Characterization of relations accepted by two-way transducers

Bruno Guillon^{1,2}

 $^{1}\mathrm{IRIF}$ - Université Paris-Diderot, Paris 7 $^{2}\mathrm{Dipartimento}$ di Informatica - Università degli studi di Milano

February 12. 2016 Séminaire Automate 1-way automaton over $\boldsymbol{\Sigma}$

2-way automaton over $\boldsymbol{\Sigma}$

2-way transducer over Σ , Γ

copy the input word

- copy the input word
- rewind the input tape

- copy the input word
- rewind the input tape
- append a copy of the input word

- copy the input word
- rewind the input tape
- append a copy of the input word

- copy the input word
- rewind the input tape
- append a copy of the input word

Rational operations

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

Kleene star

$$R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Rational operations

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

Kleene star

$$R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Definition $(Rat(\Sigma^* \times \Gamma^*))$

The class of rational relations is the smallest class:

- contains finite relations
- closed under rational operations

Rational operations

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

Kleene star

$$R^* = \{ (u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i (u_i, v_i) \in R \}$$

Definition $(Rat(\Sigma^* \times \Gamma^*))$

The class of rational relations is the smallest class:

- contains finite relations
- closed under rational operations

Theorem (Elgot, Mezei - 1965) 1-way transducers = the class of rational relations.

Union

$$R_1 \cup R_2$$

H-product

 $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

Union

$$R_1 \cup R_2$$

H-product

 $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

Example: Square = { $(w, ww) | w \in \Sigma^*$ } = ID \oplus ID

- copy the input word
- rewind the input tape
- append a copy of the input word

- Union
- H-product

 $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

H-star

$$\mathbf{R}^{\mathsf{H}\star} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i \ (u, v_i) \in \mathbf{R}\}$$

 $R_1 \cup R_2$

- Union
- H-product

 $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

H-star

$$\mathbf{R}^{\mathsf{H}^{\star}} = \{ (u, v_1 v_2 \cdots v_k) \mid \forall i \ (u, v_i) \in \mathbf{R} \}$$

Example: UMULT =
$$\{(a^n, a^{kn}) | k, n \in \mathbb{N}\} = UID^{H*}$$

 $R_1 \cup R_2$

- Union
- H-product

 $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

H-star

$$R^{\mathsf{H}^{\star}} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i \ (u, v_i) \in R\}$$

Definition $(HAD(\Sigma^* \times \Gamma^*))$

The class of Hadamard relations is the smallest class:

- contains rational relations
- closed under Hadamard operations

 $R_1 \cup R_2$

Proposition two-way transducers are closed under H-operations.

Proposition two-way transducers are closed under H-operations.

Proof

- $R_1 \cup R_2$:
 - simulate T_1 or T_2

Proposition two-way transducers are closed under H-operations.

Proof

- $R_1 \cup R_2$:
 - simulate T_1 or T_2
- ► *R*₁⊕*R*₂:
 - simulate T₁
 - rewind the input tape
 - simulate T₂

Proposition two-way transducers are closed under H-operations.

Proof

- $R_1 \cup R_2$:
 - simulate T_1 or T_2
- ► *R*₁⊕*R*₂:
 - simulate T₁
 - rewind the input tape
 - simulate T₂

► **R**^{H★}:

- repeat an arbitrary number of times:
 - simulate T
 - rewind the input tape
- reach the right endmarker and accept

Example

$$\mathrm{UMULT} = \left\{ \left(a^{n}, a^{kn}\right) \mid k, n \in \mathbb{N} \right\} = \left\{ \left(a^{n}, a^{n}\right) \mid n \in \mathbb{N} \right\}^{\mathsf{H}^{\star}} = \mathrm{UID}^{\mathsf{H}^{\star}}$$

Main result

Theorem (Elgot, Mezei - 1965)

Main result

Theorem (This talk)
When
$$\Sigma = \{a\}$$
 and $\Gamma = \{a\}$:
2-way transducers the class of HAD relations;

Main result

Theorem (This talk)
When
$$\Sigma = \{a\}$$
 and $\Gamma = \{a\}$:
2-way transducers = the class of HAD relations;

Theorem This talk
With
$$\Sigma = \{a, \#\}$$
:
HAD \subsetneq two-way

With
$$\Gamma = \{a, b\}$$
:
HAD (\subsetneq) two-way
Known results on 2-way transducers

functional = deterministic = MSO definable functions
general incomparable MSO definable relations

