Characterization of relations
accepted by two-way transducers

Bruno Guillon®:2

LIRIF - Université Paris-Diderot, Paris 7
2Dipartimento di Informatica - Universita degli studi di Milano

February 12. 2016
Séminaire Automate

27



1-way automaton over 2

A
(Q,q,F,8)

transition set: Q@ x ¥ x Q

READ
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2-way automaton over 2

A
(Q,q,F,8)

transition set: Q x X 4 x {-1,0,1} x Q

left endmarker Automaton right endmarker




2-way transducer over 2, [

(A0)
(Q,q.,F,9) L production function: § — RAT ()

transition set: Q x X 4 x {-1,0,1} x Q




A simple example: SQUARE = {(w,ww) | w e X*}
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A simple example: SQUARE = {(w,ww) | w e X*}

» copy the input word
» rewind the input tape
» append a copy of the input word
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Another example: UMULT = {(a", a*") | k, n € N}
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Another example: UMULT = {(a", a*") | k, n € N}

ooan

copy the input word

e



Another example: UMULT = {(a", a*") | k, n € N}

copy the input word ———— rewind the input tape

e
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Another example: UMULT = {(a", a*") | k, n € N}

a a a a|a a a a|

copy the input word ———— rewind the input tape

‘\./
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Another example: UMULT = {(a", a*") | k, n € N}
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Another example: UMULT = {(a", a*") | k, n € N}

copy the input word ———— rewind the input tape
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Another example: UMULT = {(a", a*") | k, n € N}

copy the input word ———— rewind the input tape

‘\T/

accept and halt with nondeterminism
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Another example: UMULT = {(a", a*") | k, n € N}

a a a aHa a a a|a a a a

copy the input word ———— rewind the input tape

‘\?/

accept and halt with nondeterminism



Rational operations

» Union Riu R
» Componentwise concatenation
Ri- Ry ={(uiuz,viva) | (u1,v1) € Ry and (u2,v2) € R}

» Kleene star
R* = {(U1UQ"'U/<, V1V2---Vk) ‘ Vi (u,-, V,') € R}
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Definition (Rat(X* x[*))
The class of rational relations is the smallest class:
» contains finite relations

» closed under rational operations
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Rational operations

» Union Riu R
» Componentwise concatenation
Ri- Ry ={(uiuz,viva) | (u1,v1) € Ry and (u2,v2) € R}

» Kleene star
R* = {(U1U2'“Uk, V1V2---Vk) | Vi (U,', V,') € R}

Definition (Rat(X* x[*))
The class of rational relations is the smallest class:
» contains finite relations

» closed under rational operations

Theorem (Elgot, Mezei - 1965)
1-way transducers = the class of rational relations.
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Hadamard operations

» Union RiURy
» H-product
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Hadamard operations

» Union RiURy
» H-product
R1®R2={(U, V1V2) | (U, V1>€R1 and (U, V2)€R2}

Example: SQuare = {(w,ww) |weX*} = Ib@ID

DononEook

E

Lol L[]

-

» copy the input word
» rewind the input tape

» append a copy of the input word

/27



Hadamard operations

» Union RiURy
» H-product
R1®R2={(U, V1V2) | (U, V1>€R1 and (U, V2)€R2}

» H-star
R = {(u,viva---vi) | Vi (u,v;) e R}
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Hadamard operations

» Union RiURy
» H-product
R1®R2={(U, V1V2) | (LI, Vl)GRl and (U, V2)ER2}

» H-star
R = {(u,viva---vi) | Vi (u,v;) e R}

Example: uMurr = {(a",2"") | k,n e N} = uIp"*

’ > (:Jjaiiai[aﬁ\ < copy the input word —————— rewind the input tape
SEA A S
/
/

/

/

/

/ /

/ /

/ /

/ /

/ /

/ /
“a‘a‘a‘ama‘a‘a‘aua‘a‘a‘a

A
T accept and halt with nondeterminism




Hadamard operations

» Union RiURy
» H-product
R1®R2={(U, V1V2) | (LI, Vl)GRl and (U, V2)ER2}

» H-star
R = {(u,viva---vi) | Vi (u,v;) e R}

Definition (HAD(X* x I'*))
The class of Hadamard relations is the smallest class:
» contains rational relations

» closed under Hadamard operations



Hadamard relations

Proposition
two-way transducers are |closed under H-operations.
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Hadamard relations

Proposition
two-way transducers are |closed under H-operations.

