Le calcul des prédicats

Peter Habermehl (U. Paris Diderot)

Logique

2 mars 2011

Peter Habermehl (U. Paris Diderot)

Logiqu

2 mars 2011 2

Syntaxe: alphabet

- Les connecteurs \rightarrow , \neg , \land , \lor
- Les quantificateurs ∃, ∀
- Un ensemble dénombrable $\mathcal X$ de variables x,y,z,\ldots
- ullet Une signature Σ contenant :
 - ▶ Un ensemble dénombrable de symboles de fonction $\Sigma_F = \{f, g, h, \ldots\}$, chacun ayant une arité.
 - Un ensemble dénombrable de symboles de prédicat $\Sigma_P = \{p, q, r, \ldots\}$, chacun ayant une arité.

On écrit f/n (ou p/n) pour dire que le symbole de fonction f (ou de prédicat p) est d'arité n.

Le calcul des prédicats

- Syntaxe
- Formalisation du langage naturel
- Sémantique
- Systèmes de preuves syntaxiques
 - Calcul de Gentzen
 - 2 Résolution
 - ★ Théorie de l'unification
 - * Règles de résolution
 - ★ Propriétés de la résolution

Les termes

L'ensemble des termes par rapport à un ensemble de variable $\mathcal X$ et une signature Σ est noté $\mathcal T_{\Sigma,\mathcal X}$.

Définition :

- Chaque variable x dans \mathcal{X} est un terme dans $\mathcal{T}_{\Sigma,\mathcal{X}}$.
- Si t_1, \ldots, t_n sont des termes et $f \in \Sigma_F$ est un symbole de fonction d'arité n, alors $f(t_1, \ldots, t_n)$ est un terme dans $\mathcal{T}_{\Sigma, \mathcal{X}}$.

Un terme est clos s'il ne contient aucune variable.

Peter Habermehl (U. Paris Diderot) Logique 2 mars 2011 3 / 29 Peter Habermehl (U. Paris Diderot) Logique 2 mars 2011 4 / 2

Les atomes

L'ensemble des atomes sur un ensemble de variable $\mathcal X$ et une signature Σ est noté $\mathcal A_{\Sigma,\mathcal X}.$

Définition: Un atome est de la forme $p(t_1, ..., t_n)$, où p est un symbole de prédicat d'arité n et $t_1, ..., t_n$ sont des termes.

Exemple: Si $\Sigma_F = \{0/0, S/1\}$ et $\Sigma_P = \{inf/2\}$, alors 0 et S(S(S(x))) sont des termes, 0 et S(S(S(S(0)))) sont des termes clos et inf(0, S(S(S(x)))) est un atome.

Peter Habermehl (U. Paris Diderot)

Logique

2 mars 2011

11 5/2

Un cas particulier

Le calcul propositionnel peut se voir comme un calcul des prédicats sur une signature Σ t.q.

- l'ensemble Σ_F est vide,
- l'ensemble Σ_P contient uniquement des prédicats 0-aires,
- les quantificateurs ne sont jamais utilisés.

Les formules

L'ensemble des formules sur un ensemble de variable $\mathcal X$ et une signature Σ est noté $\mathcal F_{\Sigma,\mathcal X}.$

Définition:

- Chaque atome de $A_{\Sigma,\mathcal{X}}$ est une formule dans $\mathcal{F}_{\Sigma,\mathcal{X}}$.
- Si A est dans $\mathcal{F}_{\Sigma,\mathcal{X}}$, alors $\neg A$ est une formule dans $\mathcal{F}_{\Sigma,\mathcal{X}}$.
- Si A et B sont dans $\mathcal{F}_{\Sigma,\mathcal{X}}$, $(A \to B)$, $(A \land B)$, et $(A \lor B)$ sont des formules dans $\mathcal{F}_{\Sigma,\mathcal{X}}$.
- Si A est dans $\mathcal{F}_{\Sigma,\mathcal{X}}$ et x est une variable, alors $\forall x$. (A) et $\exists x$. (A) sont des formules dans $\mathcal{F}_{\Sigma,\mathcal{X}}$.

