## Active learning

Also called query learning.

- The learner makes queries answered by an oracle (teacher)
- Membership queries
- Query: $w \in L$ ?
- Answer: Yes/No
- Weak equivalence queries
- Query: $L(H)=L$ ?
- Answer: Yes/No
- (Strong) equivalence queries
- Query: $L(H)=L$ ?
- Answer: Yes/No plus a counterexample $w \in L \backslash H \cup H \backslash L$
- Subset queries
- etc.


## Query learning

- $\mathcal{G}$ is identifiable in the limit with queries if there exists a learning algorithm $A$ such that given any $G \in \mathcal{G}, A$ returns a grammar $G^{\prime}$ equivalent to $G$ and halts.
- Query complexity: How many queries are needed ?
- Complexity: if "everything" is polynomially bounded, then we say polynomially identifiable. Remark: The complexity depends on the size of counterexamples.
- If a class $\mathcal{L}$ contains a non empty set $L_{n}$ and $n$ sets $L_{1}, \ldots, L_{n}$ such that $\forall i, j \in\{1, \ldots, n\} . L_{i} \cap L_{j}=L_{\cap}$, any algorithm using membership, weak equivalence and subset queries needs in the worst case to make $n-1$ queries.
- $\mathcal{D F A}(\Sigma)$ can not be identified by a polynomial number of strong equivalence queries alone.


## $L^{*}$ algorithm

Dana Angluin. Learning regular sets from queries and counter examples. Information and Computation. 1987
people.eecs.berkeley.edu/~dawnsong/teaching/s10/papers/angluin87.pdf

- "started" the field of query learning
- first query learning algorithm for regular languages
- introduces the MAT (minimally adequate teacher) model
- answers membership and equivalence queries
- stochastic setting (PAC-learning) where equivalence queries are replaced by calls to a random sampling oracle


## $L^{*}$ algorithm

- Learn a regular language $L$ (given by the minimal DFA $A$ )
- Basic data structure: Observation table (similar to Gold's algorithm)
- Overview
- find a closed and consistent observation table allowing to construct a DFA
- submit an equivalence query with that DFA
- use counterexample to update the table
- use membership queries to make table closed and consistent
- iterate
- Example


## $L^{*}$ algorithm

Main data structure: Observation table (STA, EXP, OT) where

- STA $\subseteq \Sigma^{*}$ a disjoint union of BLUE and RED states
- $B L U E=R E D . \Sigma \backslash R E D$
- $E X P \subseteq \Sigma^{*}$ is the experiment set
- A function $O T: S T A \times E X P \mapsto\{0,1, *\}$ defined as $O T[u][e]=1$, if $u e \in L, O T[u][e]=0$, if $u e \notin L$, else $*$.
- Additional properties:
- STA is prefix-closed
- EXP is suffix-closed
- the table is complete if $O T[u][e]$ is always different from * (it can be completed with membership queries). We suppose that it is always complete. In an implementation redundant entries are checked only once.


## Key definitions

- Two rows $u$ and $v$ are equivalent (noted $u \equiv_{\text {EXP }} v$ ) if $O T[u]=O T[v]$.
- the table is closed if given any row $u \in B L U E$ there is a row $v \in R E D$ such that $u \equiv$ EXP $v$
- close table: promote $u \in B L U E$ to $R E D$ and add all ua to $B L U E$, iterate
- the table is consistent if for all $u, v \in R E D, u \equiv_{E X P} v$ implies $u a \equiv_{\text {EXP }}$ va for all $a \in \Sigma$
- Make table consistent: add ae to EXP if e separates ua and va


## Key definitions

- if the table is closed and consistent, one can construct an automaton $H=A_{O T}=\left(\Sigma, Q, q_{\lambda}, F_{a}, F_{r}, \delta\right)$ from the table:
- $Q=\left\{q_{u} \mid u \in R E D\right.$ and $\forall v<u . u \not \equiv$ EXP $\left.v\right\}$
- $F_{a}=\left\{q_{u} \mid O T[u][\lambda]=1\right\}, F_{r}=\left\{q_{u} \mid O T[u][\lambda]=0\right\}$
- For all $q_{u} \in Q$ and $a \in \Sigma, \delta\left(q_{u}, a\right)=q_{v}$ for $v \equiv_{\text {EXP }} u a$
- Lemma: if STA is prefix-closed and EXP is suffix-closed, then the automaton $A_{O T}$ is consistent with the data (i.e. $u e \in L\left(A_{O T}\right)$ iff $O T[u][e]=1$ ).
- Notation: $\left\lfloor q_{u}\right\rfloor_{H}=u$ and $\lfloor v\rfloor_{H}=\left\lfloor q_{u}\right\rfloor_{H}$ if $u=\delta_{H}^{*}\left(q_{\lambda}, v\right)$ $\sigma_{A}(u)=1$ if $u \in L(A)$ and $\sigma_{A}(u)=0$ else.