Proof
» RiURy:

> simulate T, or T»
» RI@Ro:

» simulate T,
> rewind the input tape
» simulate T,
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Hadamard relations

Proposition
two-way transducers are |closed under H-operations.

Proof

» Riu RQ ;! > RH* .
» simulate T, or T, » repeat an arbitrary

number of times:

> Ri@ ke > simulate T
» simulate T, > rewind the input tape
> rewind the input tape » reach the right endmarker
> simulate T, and accept



Hadamard relations

Proposition
two-way transducers are |closed under H-operations.

Proposition
HAD = rotating
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Hadamard relations

Proposition
two-way transducers are |closed under H-operations.

Proposition

Rat ¢ HAD = rotating € two-way

Example

uMurr = {(a",2") | k,ne N} = {(a",a") | n e N}"* = uIp"*
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Main result

Theorem (Elgot, Mezei - 1965)

1-way transducers |= the class of rational relations .
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Main result

Theorem ( This talk )
When ¥ = {a} and I = {a}:

2-way transducers |—| the class of HAD relations ;.

Theorem This talk
With T = {2, 4): With T = {a, b}:

HAD | & two-way HAD | & two-way
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Known results on 2-way transducers

» functional = deterministic = MSO definable functions

» general lincomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
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Known results on 2-way transducers

» functional = deterministic = MSO definable functions

» general lincomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]

» 1-way simulation of 2-way functional transducer:

decidable and constructible [Filiot et al. - 2013]
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Known results on 2-way transducers with unary output

When I = {a}:
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Known results on 2-way transducers with unary output

When I = {a}:
» [simulation of unambiguous by 1-way [Anselmo - 1990]

» [simulation of unambiguous by deterministic
[Carnino, Lombardy - 2014]

> tropical = 1-way [Carnino, Lombardy - 2014]

I>production function ®: § > {a"a* | neN}u g

rational of period 1 4—‘
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> ={a} and [ ={a}



From 2-way transducers to HAD (unary case) [1]

Theorem
When ¥ = {a} and I = {a}:

HAD = two-way transducers
Proof

» C: done.

» 2: to do.
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From 2-way transducers to HAD (unary case) [1]

Theorem
When ¥ = {a} and I = {a}:

HAD = two-way transducers

Proof

v
N

: done.
: to do.

v
1J

We fix a transducer T .
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From 2-way transducers to HAD (unary case) [2]

» Consider border to border run segments;

q4 ) (:—,::i:’:’:’;:;i) q3
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e e

—— R ={(u,n)}
—— R ={(u,n)}
—— Ry={(u,v)}
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From 2-way transducers to HAD (unary case) [2]

» Consider border to border run segments;

» Compose border to border segments;

q47 Jj,,

Q2

a3

—— R ={(u,n)}
—— R ={(u,n)}
—— Ry ={(u,n)}
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From 2-way transducers to HAD (unary case) [2]

» Consider border to border run segments;

» Compose border to border segments;

u <

q4 7 777:;:::’ .

;:i: — q2

[—e

e

I — %

—— R ={(u,n)}
—— R ={(u,n)}
—— Ry ={(u,n)}

Ri@R,@Rs; = {(u,vivav3)}

13 /27



From 2-way transducers to HAD (unary case) [3]

>
.- define a relation R
a1

b
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>
.- define a relation R
a1
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From 2-way transducers to HAD (unary case) [3]

21|V
l@j

)

) )

HIT =

) ) ) /

14 /27



From 2-way transducers to HAD (unary case) [4]

(HAD,U, @, n*) is a Conway semiring.
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From 2-way transducers to HAD (unary case) [4]

(HAD,U,@, 1) is a Conway semiring .

Look at the successive power of the matrix HIT: HITK

...that is, the compositions of k border to border runs. ..

15 /27



From 2-way transducers to HAD (unary case) [4]

(HAD,U,@, 1) is a Conway semiring .

Look at the star of the matrix HIT: HIT"*

...that is, the behavior of T.

Remark
The relation accepted by T is a union of entries of HIT"*
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From 2-way transducers to HAD (unary case) [4]

(HAD,U,@®, 1) is a Conway semiring .

Look at the star of the matrix HIT: HIT"*

...that is, the behavior of T.

