Logique L3 Informatique

Peter Habermehl

Université Paris Diderot, Sorbonne Paris Cité **UFR** Informatique Laboratoire LIAFA Peter.Habermehl@liafa.jussieu.fr

Peter Habermehl (U. Paris Diderot)

Peter Habermehl (U. Paris Diderot)

La théorie de l'unification

Retour sur la notion de substitution

Définition:

- Une substitution est une fonction $\sigma: \mathcal{X} \to \mathcal{T}_{\Sigma,\mathcal{X}}$.
- Le domaine d'une substitution σ est l'ensemble $Dom(\sigma) = \{x \in \mathcal{X} \mid \sigma(x) \neq x\}.$
- Le codomaine d'une substitution σ est l'ensemble $Codom(\sigma) = \{VI(\sigma(x)) \mid x \in Dom(\sigma)\}.$
- Un renommage est une substitution injective σ t.q. $\sigma(x) = y$ $\forall x \in Dom(\sigma).$
- Si le domaine d'une substitution σ est fini on note $\sigma = \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\} \text{ si } \sigma(x_i) = t_i \text{ et } x_i \in Dom(\sigma).$
- L'application d'une substitution à un terme est l'extension de σ aux termes donnée par $\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$

Composition de deux substitutions

Soient σ et τ deux substitution. La composition de σ avec τ est donnée par $\sigma \circ \tau(x) = \sigma(\tau(x))$.

Exemple : Soit $\sigma = \{x \leftarrow f(y), w \leftarrow g(z, z)\}$ et $\tau = \{y \leftarrow f(a), z \leftarrow g(x, b)\}$. La substitution $\tau \circ \sigma$ est donnée par $\{x \leftarrow f(f(a)), y \leftarrow f(a), w \leftarrow g(g(x,b), g(x,b)), z \leftarrow g(x,b)\}$ et la substitution $\sigma \circ \tau$ est donnée par $\{y \leftarrow f(a), z \leftarrow g(f(y), b), x \leftarrow f(y), w \leftarrow g(z, z)\}.$

Peter Habermehl (U. Paris Diderot)

Comparer deux substitutions

La substitution σ est une instance de la substitution τ (ou τ est plus générale que σ), ce que l'on écrit $\sigma < \tau$, ss'il existe une substitution ρ t.g. pour toute variable $x \in \mathcal{X}$, $\sigma(x) = (\rho \circ \tau)(x)$.

Exemple: $\{x \leftarrow f(y), y \leftarrow z\}$ est plus générale que $\{x \leftarrow f(b), y \leftarrow h(c), z \leftarrow h(c)\}$

Peter Habermehl (U. Paris Diderot)

Identifier deux substitutions

Remarque: La relation < n'est pas antisymétrique.

Exemple: Soient $\sigma_1 = \{x \leftarrow y\}$ et $\sigma_2 = \{y \leftarrow x\}$. On a $\sigma_1 \leq \sigma_2$ et $\sigma_2 \leq \sigma_1$ et $\sigma_1 \neq \sigma_2$.

Lemme: La relation d'équivalence engendrée par < est donnée par: $\sigma \sim \sigma'$ ssi \exists un renommage ρ t.g. $\sigma = \rho \circ \sigma'$.

Alors, $\sigma_1 \sim \sigma_2$ dans l'exemple précédent car: $\sigma_1 = \sigma_1 \circ \sigma_2$ et $\sigma_2 = \sigma_2 \circ \sigma_1$.

Peter Habermehl (U. Paris Diderot)

Substitution(s) principale(s)

Soit S en ensemble de substitutions et $\tau \in S$. On dit que τ est principale ssi toute substitution $\sigma \in \mathcal{S}$ est une instance de τ .

Exemple: Soit $S = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5\}$, où $\sigma_1 = \{x \leftarrow y\}$. $\sigma_2 = \{y \leftarrow x\}, \ \sigma_3 = \{x \leftarrow y, z \leftarrow x\}, \ \sigma_4 = \{x \leftarrow z, y \leftarrow z\} \text{ et }$ $\sigma_5 = \{x \leftarrow a, y \leftarrow a\}.$

Alors σ_1 , σ_2 et σ_3 sont principales pour \mathcal{S} . En effet, $\sigma_2, \sigma_3, \sigma_4, \sigma_5 < \sigma_1$ et $\sigma_1, \sigma_3, \sigma_4, \sigma_5 < \sigma_2$ et $\sigma_1, \sigma_2, \sigma_4, \sigma_5 < \sigma_3$ Mais $\sigma_1 \not\leq \sigma_4$ car $\sigma_1 \neq \{x \leftarrow y, z \leftarrow y\} = \{z \leftarrow y\} \circ \sigma_4$. De même, $\sigma_1 \not< \sigma_5$ (entre autres).