Remarque:

• Nous omettons les parenthèses quand cela n'entraîne pas des ambiguités.

Exemple: $\forall x. (enfant(x) \rightarrow \exists y. mere(y, x))$

Peter Habermehl (U. Paris Diderot)

Logique

2 mars 2011 6

Variables libres et liées

Les variables libres (VI) et liées (VE) d'une formule sont définies comme suit :

- Si A est un atome, VI(A) contient toutes les variables de A, et $VE(A) = \emptyset$.
- Si $A = \neg B$, VI(A) = VI(B) et VE(A) = VE(B).
- Si A = B # C, $VI(A) = VI(B) \cup VI(C)$ et $VE(A) = VE(B) \cup VE(C)$.
- Si $A = \forall x$. B ou $A = \exists x$. B, $VI(A) = VI(B) \setminus \{x\}$ et $VE(A) = VE(B) \cup \{x\}$.

Peter Habermehl (U. Paris Diderot) Logique 2 mars 2011 7 / 29 Peter Habermehl (U. Paris Diderot) Logique 2 mars 2011 8 / 2

Exemple: Si $A = \forall x. \ q(x, f(x, y))$ on a $VI(A) = \{y\}$ et $VE(A) = \{x\}$. Si $B = r(x) \lor \forall x. \ q(x, f(x, y))$ on a $VI(B) = \{x, y\}$ et $VE(B) = \{x\}$.

Remarque: On suppose que l'on peut toujours renommer les variables liées d'une formule afin de l'écrire sous une forme rectifiée :

- toutes les variables liées d'une formule sont distinctes. On ne peut pas avoir p.e. $\forall x. \exists x. A$.
- les variables libres et liées d'une formule A portent des noms distincts. i.e. $VI(A) \cap VE(A) = \emptyset$. On ne peut plus écrire la formule B précédante.

Peter Habermehl (U. Paris Diderot)

2 mars 2011

Peter Habermehl (U. Paris Diderot)

Exemple de renommage

 $\forall x \; \exists z \; p(x,z) \; \text{ou} \; \forall z \; \exists w \; p(z,w).$

(mais pas en $\forall y \exists x \ p(y)!!!$).

La formule $\forall x \; \exists y \; p(x,y)$ peut se renommer en $\forall z \; \exists y \; p(z,y)$

La formule $(\forall x \ p(x)) \lor p(x)$ peut se renommer en $(\forall z \ p(z)) \lor p(x)$.

La formule $\forall x \ \exists x \ p(x)$ peut se renommer en $\forall y \ \exists x \ p(x)$ ou $\forall x \ \exists y \ p(y)$

Les substitutions

Définition:

- Une substitution est une fonction $\sigma: \mathcal{X} \to \mathcal{T}_{\Sigma,\mathcal{X}}$. On note $\{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\}$ si $\sigma(x_i) = t_i$ pour tout $i = 1, \dots, n$ et $\sigma(x) = x \text{ sinon.}$
- L'application d'une substitution à un terme est l'extension de σ aux termes donnée par $\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$
- Soient σ et τ deux substitutions. La composition de σ avec τ est donnée par $\sigma \circ \tau(x) = \sigma(\tau(x))$.
- Si σ est une substitution, alors la substitution $\sigma[x := t]$ est donnée par $\sigma[x := t](y) = \sigma(y)$ si $y \neq x$ et $\sigma[x := t](x) = t$ sinon.

À partir de maintenant on peut assumer qu'une formule est rectifiée si cela

est nécessaire. On verra dans la suite (ou en TD) que cette supposition est

2 mars 2011

Peter Habermehl (U. Paris Diderot)

correcte.

Substitution d'une formule

Soit Σ une signature et \mathcal{X} un ensemble de variables.