## L* algorithm

input : A regular language $L$ (represented by min. DFA A) output: A DFA $H$ such that $L(H)=L$ $(S T A, E X P, O T) \leftarrow$ LSTARINITIALISE () ; repeat
while (STA, EXP, OT) is not closed or not consistent do
if (STA, EXP,OT) is not closed then
$(S T A, E X P, O T) \leftarrow \operatorname{LSTARCLOSE}(S T A, E X P, O T)$;
if (STA, EXP, OT) is not consistent then
$(S T A, E X P, O T) \leftarrow$ LSTARCONSISTENT $(S T A, E X P, O T)$;
end
$H \leftarrow \operatorname{LSTARBUILDAUTO}(S T A, E X P, O T)$;
$A N S W E R \leftarrow E Q(H)$;
if ANSWER $\neq Y E S$ then
$(S T A, E X P, O T) \leftarrow L S T A R U S E E Q(S T A, E X P, O T, A N S W E R) ;$
until $A N S W E R=Y E S$;
return $H$;
S

## $L^{*}$ algorithm

- LSTARINITIALISE(): RED $=\{\lambda\}, B L U E=\Sigma, E X P=\{\lambda\}$, complete the table and make it closed if necessary
- LSTARUSEEQ(STA, EXP, OT, ANSWER) :
- ANSWER is a string $w$
- add $w$ and all its prefixes to RED
- add all extensions with all $a \in \Sigma$ of new red $w^{\prime}$ to BLUE if not in RED already
- complete the table with membership queries


## Properties of $L^{*}$

- Let $H$ be the automaton constructed by LSTARBUILDAUTO (STA, EXP, OT) with $n$ states. Any automaton consistent with $O T$ with $n$ or less states is isomorphic to $H$.
- $L^{*}$ terminates
- Any automaton consistent with an observation table (STA, EXP, OT) with $n$ distinct rows must have at least $n$ states.
- Let $k$ be the size of the alphabet. Let $n$ be the number of states of the minimal complete automaton of the language to be learnt, $m$ the size of the biggest counter example returned.
- $|R E D| \leq n+m(n-1)$
- $|S T A| \leq(k+1)(n+m(n-1))$
- Therefore, there are at most $(k+1)(n+m(n-1)) n$ entries in the table
- Strings are of size at most $m+2 n-1$
- Furthermore, there are at most $n-1$ equivalence queries and at most $O\left(k * n^{2} * m\right)$ membership queries.


## Variations of $L^{*}$

- [Maler/Pnueli 95] Handling of a counterexample w: add all suffixes of it to $E$. This insures that RED contains always distinct rows and consistency is not needed anymore (the table is always consistent by construction).
- [Rivest/Shapire 93] Handling of the counterexample
- find a point in the counterexample $w=u a v$ where the state (string) reached in $H$ by $u a$ is different from the one reached in $H$ by $u$ followed by $a$.
- Formally: We have $\sigma_{A}\left(\lfloor\lambda\rfloor_{H} w\right) \neq \sigma_{A}\left(\lfloor w\rfloor_{H}\right)$. Therefore, there must be $a \in \Sigma, u, v \in \Sigma^{*}$ with uav $=w$ such that $\sigma_{A}\left(\lfloor u\rfloor_{H} a v\right) \neq \sigma_{A}\left(\lfloor u a\rfloor_{H} v\right)$
- search this breaking point in a binary way using membership queries
- reduces the complexity from $m$ to $\log (m)$
- but EXP is not suffix-closed anymore
$\star$ the constructed automaton is not necessarily consistent with the data in the table! Is this a problem ?
- [Kearns/Vazirani 94] Use of discrimination trees instead of observation table. See TTT algorithm.