Unification comme solution d'un système d'équations

Une équation est une paire de termes de la forme s = t, elle est unifiable ssi il existe une substitution σ t.g. $\sigma(s) = \sigma(t)$. Cette substitution est un unificateur ou une solution de l'équation s = t.

Un système fini ou problème fini d'équations \mathcal{P} est un ensemble $\{s_1 \doteq t_1, \dots, s_n \doteq t_n\}$ d'équations, il est unifiable ssi il existe une substitution qui est unificateur de toutes les équations de \mathcal{P} . Cette substitution est un unificateur ou une solution de l'ensemble \mathcal{P} .

Notations

Définition:

- L'ensemble de variables de \mathcal{P} est notée $Var(\mathcal{P})$.
- L'application d'une substitution σ à $\mathcal{P} = \{s_1 \doteq t_1, \dots, s_n \doteq t_n\}$ donne le système $\sigma(\mathcal{P}) = \{\sigma(s_1) \doteq \sigma(t_1), \dots, \sigma(s_n) \doteq \sigma(t_n)\}.$

Peter Habermehl (U. Paris Diderot)

Logique

4 avril 2012

Peter Habermehl (U. Paris Diderot)

Logique

4 avril 2012 10

L'unicité

Module ces considérations, l'unificateur pricipal d'un problème \mathcal{P} est unique modulo renommage, c'est à dire :

Si σ et σ' sont deux unificateurs principaux de \mathcal{P} , alors $\sigma \sim \sigma'$.

L'unicité

- **①** On identifie deux unificateurs σ et σ' d'un problème \mathcal{P} s'ils ne différent que par des renommage de variables, c'est à dire, si $\sigma \sim \sigma'$.
- ② On considère uniquement comme unificateurs de \mathcal{P} les substitutions σ t.q. $Dom(\sigma) \subseteq Var(\mathcal{P})$.

Exemple: Soit $S = \{x = y\}$. Prenons trois unificateurs principaux de S: $\sigma_1 = \{x \leftarrow y\}$, $\sigma_2 = \{y \leftarrow x\}$ et $\sigma_3 = \{x \leftarrow y, z \leftarrow w\}$. Alors $\sigma_1 = \sigma_2$ (car $[\sigma_1]_{\sim} = [\sigma_2]_{\sim}$) et σ_3 n'est plus considéré comme un unificateur de S.

Les formes résolues

Définition: Un problème d'unification \mathcal{P} est en forme résolue ssi il est de la forme $\{x_1 \doteq t_1, \dots, x_n \doteq t_n\}$, où

- toutes les variables x_i sont distinctes $(i \neq j \text{ implique } x_i \neq x_j)$
- 2 aucune x_i n'apparaît dans un t_j $(\forall i \ \forall j \ x_i \notin VI(t_j))$

Notation : Si \mathcal{P} est un système en forme résolue $\{x_1 \doteq t_1, \dots, x_n \doteq t_n\}$ on note $\vec{\mathcal{P}}$ la substitution $\{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\}$.

Les règles de transformation

$$\frac{\mathcal{P} \cup \{s \doteq s\}}{\mathcal{P}} \quad \text{(effacer)} \quad \frac{\mathcal{P} \cup \{t \doteq x\} \quad t \notin \mathcal{X}}{\mathcal{P} \cup \{x \doteq t\}} \quad \text{(orienter)}$$

$$\frac{\mathcal{P} \cup \{f(s_1, \dots, s_n) \doteq f(t_1, \dots, t_n)\}}{\mathcal{P} \cup \{s_1 \doteq t_1, \dots, s_n \doteq t_n\}}$$
 (décomposer)

$$\frac{\mathcal{P} \cup \{x \doteq s\} \quad x \in Var(\mathcal{P}) \quad x \notin VI(s)}{\{x \leftarrow s\}(\mathcal{P}) \cup \{x \doteq s\}}$$
 (remplacer)

Algorithme d'unification d'un problème \mathcal{P}

- lacktriangle On démarre avec un problème ${\mathcal P}$
- ${\bf @}$ On applique les règles de transformation tant qu'on peut, on obtient un problème ${\cal S}$
- ${f 3}$ Si le problème ${\cal S}$ est en forme résolue
 - alors renvoyer $\vec{\mathcal{S}}$
 - sinon échec

Peter Habermehl (U. Paris Diderot)

Logique

4 avril 2012

Peter Habermehl (U. Paris Diderot)