Définition: Soit $\sigma = \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\}$ une substitution. La substitution d'une formule A par σ est l'opération qui consiste à remplacer toute occurrence libre de x_i dans A par t_i . Par récurrence sur A:

- $\sigma(r(t'_1,\ldots,t'_n)) = r(\sigma(t'_1),\ldots,\sigma(t'_n))$
- $\sigma(\neg B) = \neg \sigma(B)$ et $\sigma(B \# C) = \sigma(B) \# \sigma(C)$
- $A = \forall x. B$, où l'on suppose (grâce au renommage) $x \notin VI(t_i)$ et $x \neq x_i$ pour $i = 1 \dots n$. Alors $\sigma(\forall x. B) = \forall x. \sigma(B)$.
- Pareil pour $\sigma(\exists x. B)$

Peter Habermehl (U. Paris Diderot)

2 mars 2011

• Il n'existe pas d'humain méchant.

$$\neg \exists x. (H(x) \land M(x))$$

- Il existe un humain qui aime tous les chats. $\exists x. (H(x) \land Aimetousleschats(x))$ $Aimetousleschats(x) \equiv \forall y. (Chat(y) \rightarrow Aime(x, y))$
- Chaque humain sait qui le déteste.

$$\forall x. (H(x) \rightarrow Connaitdeteste(x))$$

Connaitdeteste(x)
$$\equiv \forall y. (D(y,x) \rightarrow C(x,y))$$

Formalisation du langage naturel

• Tous les humains sont méchants.

$$\forall x. (H(x) \rightarrow M(x))$$

Seulement les humains sont méchants.

$$\forall x. (M(x) \rightarrow H(x))$$

Il existe un humain méchant.

$$\exists x. (H(x) \land M(x))$$

Peter Habermehl (U. Paris Diderot)

• Chaque personne aime quelqu'un et personne n'aime tout le monde ou bien quelqu'un aime tout le monde et quelqu'un n'aime personne.

$$(A_1 \wedge B_1) \vee (A_2 \wedge B_2)$$

aimetoutlemonde $(x) \equiv \forall y$. $Aime(x, y)$
aimepersonne $(x) \equiv \forall y$. $\neg Aime(x, y)$

$$A_1 \equiv \forall x. \ (H(x) \rightarrow \exists y. \ Aime(x, y))$$

 $B_1 \equiv \neg \exists x. \ (H(x) \land aimetoutlemonde(x))$
 $A_2 \equiv \exists x. \ (H(x) \land aimetoutlemonde(x))$
 $B_2 \equiv \exists x. \ (H(x) \land aimepersonne(x))$

Peter Habermehl (U. Paris Diderot)

2 mars 2011

Peter Habermehl (U. Paris Diderot)

2 mars 2011

Sémantique du calcul des prédicats

Définition: L'interprétation d'une signature Σ est un triplet $\langle \mathcal{D}, \mathcal{F}_{\mathcal{D}}, \mathcal{P}_{\mathcal{D}} \rangle$ t.q.

- Le domaine \mathcal{D} est non vide.
- Pour chaque $f \in \Sigma_F$ d'arité n, il y a une fonction totale $\mathcal{I}(f):\mathcal{D}^n\to\mathcal{D}$ dans $F_{\mathcal{D}}$.
- Pour chaque $p \in \Sigma_P$ d'arité n, il y a une relation $\mathcal{I}(p) \subseteq \mathcal{D}^n$ dans $P_{\mathcal{D}}$. Cette relation peut aussi se voir comme fonction booléene totale $\mathcal{I}(p): \mathcal{D}^n \to \mathsf{BOOL}.$

Peter Habermehl (U. Paris Diderot)

Définition: Soit \mathcal{I} une interprétation pour Σ ayant \mathcal{D} comme domaine et soit \mathcal{X} un ensemble de variables. Une assignation ou valuation dans \mathcal{I} est une fonction $\sigma: \mathcal{X} \to \mathcal{D}$.