## Howar et al. The TTT Algorithm: A Redundancy-Free Approach to Active

 Automata Learning. RV 2014. learnlib.de/wp-content/uploads/2017/10/ttt.pdf- Experiments are organised in a discrimination tree (DT) instead of an observation table:
- rooted binary tree, inner nodes are labelled by strings $v \in E X P$, the two children labelled by 0 (left) and 1 (right).
- leaves are labeled by strings corresponding to states of the hypothesis automaton
- SIFT $(u)$ into a tree: if leaf then return the label (state), else if node labelled by $v$ check if $u v \in L$ then branch right else branch left
- Key steps:
- Initialising the DT
- Hypothesis construction
- Hypothesis refinement
- Hypothesis stabilisation
- Discriminator finalisation


## Key steps

- Initialising the DT: start with root labeled by $\lambda$ and two children, the left or right leaf is labeled by $\lambda$ depending on if $\lambda \in L$ or not.
- Hypothesis construction:
- States of the automaton are the leaves
- Transitions are determined by sifting: From $u$, there is a transition with $a$ to the state given by $\operatorname{SIFT}(u a)$
- Accepting states are the ones in the left subtree of the root, rejecting states the others
- Hypothesis refinement:
- given counterexample $w$ use Rivest/Shapire's method to find uav $=w$ such that $\sigma_{A}\left(\lfloor u\rfloor_{H} a v\right) \neq \sigma_{A}\left(\lfloor u a\rfloor_{H} v\right)$
- $\lfloor u a\rfloor_{H}$ and $\lfloor u\rfloor_{H} a$ need to be split. Add new state $\lfloor u\rfloor_{H} a$ by adding $v$ in EXP.
- Hypothesis stabilisation:
- Check if hypothesis does not contradict information in the discrimination tree.
- Discriminator finalisation:


## Learning symbolic automata

Drews and D'Antoni. Learning symbolic automata. TACAS 2017. https://pages.cs.wisc.edu/~loris/papers/tacas17learning.pdf Argyros and D'Antoni. The learnability of symbolic automata. CAV 2018. pages.cs.wisc.edu/ loris/papers/cav18-learning.pdf

## Symbolic Finite Automata

- Instead of letters from a finite alphabet, transitions are labeled by a formula from an effective boolean algebra $\mathcal{B}$
- Boolean algebra: $\mathcal{B}=(\mathcal{D}, \Psi, \llbracket-\rrbracket, \perp, \top, \vee, \wedge, \neg)$
- $\mathcal{D}$ : a set of domain elements
- $\Psi$ : a set of predicates closed under boolean connectives with $\perp, \top \in \Psi$
- 【-』 : $\Psi \rightarrow 2^{\mathcal{D}}$ a denotation function such that
$\star \llbracket \perp \rrbracket=\emptyset$
* $\llbracket \top \rrbracket=\mathcal{D}$
* for all $\psi, \phi \in \Psi . \llbracket \psi \vee \phi \rrbracket=\llbracket \psi \rrbracket \cup \llbracket \phi \rrbracket$ and $\llbracket \psi \cap \phi \rrbracket=\llbracket \psi \rrbracket \cap \llbracket \phi \rrbracket$ and $\llbracket\urcorner \psi \rrbracket=\mathcal{D} \backslash \llbracket \psi \rrbracket$
- Example: The equality algebra over some domain $\mathcal{D}$. Basic predicates are all formulas of the form $x=a$ where $a \in \mathcal{D}$. The set of all predicates is obtained by boolean combinations of these basic predicates. (Exercice: Show that predicates can be transformed into a simple normal form)


## Symbolic Automata

A s-FA $A$ is a tuple $\left(\mathcal{B}, Q, q_{\lambda}, F, \delta\right)$ with

- $\mathcal{B}$ a boolean algebra (called the alphabet)
- $Q$ a finite set of states with $q_{\lambda} \in Q$ the initial state
- $F \subseteq Q$ the set of final states
- $\delta \subseteq Q \times \Psi_{\mathcal{B}} \times Q$ the transition relation containing a finite set of transitions