Logique

avril 2012 1/

Exemple

Soit
$$\mathcal{P} = \{f(x, h(b), c) \doteq f(g(y), y, c)\}.$$

$$\frac{f(x, h(b), c) \stackrel{.}{=} f(g(y), y, c)}{x \stackrel{.}{=} g(y), h(b) \stackrel{.}{=} y, c \stackrel{.}{=} c} d$$

$$\frac{x \stackrel{.}{=} g(y), h(b) \stackrel{.}{=} y}{x \stackrel{.}{=} g(y), y \stackrel{.}{=} h(b)} o$$

$$x \stackrel{.}{=} g(h(b)), y \stackrel{.}{=} h(b)$$

L'unificateur principal de P est $\sigma = \{x \leftarrow g(h(b)), y \leftarrow h(b)\}$. Ainsi, $\sigma f(x, h(b), c) = f(g(h(b)), h(b), c) = \sigma f(g(y), y, c)$.

Vers la correction et la complétude de l'algorithme

Lemme:

- L'algorithme termine.
- ② Si σ est un unificateur d'un problème $\mathcal{P} = \{x_1 \doteq t_1, \dots, x_n \doteq t_n\}$, alors $\sigma = \sigma \circ \vec{\mathcal{P}}$.
- \odot Si une règle transforme un problème $\mathcal P$ dans un problème $\mathcal S$, alors les unificateur de $\mathcal P$ et $\mathcal S$ sont les mêmes.
- **9** Si \mathcal{P} est en forme résolue, alors $\vec{\mathcal{P}}$ est solution du problème \mathcal{P} .

Correction et complétude de l'algorithme

Théorème : (Correction) Si l'algorithme trouve une substitution \vec{S} pour le problème P, alors P est unifiable et \vec{S} est un unificateur principal de P. Autrement dit,

Si P n'est pas unifiable, l'algorithme échoue.

Théorème : (Complétude) Si le système P est unifiable, alors l'algorithme calcule l'unificateur principal de P. Autrement dit,

Si l'algorithme échoue, alors le système P n'est pas unifiable.

La résolution pour le calcul des prédicats

Peter Habermehl (U. Paris Diderot)

Logique

4 avril 2012

Peter Habermehl (U. Paris Diderot)

Logique

4 avail 2012 19

Résolution

Méthode par réfutation :

On suppose que A est close (pas de variables libres). Dans ce cas, avoir un modèle et être satisfaisable est la même notion.

A est valide ssi $\neg A$ est insatisfaisable (n'a pas de modèle) ssi en appliquant la méthode de résolution à $\neg A$ on obtient une contradiction (réfutation).

Résolution

- Forme prénexe
- Skolemisation
- Forme clausale
- Règles de résolution
- Correction et complétude

Peter Habermehl (U. Paris Diderot) Logique 4 avril 2012 19 / 56 Peter Habermehl (U. Paris Diderot) Logique 4 avril 2012 20 / 5

Quelques équivalences logiques (rappel)

D'autres exemples d'équivalence lorsque $x \notin VI(A)$

$$\forall x. A \qquad \equiv \neg \exists x. \neg A
\neg \forall x. A \qquad \equiv \exists x. \neg A
\exists x. A \qquad \equiv \neg \forall x. \neg A
\neg \exists x. A \qquad \equiv \forall x. \neg A
\forall x. (A \land B) \qquad \equiv \forall x. A \land \forall x. B
\exists x. (A \lor B) \qquad \equiv \exists x. A \lor \exists x. B
\exists x. (A \to B) \qquad \equiv \forall x. A \to \exists x. B
\forall x. \forall y. A \qquad \equiv \forall y. \forall x. A
\exists x. \exists y. A \qquad \equiv \exists y. \exists x. A$$

=	∃ <i>x</i> . <i>A</i>	$\equiv A$
\equiv	$A \wedge \forall x. B$	
\equiv	$A \wedge \exists x. \ B$	
\equiv	$A \lor \forall x. B$	
\equiv	$A \vee \exists x. \ B$	
\equiv	$A \rightarrow \exists x. \ B$	
\equiv	$A \rightarrow \forall x. B$	
\equiv	$\forall x. \ B \rightarrow A$	
\equiv	$\exists x.\ B \to A$	
		$ \exists X. A \equiv A \land \forall x. B \equiv A \land \exists x. B \equiv A \lor \forall x. B \equiv A \lor \exists x. B \equiv A \to \exists x. B \equiv A \to \forall x. B \equiv A \to A \equiv A \to A $

Peter Habermehl (U. Paris Diderot)

4 avril 2012 21 / 56

Peter Habermehl (U. Paris Diderot)

Forme prénexe

Définition: Une formule G est dite en forme prénexe ssi elle est de la forme $Q_1x_1 \dots Q_nx_n$ A, où chaque Q_i est un quantificateur \forall ou \exists et A ne contient pas de quantificateur.

Théorème : Pour toute formule G il existe une formule G' en forme prénexe t.q $G \equiv G'$.