Notation: Si σ est une assignation, alors l'assignation $\sigma[x := d]$ vérifie $\sigma[x := d](y) = \sigma(y)$ si $y \neq x$ et $\sigma[x := d](x) = d$ sinon.

2 mars 2011

Valeur d'un terme

Définition : Soit \mathcal{I} une interprétation de domaine \mathcal{D} et soit σ une assignation dans \mathcal{I} . Alors la valeur d'un terme dans \mathcal{I} pour σ est une fonction [] $_{\mathcal{I},\sigma}:\mathcal{T}_{\Sigma,\mathcal{X}}\mapsto\mathcal{D}$ définie par récurrence comme suit :

- $[x]_{\mathcal{I},\sigma} = \sigma(x)$
- $[f(t_1,\ldots,t_n)]_{\mathcal{T},\sigma} = \mathcal{I}(f)([t_1]_{\mathcal{T},\sigma}\ldots[t_n]_{\mathcal{T},\sigma})$

Remarque : Lorsque le symbole de fonction f est 0-aire (d'arité 0), alors $\mathcal{I}(f)$ est une fonction constante.

Peter Habermehl (U. Paris Diderot)

Les valuations

Des opérations sur l'ensemble BOOL

On définit sur l'ensemble $BOOL = \{F, V\}$ les opérations suivantes:

$$egin{array}{lll} V + V & := V & V \cdot V & := V \\ V + F & := V & V \cdot F & := F \\ F + V & := V & F \cdot V & := F \\ F + F & := F & F \cdot F & := F \end{array}$$

Valeur d'une formule

Définition: Soit \mathcal{I} une interprétation de domaine \mathcal{D} et soit σ une assignation dans \mathcal{I} . La valeur d'une formule dans \mathcal{I} pour σ est une opération [] $_{\mathcal{I},\sigma}: \mathcal{F}_{\Sigma,\mathcal{X}} \mapsto \mathsf{BOOL}$ définie par récurrence comme suit :

- $[p(t_1,\ldots,t_n)]_{\mathcal{I},\sigma} = \mathcal{I}(p)([t_1]_{\mathcal{I},\sigma}\ldots[t_n]_{\mathcal{I},\sigma})$
- $[\neg A]_{\mathcal{I},\sigma} = \mathcal{FB}_{\neg}([A]_{\mathcal{I},\sigma})$
- $[A\#B]_{T,\sigma} = \mathcal{FB}_{\#}([A]_{T,\sigma}, [B]_{T,\sigma})$
- $[\exists x. A]_{\mathcal{I},\sigma} = \sum_{d \in \mathcal{D}} [A]_{\mathcal{I},\sigma[x:=d]}$
- $[\forall x. A]_{\mathcal{I},\sigma} = \prod_{d \in \mathcal{D}} [A]_{\mathcal{I},\sigma[x:=d]}$

Remarque : Lorsque le symbole de prédicat p est 0-aire (d'arité 0), alors $\mathcal{I}(p)$ est **V** ou **F**.

Peter Habermehl (U. Paris Diderot)

2 mars 2011

Peter Habermehl (U. Paris Diderot)

Exemple

Soit
$$D = \{1, 2, 3, 4, 5\}$$
, $\mathcal{I}_{F}(c) = \{1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 4, 4 \mapsto 5, 5 \mapsto 1\}$, $\mathcal{I}_{F}(b) = 2$, $\mathcal{I}_{P}(p) = \{(1, 2, 3), (1, 2, 4), (1, 2, 5)\}$, $\mathcal{I}_{P}(q) = D$ et $\mathcal{I}_{P}(r) = \{(2, 2)\}$.