Remark
The relation accepted by T is a union of entries of HIT"*

entries of HIT € HAD == entries of HIT"* € HAD

15 /27



From 2-way transducers to HAD (unary case) [5]

9@*5@*9@3@\%9/@
ololelofel@rroT®]
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alafer®
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From 2-way transducers to HAD (unary case) [5]

PO+ @i%,/@
ololelofel@rroT®]

P00
I ioli0

awn
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From 2-way transducers to HAD (unary case) [5]
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From 2-way transducers to HAD (unary case) [5]
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From 2-way transducers to HAD (unary case) [5]
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From 2-way transducers to HAD (unary case) [5]
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From 2-way transducers to HAD (unary case) [5]
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From 2-way transducers to HAD (unary case) [5]
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From 2-way transducers to HAD (unary case) [5]
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From 2-way transducers to HAD (unary case) [6]

(HAD,U,@®, 1) is a Conway semiring .

Look at the star of the matrix HIT: HITH*

...that is, the behavior of T.

Remark
The relation accepted by T is a union of entries of HIT"*

entries of HIT € HAD == entries of HIT"* € HAD
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...that is, the behavior of T.

Remark
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From 2-way transducers to HAD (unary case) [6]

(HAD,U,@®, 1) is a Conway semiring .

Look at the star of the matrix HIT: HITH*

...that is, the behavior of T.

Remark
The relation accepted by T is a union of entries of HIT"*

entries of HIT € HAD == entries of HIT"* € HAD

Proposition

unary 2-way transducers | = HAD

Proposition

with [ = {a} only, sweeping transducer =  HAD
17 /27



Generalizations?

Theorem
When ¥ = {a} and I = {a}:
2-way transducers accept exactly the HAD relations .

With only T = {a}:

sweeping transducer = HAD
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Generalizations?

Theorem
When > = {a} and I = {a}:
2-way transducers accept exactly the HAD relations .

2-way transducers = sweeping transducers
With only I = {a}: effective
sweeping transducer = HAD

Question
Generalization to arbitrary X7  to arbitrary ['?
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> ={a,#} and [ ={a}



On X ={a,#}, and I = {a}: counter example

R= {(u, ak") | k,neN, #a"# is a factor of u}
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On X ={a,#}, and I = {a}: counter example

R= {(u, ak") | k,neN, #a"# is a factor of u}

<

35 D B D DD D 5 D E
R P () S (U [ — A
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Sweeping weakens two-way transducers
Proposition

With > = {a,#} and T = {a},

HAD = sweeping ' & two-way
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Sweeping weakens two-way transducers

Proposition
With > = {a,#} and I = {a},

HAD = sweeping ' & two-way
Proof

» Establish a non trivial property satisfied by rational relations

... a property on the language of images
R(u)={v|(u,v)eR}e2"

» Extend it to Hadamard relations

» Prove that the previous relation does not satisfy the property

21/27



Revisiting the family Rat(a*)

the family Rat(a*) _ the rational subsets of N

by the canonical mapping a" — n
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Revisiting the family Rat(a*)
the family Rat(a*) is isomorphic to the rational subsets of N

by the canonical mapping a" —~ n

00 0 90 - -0 & -6 & -0 -0 0 -0 - & & -———-
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Revisiting the family Rat(a*)
the family Rat(a*) is isomorphic to the rational subsets of N

by the canonical mapping a" —~ n

A
/_/%
o0 o 00 -0 ¢ -0 ¢ -0 ¢ -0 ¢ o0 o -~
0 ! ~—~— +00
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Revisiting the family Rat(a*)
the family Rat(a*) is isomorphic to the rational subsets of N

by the canonical mapping a" —~ n

A + M + pN
WWWW———:
0 ! ~—~— +00

M p

[L:Au( +M+pN)j

where: peN, Ac[0,t] and Mc]O0,p[

» tis for L
» pis a period for L

22/27



Periods of images

Rc¥* xI*. The image of ue X" is:

R(u)={v|(u,v)eR}e2"
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Periods of images
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Theorem
R is rational |= 3 i, p such that Yu

> u is and of R(v).