## Symbolic automata

$$
A=\left(\mathcal{B}, Q, q_{\lambda}, F, \delta\right)
$$

- characters are elements of $\mathcal{D}_{\mathcal{B}}$
- words (strings) are elements of $\mathcal{D}_{\mathcal{B}}^{*}$
- A move $\rho=\left(q_{1}, \phi, q_{2}\right) \in \delta\left(\right.$ written also $\left.q_{1} \xrightarrow{\phi} q_{2}\right)$ is a transition from source state $q_{1}$ to target state $q_{2}$ where $\phi$ is the guard (or predicate) of the move. For a character $a \in \mathcal{D}_{\mathcal{B}}$, an a-move of $A$ is a move $q_{1} \xrightarrow{\phi} q_{2}$ such that $a \in \llbracket \phi \rrbracket$
- $A$ is deterministic if for all transitions $\left(q, \phi, q_{1}\right)$ and $\left(q, \phi, q_{2}\right) \in \delta$, $q_{1} \neq q_{2}$ implies $\llbracket \phi \wedge \psi \rrbracket=\emptyset$
- $A$ is complete if for each character $a$ there is an a-move out of each $q$.
- Exercice: Define the language of an s-FA.
- Theorem: Symbolic automata can be determinised, completed, minimized.


## (Active) learning of symbolic automata

- Obviously, to learn a s-FA, one must be able to learn a formula of the boolean algebra
- Exercice: Give a (polynomial) active learning algorithm for the equality algebra. Hint: use only equivalence queries. What is its query complexity ?
- The automata learning algorithm uses as a blackbox an active learning algorithm $\Lambda$ for the underlying boolean algebra


## The $M A T^{*}$ algorithm

input : $\mathcal{O}$ : Membership oracle, $\mathcal{E}$ : Equivalence oracle: $\Lambda$ : algebra learning algorithm
output: A s-FA H
$T \leftarrow$ InitialiseDiscriminationTree $(\mathcal{O})$;
$S_{\Lambda} \leftarrow$ InitialiseGuardLearners $(T, \Lambda)$;
$H \leftarrow \operatorname{GetSFAModel}\left(T, S_{\Lambda}, \mathcal{O}\right)$;
while $\mathcal{E}(H)$ does not succeed do $w \leftarrow$ GetCounterexample $(H)$; $T, S_{\Lambda} \leftarrow \operatorname{Process}$ Counterexample $\left(T, S_{\Lambda}, w, \mathcal{O}\right)$; $H \leftarrow \operatorname{GetSFAModel}\left(T, S_{\Lambda}, \mathcal{O}\right)$;
end
return $H$;

## Discrimination Tree (Recall)

- Experiments are organised in a discrimination tree (DT) instead of an observation table.
- rooted binary tree, inner nodes are labelled by strings $w^{\prime} \in \mathcal{D}_{\mathcal{B}}^{*}$, the two children labelled by 0 (left) and 1 (right).
- leaves are labeled by strings $s \in \mathcal{D}_{\mathcal{B}}^{*}$ corresponding to states of the hypothesis automaton
- Main operation: $\operatorname{SIFT}(w)$ into a tree starting from root: if at leaf then return the label (state), else if at a node labelled by $w^{\prime}$ then according to $\mathcal{O}\left(w w^{\prime}\right)$ branch right or branch left
- Initially, we have a root labelled by $\lambda$ and a leaf labelled by $\lambda$ according to $\mathcal{O}(\lambda)$. The other leaf is left unknown.
- When the other leaf is requested by the membership oracle (a string is sifted going to the corresponding branch) we add this string as leaf.


## GetSFAModel $\left(T, S_{\Lambda}, \mathcal{O}\right)$ : Building a s-FA Hypothesis

- We start with an automaton with as many states as leaves of the discrimination tree.
- To obtain the guards of each transition, for each pair of states $q_{u}$ and $q_{v}$ we start a learner $\Lambda^{q_{u}, q_{v}}$
- If the learner $\Lambda^{q_{u}}, q_{v}$ asks a membership query $a$, it is answered by sifting $u a$ into the tree (if the result is $v$ then yes else no).
Special case (once typically at the beginning of the algorithm): if the discrimination tree is extended with a leaf, then we restart building an hypothesis with one more state.
- if the learner $\Lambda^{q_{u}, q_{v}}$ asks an equivalence query it is suspended
- When all $\wedge$ learners are suspended we have to check that the resulting automaton is
- deterministic
- complete