Exemples

Skolemisation partielle

Définition: Soit G une formule prénexe de la forme fonction *n*-aire. La formule $\forall x_1 \dots \forall x_n Q_{n+2} x_{n+2} Q_{n+i} x_{n+i} \{ x_{n+1} \leftarrow f(x_1, \dots, x_n) \} (A)$ est la skolemisation partielle de G.

Lemme: Soit G une formule prénexe et soit G' sa skolemisation partielle. Alors G a un modèle ssi G' a un modèle.

Peter Habermehl (U. Paris Diderot)

Peter Habermehl (U. Paris Diderot)

G' est la skolemisation partielle de G.

 $G \qquad G' \\ \forall x \ \forall y \ \exists z \ r(x,z) \qquad \forall x \ \forall y \ r(x,f(x,y))$

 $\forall x \exists z \ \forall y \ \exists w \ \exists w' \ s(w', x, h(z)) \quad \forall x \ \forall y \ \exists w \ \exists w' \ s(w', x, h(g(x)))$ $\exists x \ \exists z \ \forall y \ s(x, x, z)$ $\exists z \ \forall y \ s(a, a, z)$

Skolemisation

Définition: Soit G une formule prénexe ayant n quantificateurs \exists . La Skolemisation de G est la formule obtenue par n applications successives de la skolemisation partielle.

Théorème : Soit G' la Skolemisation de la formule G. Alors

- Si G contient n quantificateurs \exists , G' contient au plus n nouveaux symboles de fonction.
- G' ne contient pas de quantificateurs \exists .
- G a un modèle ssi G' a un modèle.

Exemples

Peter Habermehl (U. Paris Diderot)

 $\forall x_1 \dots \forall x_n \exists x_{n+1} Q_{n+2} x_{n+2} Q_{n+i} x_{n+i} A$. Soit f un nouveau symbole de

4 avril 2012

Exemples

G' est la Skolemisation de G.

$$G \qquad G'$$

$$\forall x \ \forall y \ \exists z \ r(x,z) \qquad \forall x \ \forall y \ r(x,f(x,y))$$

$$\forall x \ \exists z \ \forall y \ \exists w \ \exists w' \ s(w',x,h(z)) \qquad \forall x \ \forall y \ s(i(x,y),x,h(g(x)))$$

$$\exists x \ \exists z \ \forall y \ s(x,x,z) \qquad \forall y \ s(a,a,b)$$

Forme normal conjonctive pour le calcul des prédicats

Définition:

- Un littéral est une formule de la forme $r(t_1, \ldots, t_n)$ ou $\neg r(t_1, \ldots, t_n)$.
- Une clause est une formule de la forme $L_1 \vee ... \vee L_q$, $q \geq 0$, où chaque L_i est un littéral. La clause vide s'écrit \perp .
- Une formule est en forme normal conjonctive (FNC) ssi elle est de la forme $C_1 \wedge \ldots \wedge C_n$, $n \geq 0$, où chaque C_i est une clause. La FNC vide s'écrit \top .

Peter Habermehl (U. Paris Diderot)

Logique

4 avri

4 avril 2012

$\neg p(h(x)) \lor p(y)$ est une FNC. $(\neg p(h(x)) \lor p(y)) \land p(z)$ est une FNC. $(\neg p(h(x)) \lor p(y)) \land (p(z) \lor \neg p(h(x)))$ est une FNC. $\neg (p(x) \lor \neg p(z))$ n'est pas une FNC.

 \top est une FNC. \bot est une FNC.

 $\neg p(h(x))$ est une FNC.

 $p(x) \wedge (\neg p(z) \rightarrow p(h(z)))$ n'est pas une FNC.

 $p(x) \lor (\neg p(z) \land p(h(z)))$ n'est pas une FNC.

Peter Habermehl (U. Paris Diderot)

Exemples

Logique

----!! 2012 20

20 / 50

Existence de la FNC

Théorème: Pour toute formule A sans quantificateurs, il existe une formule A' en FNC telle que $A' \equiv A$.

Preuve : Comme dans le cas propositionnel : utiliser les équivalences suivantes:

$A \rightarrow B$	=	$\neg A \lor B$
$\neg \neg A$	=	Α
$\neg (A \land B)$	=	$\neg A \lor \neg B$
$\neg (A \lor B)$	=	$\neg A \land \neg B$
$A \vee (B \wedge C)$	≡	$(A \lor B) \land (A \lor C)$

Unicité

La FNC d'une formule n'est pas unique.

Exemple:

 $p \vee \neg p \equiv p \vee p \vee \neg p \equiv \top$.

Donc,

 $p \vee \neg p$, $p \vee p \vee \neg p$ et \top sont trois FNC de la formule $p \vee \neg p$.