Interpréter les formules suivantes :

$$(\forall x \ \forall y \ r(x,y) \land (\exists z \ r(z,z)))$$
$$(\exists x \ p(x,x,x)) \lor (\forall y \ \forall z \ r(y,z))$$
$$(\forall x \ \forall y \ r(b,b)) \rightarrow r(b,c(b))$$
$$\forall x \ (q(x) \rightarrow r(x,x))$$
$$\exists x \ \neg (q(x) \land r(x,x))$$

Nouvelles notions de satisfiabilité

Définition:

- \mathcal{I} satisfait une formule B s'il existe une valuation σ dans \mathcal{I} t.g. $[B]_{\mathcal{I},\sigma} = \mathbf{V}.$
- Une formule B est satisfaisable s'il existe \mathcal{I} qui satisfait B.

On verra plus tard que pour étudier la satisfiablité d'une formule on peut se limiter à des interprétations d'une forme particulière.

Peter Habermehl (U. Paris Diderot) 2 mars 2011 Peter Habermehl (U. Paris Diderot) 2 mars 2011

Modèle et validité

Conséquence logique

Définition:

- ullet L' interprétation $\mathcal I$ est un modèle d'une formule B ssi $[B]_{\mathcal I,\sigma}={f V}$ pour toute valuation σ dans \mathcal{I} .
- L' interprétation $\mathcal I$ est un modèle d'un ensemble de formules Δ ssi $\mathcal I$ est un modèle de toutes les formules de Δ .
- La formule B est valide ssi toute interprétation \mathcal{I} est un modèle de B.

Peter Habermehl (U. Paris Diderot)

2 mars 2011

Peter Habermehl (U. Paris Diderot)

2 mars 2011

Quelques exemples de conséquence logique

$$\exists y. \ \forall x. \ A \qquad \models \quad \forall x. \ \exists y. \ A$$

$$\exists x. \ (A \land B) \qquad \models \quad \exists x. \ A \land \exists x. \ B$$

$$\forall x. \ A \lor \forall x. \ B \qquad \models \quad \forall x. \ (A \lor B)$$

Définition:

- Une formule B est conséquence logique d'un ensemble de formules Δ , noté $\Delta \models B$, si tout modèle de Δ est aussi un modèle de B.
- Deux formules A et B sont equivalentes, noté $A \equiv B$, ssi $\{A\} \models B$ et $\{B\} \models A$.

Quelques exemples d'équivalence

$$\forall x. A \qquad \equiv \neg \exists x. \neg A$$

$$\neg \forall x. A \qquad \equiv \exists x. \neg A$$

$$\exists x. A \qquad \equiv \neg \forall x. \neg A$$

$$\neg \exists x. A \qquad \equiv \forall x. \neg A$$

$$\forall x. (A \land B) \qquad \equiv \forall x. A \land \forall x. B$$

$$\exists x. (A \lor B) \qquad \equiv \exists x. A \lor \exists x. B$$

$$\exists x. (A \to B) \qquad \equiv \forall x. A \to \exists x. B$$

$$\forall x. \forall y. A \qquad \equiv \forall y. \forall x. A$$

$$\exists x. \exists y. A \qquad \equiv \exists y. \exists x. A$$

D'autres exemples d'équivalence lorsque $x \notin VI(A)$

$$\forall x. \ A \qquad \equiv \exists x. \ A \qquad \equiv A$$

$$\forall x. \ (A \land B) \qquad \equiv A \land \forall x. \ B$$

$$\exists x. \ (A \land B) \qquad \equiv A \land \exists x. \ B$$

$$\forall x. \ (A \lor B) \qquad \equiv A \lor \forall x. \ B$$

$$\exists x. \ (A \lor B) \qquad \equiv A \lor \exists x. \ B$$

$$\exists x. \ (A \to B) \qquad \equiv A \to \exists x. \ B$$

$$\forall x. \ (A \to B) \qquad \equiv A \to \forall x. \ B$$

$$\exists x. \ (B \to A) \qquad \equiv \forall x. \ B \to A$$

$$\forall x. \ (B \to A) \qquad \equiv \exists x. \ B \to A$$

Peter Habermehl (U. Paris Diderot) Logique

2 mars 2011 29 / 29