## Checking the hypothesis automaton

- Determinism: For each state $q_{u}$ in the hypothesis automaton and each pair of moves $\left(q_{u}, \phi_{1}, q_{v}\right),\left(q_{u}, \phi_{2}, q_{v^{\prime}}\right)$ we verify $\llbracket \phi_{1} \wedge \phi_{2} \rrbracket=\emptyset$. If there is a character a such that $a \in \llbracket \phi_{1} \wedge \phi_{2} \rrbracket$, then let $m=\operatorname{SIFT}(u a)$. Then, a must satisfy the guard of $u \rightarrow m$. Therefore, if $m=v$ (resp. $m=v^{\prime}$ ) then we provide $a$ as counterexample to the learner $\Lambda^{q_{u}, q_{v}}$ (resp. $\left.\Lambda^{q_{u}, q_{v^{\prime}}}\right)$
- Completeness: For each state $q_{u}$ in the hypothesis automaton let $S=\left\{\phi \mid\left(q_{u}, \phi, q^{\prime}\right) \in \delta_{H}\right\}$. We check that $\llbracket \bigvee_{\phi \in S} \phi \rrbracket=\mathcal{D}$. If a character $a \notin \llbracket \bigvee_{\phi \in S} \phi \rrbracket$ is found, let $v=\operatorname{sift}(u a)$. $a$ is provided as counterexample to $\Lambda^{q_{u}, q_{v}}$
- These two check are iterated until a deterministic and complete automaton is found.
- This automaton can then be submitted to the equivalence oracle.


## Processing the counterexample

- Like Rivest/Shapire: Find a breaking point in the counterexample $w=u a w^{\prime}$ where the state (string) reached in $H$ by ua can be distinguished from the one reached in $H$ by $u$ followed by a, i.e. $\mathcal{O}\left(\lfloor u\rfloor_{\mu} a w^{\prime}\right) \neq \mathcal{O}\left(\lfloor u a\rfloor_{H} w^{\prime}\right)$.
- Contrary to the DFA case, here a counterexample does not always lead to a new state. It could be also that a guard is wrong.
- Let $u^{\prime}=\lfloor u\rfloor_{H}$. Let $q_{v}$ be the result of $\operatorname{sift}\left(u^{\prime} a\right)$. Consider transition $\left(q_{u^{\prime}}, \phi, q_{v}\right)$.
- $a \notin \llbracket \phi \rrbracket$ : That means that the guard is incorrect. We give $a$ as a counterexample to the learner $\Lambda^{q_{u^{\prime}}, q_{v}}$.
- $a \in \llbracket \phi \rrbracket$ : We replace the leaf labelled by $v$ in the discrimination tree by a subtree with a node $w^{\prime}$ and two leaves labeled by the states $v$ and $u^{\prime} a$ based on the results of $\mathcal{O}(v)$ and $\mathcal{O}\left(u^{\prime} a\right)$ which are different.
- In the last case, all transitions directed to $v$ might be wrong. We start fresh instances of the algebra learning algorithm for all these transitions as well as the new ones from and to $q_{u^{\prime}}$.


## Properties of the $M A T^{*}$ algorithm, Remarks

- If a state has several outgoing transitions, it might be that the learner learns first just one transition with the disjunction of all guards
- Let $\left(\mathcal{B}, Q, q_{\lambda}, F, \delta\right)$ and s-FA, $\wedge$ a learning algorithm for $\mathcal{B}$ and $k$ be the maximum size that a predicate guard may take in any intermediate hypothesis.
- $M A T^{*}$ learns $A$ using $O\left(|Q|^{2}|\delta| C_{m}^{\wedge}(k)+|Q|^{2}|\delta| C_{e}^{\wedge}(k) \log (m)\right)$ membership and $O\left(|Q||\delta| C_{e}^{\wedge}(k)\right)$ equivalence queries where $m$ is the length of the longest counterexample and $C_{m}^{\wedge}(k)$ (resp. $\left.C_{e}^{\wedge}(k)\right)$ are the number of membership (resp. equivalence) queries needed by the $\Lambda$ learner to learn concepts of size $k$.