Peter Habermehl (U. Paris Diderot) Logique 4 avril 2012 31 / 56 Peter Habermehl (U. Paris Diderot)

Vers la mise sous forme clausale

Lemme : Soit $\Delta = \{A_1, \dots, A_n\}$ un ensemble de formules sans quantificateurs. Soit $FNC_{\Delta} = \{E_1, \dots, E_n\}$ un ensemble de formules où chaque E_i est une FNC de A_i . Soit C_{Δ} l'ensemble de clauses de FNC_{Δ} construit comme

$$\textstyle\bigcup_{1\leq i\leq n}\{D_{i_1},\ldots,D_{i_k}\mid E_i\in FNC_{\Delta}\text{ et }E_i=D_{i_1}\wedge\ldots\wedge D_{i_k}\}.$$

Alors l'ensemble de formules Δ a un modèle ssi l'ensemble de clauses C_{Δ} a un modèle.

Peter Habermehl (U. Paris Diderot)

Logique

4 avril 2012

33 / 5

Mise sous forme clausale

Théorème : Pour toute formule G il existe un ensemble de clauses \mathcal{C}_G t.q

- $VI(C_1) \cap VI(C_2) = \emptyset$ si $C_1, C_2 \in C_G$ et $C_1 \neq C_2$
- ullet G a un modèle ssi \mathcal{C}_G a un modèle.

Preuve:

- **1** Utiliser l'équivalence $A \to B \equiv \neg A \lor B$ pour éliminer les implications de G. On obtient une formule $G_1 \equiv G$.
- ② Calculer G_2 , la forme prénexe de G_1 . On a $G_2 \equiv G_1$.
- **3** Calculer $G_3 = \forall x_1 \dots \forall x_m \ A \ (m \ge 0)$, la Skolemisation de G_2 . On a que G_3 a un modèle ssi G_2 a un modèle
- **②** Calculer la forme normal conjonctive de A. On obtient $G_4 = \forall x_1 \ldots \forall x_m \ (C_1 \land \ldots \land C_n) \ (m \ge 0, n \ge 0)$. On a $G_4 \equiv G_3$.
- **5** Donner comme résultat $C_G = \{C'_1, \ldots, C'_n\}$ qui est un renommage de $\{C_1, \ldots, C_n\}$ afin d'eviter les variables communes. On a que G a un modèle ssi C_G a un modèle.

Peter Habermehl (U. Paris Diderot)

Logique

-....!! 2012 34

Exemple

$$G = \neg [[Q(a) \land (\forall x \ Q(x) \rightarrow Q(f(x)))] \rightarrow \exists z \ Q(f(f(z)))]$$

- **3** $G_3 = G_2$.
- **3** $C_G = \{Q(a), \neg Q(x) \lor Q(f(x)), \neg Q(f(f(z)))\}.$

Exemple

 $G = (\exists y \ r(x, y) \lor \forall z \ q(z, z)) \land (\neg \forall x \ p(x)).$

- $\mathbf{0} \ G_1 = G.$

- $G_4 = G_3$.

Résolution pour le calcul des prédicats

Axiomes: aucun Règles d'inférence :

$$\frac{D \vee r(s_1, \ldots, s_n) \qquad C \vee \neg r(t_1, \ldots, t_n)}{\sigma(D \vee C)} \quad (coupure)$$

où σ est l'unificateur principal du problème $\{s_1 \doteq t_1, \dots, s_n \doteq t_n\}$

Peter Habermehl (U. Paris Diderot)

4 avril 2012

Rappel: Le cas particulier de la règle coupure lorsque $r(s_1, \ldots, s_n)$ et $r(t_1, \ldots, t_n)$ sont unifiables :

$$r(s_1,\ldots,s_n)$$
 $\neg r(t_1,\ldots,t_n)$

Notation: Comme dans le cas propositionnel, on écrit $\Delta \vdash_R A$ si A est dérivée à partir de l'ensemble Δ par résolution et $\Delta \vdash_R \bot$ si \bot est dérivée à partir de l'ensemble Δ par résolution.

$$\frac{D \lor L \lor L'}{\sigma(D \lor L)}$$
 (factorisation)

οù

•
$$L = r(s_1, ..., s_n)$$
 (resp. $L = \neg r(s_1, ..., s_n)$) et $L' = r(t_1, ..., t_n)$ (resp. $L' = \neg r(t_1, ..., t_n)$)

• σ est l'unificateur principal du problème $\{s_1 \doteq t_1, \ldots, s_n \doteq t_n\}$

Peter Habermehl (U. Paris Diderot)

Notion de réfutation

Un ensemble de formules est réfutable ssi en lui appliquant la méthode de résolution on obtient \perp .