> pis a period
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Periods of images
Rc¥* xI*. The image of ue X" is:

R(u)={v|(u,v)eR}e2"

Theorem
R is rational |= 3 i, p such that Yu

> u is and of R(v).
> pis a period

Theorem

R is HAD = 3k such that Yu, R(u) has a period pe O (|u|k)

23 /27



The counter example

Y ={#,a} and I = {a}

R = {(u,ak”) | k,neN, #a"# is a factor of u}

LR

//
//
//
CE ] T
start —— choose block rewind block accept
e
copy block
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The counter example

Y ={#,a} and I = {a}
R = {(u,ak”) | k,neN, #a"# is a factor of u}

u=ftamgta 4t a4
R(u)= U {ak”"} = U mN  has minimal period lcmo.;,(n;)
O<i<r O<i<r

=% ni+r+1
O<i<r
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The counter example

Y ={#,a} and I = {a}
R = {(u,ak”) | k,neN, #a"# is a factor of u}

u=ftamgta 4t a4
R(u)= U {ak”"} = U mN  has minimal period lcmo.;,(n;)
O<i<r O<i<r

=% ni+r+1
O<i<r

g(n)=max({lcm(n;) | X ni=n})  (Landau's function)

the period is super-polynomial in |u]

24 /27
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On X ={a} and I ={a, b}
Proposition
HAD . two-way

Example R={(a",a"bP) | neN,0< p<n}
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On X ={a} and I ={a, b}
Proposition
HAD . two-way

Example R={(a",a"bP) | neN,0< p<n}

I/I T — Tt
B oooooNEEEEEEEN
 — —— i .

26 /27



On X ={a} and I ={a, b}
Proposition
HAD . two-way

Example R={(a",a"bP) | neN,0< p<n}

I T B

 ES— —— — —  S——(———
ooohoooooNERREEREER
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Conclusion

transducer one-way rotating sweeping two-way

general MHAD

input unary M

Rar 1
output unary HaD

input and
ouptut unary
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general MHAD

input unary M

Rar 1
output unary HaD

input and
ouptut unary

everything is effective. ..



Conclusion

Deterministic (= functional) case

transducer one-way rotating sweeping two-way
general M
input unary
output unary
RAT i

input and
ouptut unary




Conclusion

transducer one-way rotating sweeping two-way

general MHAD

input unary M

Rar 1
output unary HaD

input and
ouptut unary




Conclusion

transducer one-way rotating sweeping two-way

general MHAD

input unary M

Rar 1
output unary HaD

input and
ouptut unary

Thank you for your attention.



Conclusion

transducer one-way rotating sweeping two-way

general MHAD

input unary M

Rar 1
output unary HaD

input and
ouptut unary

Thank you for your attention.



Appendix 1

On the optimality of:

Theorem
R is HAD = 3k such that Yu, R(u) has a period p e O (|u|k>



Example of Hadamard relation with polynomial period
Y ={#,a} and I = {a}
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Example of Hadamard relation with polynomial period
Y ={#,a} and I = {a}

Ry = {(#a" #a"2# 4tk #,a") | ne N}

>

e le fe e el [l e [ fefe e[ fe ] [e]s ]
) A

LT T I
copy block ———— reach «

S \

start —— choose index — find block +—— rewind

accept and halt with nondeterminism



Example of Hadamard relation with polynomial period
Y ={#,a} and I = {a}

Ry = {(#a" #a"2# 4tk #,a") | ne N}

>

<

T EEEEE LR
——————]— A

T T T T T T T T T 7 T T T T s
|‘ 2 | 2 | 2 | ? | 2 H’l ? | ? | ? | ? | ? ‘| 2 | ? | 2 | 2 | 2 | | | | |
1 1 1 1 1 1 1 1 1 1 1 1 A .

u = #aaa#aaaaa#aaaaaaa# |u| =20

the period of R(u) is lcm(3,5,7) = 105



Example of Hadamard relation with polynomial period
Y ={#,a} and I = {a}

Ry = {(#a" #a"2# 4tk #,a") | ne N}

<

T EEEEE LR
——————]— A

the period of R(u) isin O (|ul")



Appendix 2

On central loops when ¥ = {a} and I = {a}
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Center loops when ¥ ={a} and I = {a}

We fix g € Q.
» Consider the sybset of N:

Ly ={l¢(r)| | ris a g-central loop over some input u}

» It is a submonoid of 2"

» = it is finitely generated: {g1,...,8n}

» each generator g; is produced by a g-central loop r;
» each rj needs a finite space bounded by N

» if a position is at distance > N of both endmarkers,
then each r; may occur

» and thus the language L° can be produced on the output tape
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