## Learning Alternating Automata

Angluin et al. Learning Regular Languages via Alternating Automata. IJCAI 2015 www.cs.bgu.ac.il/~dana/documents/AEF_IJCAI15.pdf generalises
Bollig, Habermehl, Kern, Leucker. Angluin-style learning of NFA. IJCAI 2009. www.ijcai.org/Proceedings/09/Papers/170.pdf revisited by
Berndt et al. Learning residual alternating automata. Information and Computation 289 (2022)
www.sciencedirect.com/science/article/abs/pii/S0890540122001365

## Alternating automata

- For a set $S, \mathcal{F}(S)$ denotes the set of all formulas over $S$ with binary operators $\vee, \wedge$ and $\top, \perp$.
- Restrictions: $\mathcal{F}_{\vee}($ only $\vee$ and $T)$ and $\mathcal{F}_{\wedge}($ only $\wedge$ and $\perp$ ).
- An alternating automata AFA is a tuple $\left(\Sigma, Q, Q_{0}, F, \delta\right)$ :
- $\Sigma$ : finite alphabet
- $Q$ : finite set of states
- $Q_{0} \in \mathcal{F}(Q)$ : initial condition
- $F \subset Q$ : final states
- $\delta: Q \times \Sigma \rightarrow \mathcal{F}(Q)$ : transition function
- Special cases:
- DFA: $Q_{0}=q_{\lambda}$ and $\delta$ restricted to $Q$
- NFA: $Q_{0}$ and $\delta$ restricted to $\mathcal{F}_{\mathrm{V}}$
- UFA (universal): $Q_{0}$ and $\delta$ restricted to $\mathcal{F}_{\wedge}$
- A transition $\delta(q, a)$ can be a nested formula. One can consider just formulas in DNF.


## Alternating automata

- $\delta$ is extended to words $w \in \Sigma^{*}$ and formulas $\varphi \in \mathcal{F}(Q)$ in DNF ( $\varphi=\bigvee_{i} M_{i}$ and $M_{i}=\bigwedge_{j} q_{i, j}$ ) by
- $\delta(\varphi, \lambda)=\varphi$
- $\delta(\varphi, a)=\bigvee_{i} \bigwedge_{j} \delta\left(q_{i, j}, a\right)$ for $a \in \Sigma$
- $\delta(\varphi, w a)=\delta(\delta(\varphi, w), a)$ for $a \in \Sigma$ and $w \in \Sigma^{*}$
- The evaluation of a formula is defined by

$$
\begin{aligned}
& \text { - } \llbracket \top \rrbracket=\top, \llbracket \perp \rrbracket=\perp \\
& \text { - } \llbracket q \rrbracket=\left\{\begin{array}{l}
\top \text { if } q \in F \\
\perp \text { else }
\end{array}\right. \\
& \text { - } \llbracket \varphi \vee \psi \rrbracket=\llbracket \varphi \rrbracket \vee \llbracket \psi \rrbracket \text { and } \llbracket \varphi \wedge \psi \rrbracket=\llbracket \varphi \rrbracket \wedge \llbracket \psi \rrbracket
\end{aligned}
$$

- $w \in \Sigma^{*}$ is accepted by an AFA if $\llbracket \delta\left(Q_{0}, w\right) \rrbracket=T$.
- The language $L(A)$ is $\left\{w \in \Sigma^{*} \mid \llbracket \delta\left(Q_{0}, w\right) \rrbracket=\top\right\}$
- Given an AFA $A=\left(\Sigma, Q, Q_{0}, F, \delta\right)$, we write $A_{q}$ for $A=(\Sigma, Q, q, F, \delta)$,


## Residuality

## Denis et al. Residual finite-state automata. STACS 2001.

link.springer.com/chapter/10.1007/3-540-44693-1_13

- Given a language $L \in \Sigma^{*}$ a residual language is a language $w^{-1} . L$ for some $w \in \Sigma^{*}$.
- An automaton $A=\left(\Sigma, Q, Q_{0}, F, \delta\right)$ is called residual, if for all $q \in Q$, $L\left(A_{q}\right)$ is a residual language of $L(A)$.
- RNFA, RUFA, RAFA are the residual restrictions of NFA, UFA, AFA.
- All DFA are trivially residual.
- RNFA and RUFA admit canonical minimal representatives.