Peter Habermehl (U. Paris Diderot)

4 avril 2012

Exemple I

Montrer que l'ensemble suivant est contradictoire.

 H_1 : $\exists x_0 \ t(x_0)$

 H_2 : $\forall x_2 (d(x_2) \rightarrow \forall x_1 r(x_1, x_2))$

 $H_3: \forall x_3 \forall x_4 \neg (t(x_3) \rightarrow \neg q(x_4)) \rightarrow \neg r(x_3, x_4)$

 H_4 : $\neg \forall x_5 (\neg d(x_5) \lor \neg q(x_5))$

D'abord, on donne un ensemble de clauses C équivalent à $\{H_1, H_2, H_3, H_4\}$.

$$C = \{t(a), \neg d(x_2) \lor r(x_1, x_2), \neg t(x_3) \lor \neg q(x_4) \lor \neg r(x_3, x_4), d(b), q(b)\}$$

Puis on donne une réfutation de l'ensemble C par la méthode de résolution.

$$\frac{\neg t(x_3) \vee \neg q(x_4) \vee \neg r(x_3, x_4) \quad t(a)}{\neg q(x_4) \vee \neg r(a, x_4)} \qquad q(b)$$

$$\frac{\neg d(x_2) \vee r(x_1, x_2)}{\neg d(b)}$$

Peter Habermehl (U. Paris Diderot)

4 avril 2012

41

Exempe II

$$\frac{\neg t(x_3) \vee \neg q(x_4) \vee \neg r(x_3, x_4) \quad t(a)}{\neg q(x_4) \vee \neg r(a, x_4)} \quad q(b)$$

$$\frac{\neg d(b)}{\neg d(b)}$$

Exemple II

Montrer que la formule J_4 est conséquence logique de la formule $J_1 \wedge J_2 \wedge J_3$.

 J_1 : $\exists x_0 \ t(x_0)$

 J_2 : $\forall x_2 (d(x_2) \rightarrow \forall x_1 r(x_1, x_2))$

 $J_3: \forall x_3 \forall x_4 \neg (t(x_3) \rightarrow \neg q(x_4)) \rightarrow \neg r(x_3, x_4)$

 J_4 : $\forall x_5 (\neg d(x_5) \lor \neg q(x_5))$

D'abord on utilise le fait que $J_1 \wedge J_2 \wedge J_3 \models J_4$ ssi $J_1 \wedge J_2 \wedge J_3$, $\neg J_4$ est réfutable. Ceci car les formules n'ont pas de variables libres.

On donne donc un ensemble de clauses C équivalent à $\{J_1 \wedge J_2 \wedge J_3, \neg J_4\}$.

$$C = \{t(a), \neg d(x_2) \lor r(x_1, x_2), \neg t(x_3) \lor \neg q(x_4) \lor \neg r(x_3, x_4), d(b), q(b)\}$$

On donne une réfutation de l'ensemble ${\it C}$ par la méthode de résolution.

Peter Habermehl (U. Paris Diderot)

Logique

4 avril 2012

40 / 56

Exemple III

Montrer que la formule $J: \forall x \ p(x) \lor \exists y \neg p(y)$ est valide. D'abord on utilise le fait que J est valide ssi $\neg J$ est réfutable. On donne donc un ensemble de clauses C équivalent à $\{\neg J\}$.

$$C = \{\neg p(a), p(y)\}\$$

On donne une réfutation de l'ensemble C par la méthode de résolution.

$$\frac{\neg p(a) \quad p(y)}{}$$

Peter Habermehl (U. Paris Diderot) Logique 4 avril 2012 43 / 56 Peter Habermehl (U. Paris Diderot) Logique 4 avril 2012 44 / 56

Autres exemples

avec formalisation: au tableau

Peter Habermehl (U. Paris Diderot)

4 avril 2012

Propriétés de la résolution

Théorème: La résolution est correcte, i.e., si $\Delta \vdash_R A$, alors le séquent $\Delta \vdash A$ est valide et si $\Delta \vdash_R \bot$, alors Δ n'a pas de modèle.

Théorème: La résolution est complète pour la réfutation, i.e., si Δ n'a pas de modèle, alors $\Delta \vdash_R \bot$.

Peter Habermehl (U. Paris Diderot)

Vers la complétude de la résolution

Soit Σ une signature contenant au moins une constante.