## Exercises and remarks

- Let $L_{n}=(a+b)^{*} a(a+b)^{n}$
- Exercise: Give an NFA with $n+2$ states for $L_{n}$.
- Exercise: How many states a DFA for $L_{n}$ has at least ?
- Exercise: Give an UFA with $O(n)$ states for $L_{n}$.
- Let $L_{n}^{\prime}=\left\{u w v \$ w \mid u, v \in\{a, b\}^{*}\right.$ and $\left.w \in\{a, b\}^{n}\right\}$.
- Exercise: How many states an NFA for $L_{n}^{\prime}$ has at least ?
- Exercise: How many states a DFA for $L_{n}^{\prime}$ has at least ?
- Exercise: Give an AFA with $O(n)$ states recognizing $L_{n}^{\prime}$
- NFA and UFA can be exponentially more succinct than DFA
- AFA can be double-exponentially more succinct than DFA
- AFA can be exponentially more succinct than NFA and UFA


## Learning Alternating automata: $A L^{*}$

 generalizes $L^{*}$. Specialised versions $N L^{*}$ and $U L^{*}$.- Main idea: Rows in the observation table can be composed by boolean operations to obtain other rows.
- Remember: in $L^{*}$, a table is closed, if for all BLUE rows there exists an equivalent (i.e.having the same entries) RED row.
- Generalisation of closedness: It is enough that each BLUE row can be obtained by boolean operations on RED rows.
- A row $r$ of an observation table can be seen as vector over the binary alphabet $\{0,1\}$ with the size of the experiment set as dimension
- We define $\sqcup$ and $\sqcap$ operations on rows as the extension of $\wedge$ and $\vee$ on vectors.
- Let $R$ be a set of rows. For a formula $\varphi \in \mathcal{F}(R)$ we define its evaluation $\llbracket \varphi \rrbracket$ in the usual way using $\sqcup$ and $\sqcap$
- The set $P \subseteq R$ is a ( $\sqcup, \sqcap)$-basis for $R$ if $R \subseteq \llbracket \mathcal{F}(P) \rrbracket$
- A basis $P$ is minimal if no set $P \backslash\{p\}$ is a basis. A minimal basis is not necessarily unique!


## Learning Alternating automata

- An observation table (STA, EXP, OT) (with STA a disjoint union of $R E D$ an $B L U E)$ is $P$-closed for a $P \subseteq R E D$, if $P$ is a basis for STA.
- Given $v \in E X P . M^{P}(v):=\bigwedge_{p \in P, p[v]=1} p$
- Given a row $r \in S T A$. $b^{P}(r):=\bigvee_{v \in E X P, r[v]=1} M^{P}(v)$
- Notice, $\llbracket b^{P}(r) \rrbracket=r$ for $r \in P$.
- Given a $P$-closed observation table, one can construct an alternating automaton ( $\left.\Sigma, Q, Q_{0}, F, \delta\right)$
- $Q=P$
- $Q_{0}=b^{P}\left(r_{\lambda}\right)$
- $F=\{r \in P \mid r[\lambda]=1\}$
- For all $a \in \Sigma$ et $r \in Q, \delta(r, a)=b^{P}(r a)$


## Learning algorithm $A L^{*}$

input : $\mathcal{O}$ : Membership oracle, $\mathcal{E}$ : Equivalence oracle, a language $L$ output: An AFA $H$ such that $L(H)=L$ $(S T A, E X P, O T) \leftarrow$ INITIALISE () ;
while true do
$P \leftarrow R E D ;$
while (STA, EXP, OT) is not $P$-closed do find a row $r \in B L U E$ with $r \notin \llbracket \mathcal{F}(P) \rrbracket$; add ua to RED and $P$; complete table using $\mathcal{O} ; P \leftarrow R E D$ end construct a minimal basis $P$ and AFA $H$ for $P$; check with $\mathcal{E}$; if ok then return $H$; else
get a counterexample $w$; add all suffixes of $w$ to EXP; complete table using $\mathcal{O}$;
end
end

## Remarks

- The way the counterexample is analysed guarantees that the algorithm stops. Each counterexample will add at least one different column.
- The status of rows might switch during the algorithm between being in the basis or not, as more information becomes available.
- A minimal basis is not necessarily of minimal size. However, it can be obtained easily greedily.
- Computing a basis of minimal size is NP-complete
- One can use approximation algorithms to obtain a basis of almost minimal size in polynomial time
- One obtains variants $U L^{*}, N L^{*}$ by restricting the formulas to conjunctions (resp. disjonctions)
- in this case, it is easy to obtain basis of minimal size.
- The resulting automaton is not necessarily a RAFA. The algorithm can be changed for that.