Définition:

- L'univers d'Herbrand de Σ est l'ensemble des termes clos sur Σ .
- La base d'Herbrand est l'ensemble d'atomes clos sur Σ .
- Une interprétation de Herbrand de Σ est une interprétation t.g.
 - Son domaine est l'univers d'Herbrand
 - ▶ Pour chaque $f \in \Sigma_F$ d'arité $n, \mathcal{I}(f)(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$
 - ▶ Pour chaque $p \in \Sigma_P$ d'arité n, on se donne un sous-ensemble S_p de la base de Herbrand t.q. $\mathcal{I}(p)(t_1,\ldots,t_n)=\mathbf{V}$ ssi $p(t_1,\ldots,t_n)\in\dot{\mathcal{S}}_p$.

Lemmes pour le Théorème de Herbrand

Lemme: Soit t un terme dont les variables libres appartiennent à $\{x_1,\ldots,x_n\}$. Soit \mathcal{I} une interprétation ayant \mathcal{D} comme domaine et σ une valuation dans le domaine \mathcal{D} . Soit la substitution $\tau = \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\}$ et soient $d_1 \dots d_n$ t.q. $[t_i]_{\mathcal{I}, \sigma} = d_i$. Alors $[t]_{\mathcal{I},\sigma[x_1:=d_1]...[x_n:=d_n]} = [\tau(t)]_{\mathcal{I},\sigma}.$

Lemme: Soit G une formule dont les variables libres appartiennent à $\{x_1,\ldots,x_n\}$. Soit \mathcal{I} une interprétation ayant \mathcal{D} comme domaine et σ une valuation dans le domaine \mathcal{D} . Soit la substitution $\tau = \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\}$ et soient $d_1 \dots d_n$ t.q. $[t_i]_{\mathcal{I}, \sigma} = d_i$. Alors $[G]_{\mathcal{I},\sigma[x_1:=d_1]...[x_n:=d_n]} = [\tau(G)]_{\mathcal{I},\sigma}.$

Exercice: Soit $G = r(x_1, x_2)$ et $\tau = \{x_1 \leftarrow a, x_2 \leftarrow s(a)\}$. Soit $\mathcal{I}(r)(n,m) = \mathbf{V}$ ssi n < m, $\mathcal{I}(a) = 0$ et $\mathcal{I}(s)(n) = n + 1$. Vérifier le résultat précédent.

Théorème de Herbrand

Théorème : Un ensemble de clauses \mathcal{C} admet un modèle ssi il existe une interprétation \mathcal{I}_H de Herbrand t.q. \mathcal{I}_H est un modèle de \mathcal{C} .

Preuve : Si il existe une interprétation de Herbrand qui est un modèle de \mathcal{C} , alors \mathcal{C} admet un modèle.

Soit $\mathcal C$ un ensemble de clauses qui admet un modèle. Alors il existe une interprétation \mathcal{I} qui est un modèle de \mathcal{C} . On va montrer qu'il existe une interprétation \mathcal{I}_H de Herbrand qui est un modèle de \mathcal{C} .

En effet, pour chaque symbole de prédicat p, on construit $\mathcal{I}_H(p)$ comme suit:

$$\mathcal{I}_H(p)(t_1,\ldots,t_n)=\mathsf{V}$$
 ssi \mathcal{I} est un modèle de la formule $p(t_1,\ldots,t_n)$

Peter Habermehl (U. Paris Diderot)

4 avril 2012

Preuve du théorème de Herbrand

```
(3) [\tau(A_i)]_{\mathcal{I},\sigma} = \mathbf{V} pour tout \sigma
ssi
\mathcal{I} est un modèle de \tau(A_i)
ssi (def. Herbrand)
\mathcal{I}_H est un modèle de \tau(A_i)
[\tau(A_i)]_{\mathcal{I}_H,\sigma_H} = \mathbf{V} pour tout \sigma_H
implique
[\tau(A_1 \vee \ldots \vee A_k)]_{\mathcal{I}_H,\sigma_H} = \mathbf{V} pour tout \sigma_H
ssi (lemme, où [t_i]_{\mathcal{I}_H,\sigma_H} = t_i)
[A_1 \vee \ldots \vee A_k]_{\mathcal{I}_H, \sigma_H}[x_1 := t_1] \ldots [x_n := t_n] = \mathbf{V} pour tout \sigma_H
ssi (les t_i sont arbitraires)
[\forall x_1 \dots \forall x_n (A_1 \vee \dots \vee A_k)]_{\mathcal{I}_H, \sigma_H} = \mathbf{V} pour tout \sigma_H
[E]_{\mathcal{I}_H,\sigma_H} = \mathbf{V} pour tout \sigma_H
ssi \mathcal{I}_H est un modèle de E
```

Preuve du théorème de Herbrand

$$\mathcal{I}_H(p)(t_1,\ldots,t_n)=\mathsf{V}$$
 ssi \mathcal{I} est un modèle de la formule $p(t_1,\ldots,t_n)$

Soit une clause quelconque $E = \forall x_1 \dots \forall x_n (A_1 \vee \dots \vee A_k)$ où chaque A_i est un littéral. On veut montrer que \mathcal{I}_H est un modèle de E.

Par hypothèse
$$[E]_{\mathcal{I},\sigma} = \mathbf{V}$$
 pour tout σ

(1) $[(A_1 \vee \ldots \vee A_k)]_{\mathcal{I},\sigma[x_1:=a_1]\ldots[x_n:=a_n]} = \mathbf{V}$ pour tout σ,a_1,\ldots,a_n Soient t_1, \ldots, t_n une suite de termes clos. (cette suite existe car l'univers de Herbrand n'est pas vide). Soient $d_i = [t_i]_{\mathcal{I},\sigma}$

- (1) implique
- (2) $[(A_1 \vee \ldots \vee A_k)]_{\mathcal{I}, \sigma[x_1:=d_1]\ldots[x_n:=d_n]} = \mathbf{V}$ pour tout σ

$$[A_i]_{\mathcal{I},\sigma[x_1:=d_1]\dots[x_n:=d_n]} = \mathbf{V}$$
 pour tout σ ssi (lemme avec $\tau = \{x_1 \leftarrow t_1,\dots,x_n \leftarrow t_n\}$)

(3) $[\tau(A_i)]_{\mathcal{I},\sigma} = \mathbf{V}$ pour tout σ

Peter Habermehl (U. Paris Diderot)

Arbres sémantiques complets

Définition: Soit B_0, B_1, B_2, \ldots une énumération de tous les atomes clos d'une signature Σ. L'arbre sémantique complet associé à cette énumération est un arbre (binaire et équilibré) t.q.

- la racine est B_0
- chaque nœud B_i possède un arc gauche V et un arc droit F
- tous les successeurs de B_i sont étiquetés par B_{i+1}

Exercice:

- Construire un arbre sémantique complet A_1 pour l'énumération finie q(a), q(b), r(a), r(b).
- 2 Construire un arbre sémantique complet A_2 pour l'énumération infinie $q(a), q(b), q(s(a)), q(s(b)), q(s(s(a))), q(s(s(b))), \dots$

Peter Habermehl (U. Paris Diderot) 4 avril 2012

Nœud d'échec pour un ensemble de clauses

Définition: Soit A un arbre sémantique complet et soit \mathcal{C} un ensemble de clauses. Un nœud n de A est dit nœud d'échec pour \mathcal{C} ssi le segment de la branche qui va de la racine de A jusqu'à n suffit à falsifier au moins une instance close d'une clause de \mathcal{C} et si aucun prédécesseur de n n'est un nœud d'échec de A.

Exercice : Identifier dans les arbres A_1 et A_2 au moins un nœud d'échec pour l'ensemble de clauses $\{\neg r(x) \lor q(x), q(a), r(a)\}.$

Exercice: Si $\perp \in \mathcal{C}$, qu'est-ce qu'on peut dire par rapport aux nœuds d'échec pour C?

Peter Habermehl (U. Paris Diderot)

4 avril 2012

Peter Habermehl (U. Paris Diderot)

Corollaire du théorème de Herbrand

Théorème : Soit $\mathcal C$ un ensemble de clauses. Aucune interprétation de Herbrand ne satisfait $\mathcal C$ ssi il existe un arbre sémantique partiel associé à $\mathcal C$ qui est clos.

Corollaire: Un ensemble de clauses \mathcal{C} n'a pas de modèle ssi il existe un arbre sémantique partiel associé à \mathcal{C} qui est clos.

Arbres sémantiques partiels

Définition: Soit A un arbre sémantique complet et soit C un ensemble de clauses. Un arbre sémantique partiel associé à \mathcal{C} est un arbre obtenu à partir de A en éliminant les sous-arbres issus des nœuds d'échec.

Définition: Un arbre sémantique partiel A est clos s'il est fini et si toute feuille de A est un nœud d'échec.

Exercice: Construire un arbre sémantique partiel clos associé à $C = \{\neg r(x) \lor q(s(x)), r(a), \neg q(s(a))\}.$

Complétude de la résolution

Lemme: Soient C_1 et C_2 deux clauses. Soient C_1' et C_2' deux instances de C_1 et C_2 respectivement. Soit C'_{res} la clause obtenue par appliquation d'un pas de résolution (coupure ou factorisation) à C'_1 et C'_2 . Alors il existe une clause C_{res} t.q.

- C'_{res} est une instance de C_{res}
- C_{res} est obtenue par résolution à partir de C_1 et C_2 .

Théorème: La résolution est complète pour la réfutation, i.e., si Δ n'a pas de modèle, alors $\Delta \vdash_R \bot$.

Peter Habermehl (U. Paris Diderot) 4 avril 2012