[Engelfriet, Hoogeboom - 2001]

Known results on 2-way transducers

- functional = deterministic = MSO definable functions
- general incomparable MSO definable relations
 - [Engelfriet, Hoogeboom 2001]

 1-way simulation of 2-way functional transducer: decidable and constructible [Filiot et al. - 2013]

Known results on 2-way transducers with unary output

When $\Gamma = \{a\}$:

Known results on 2-way transducers with unary output

When $\Gamma = \{a\}$:

Known results on 2-way transducers with unary output

When $\Gamma = \{a\}$:

$\Sigma = \{a\}$ and $\Gamma = \{a\}$

Theorem When
$$\Sigma = \{a\}$$
 and $\Gamma = \{a\}$:

Proof

- ⊆: done.
- ▶ ⊇: to do.

Theorem
When
$$\Sigma = \{a\}$$
 and $\Gamma = \{a\}$:

Proof

- ► ⊆: done.
- ▶ ⊇: to do.

We fix a transducer \mathcal{T} .

Consider border to border run segments;

Consider border to border run segments;

- Consider border to border run segments;
- Compose border to border segments;

- Consider border to border run segments;
- Compose border to border segments;

 $R_1 \oplus R_2 \oplus R_3 = \{(u, v_1 v_2 v_3)\}$

define a relation R_{b_i} , b_j

 (HAD, \cup, \oplus, H^*) is a Conway semiring.

$$(HAD, \cup, \oplus, H^*)$$
 is a Conway semiring.

Look at the successive power of the matrix HIT: HIT^k

 \ldots that is, the compositions of k border to border runs \ldots

 $(HAD, \cup, \bigoplus, H^*)$ is a **Conway semiring**.

Look at the star of the matrix HIT: HIT^{H*}

 \ldots that is, the behavior of \mathcal{T} .

Remark

The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{H^{\star}}$.

 $(HAD, \cup, \bigoplus, H \star)$ is a Conway semiring.

Look at the star of the matrix HIT: HIT^{H^*}

 \ldots that is, the behavior of \mathcal{T} .

Remark

The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{H^{\star}}$.

entries of HIT \in HAD \implies entries of HIT^{+*} \in HAD

$$(HAD, \cup, \bigoplus, H^*)$$
 is a Conway semiring.

Look at the star of the matrix HIT: HIT^{H*}

 \ldots that is, the behavior of \mathcal{T} .

Remark

The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{H^{\star}}$.

$$(HAD, \cup, \oplus, H^*)$$
 is a Conway semiring.

Look at the star of the matrix HIT: HIT^{H*}

 \ldots that is, the behavior of \mathcal{T} .

Remark

The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{H^{\star}}$.

entries of HIT \in HAD \implies entries of HIT^{H*} \in HAD

Proposition unary 2-way transducers ⊆ HAD

$$(HAD, \cup, \oplus, H^*)$$
 is a Conway semiring.

Look at the star of the matrix HIT: HIT^{H*}

 \ldots that is, the behavior of \mathcal{T} .

Remark

The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{H^{\star}}$.

Proposition *unary 2-way transducers* \subseteq HAD Proposition *with* $\Gamma = \{a\}$ *only, sweeping transducer* \subseteq HAD

$$(HAD, \cup, \oplus, H^*)$$
 is a Conway semiring.

Look at the star of the matrix HIT: HIT^{H*}

 \ldots that is, the behavior of \mathcal{T} .

Remark

The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{H^{\star}}$.

Proposition unary 2-way transducers = HAD Proposition with $\Gamma = \{a\}$ only, sweeping transducer = HAD
Theorem When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers accept exactly the HAD relations.

With only $\Gamma = \{a\}$:

Theorem When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers accept exactly the HAD relations. 2-way transducers = sweeping transducers With only $\Gamma = \{a\}$: sweeping transducer = HAD

Theorem When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers accept exactly the HAD relations. 2-way transducers = sweeping transducers With only $\Gamma = \{a\}$: sweeping transducer = HAD

Question

Generalization to arbitrary Σ ?

Theorem When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers accept exactly the HAD relations. 2-way transducers = sweeping transducers With only $\Gamma = \{a\}$: sweeping transducer = HAD

Question

Generalization to arbitrary Σ ? to arbitrary Γ ?

$\Sigma = \{a, \#\}$ and $\Gamma = \{a\}$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u\}$$

Proposition With $\Sigma = \{a, \#\}$ and $\Gamma = \{a\}$, HAD = sweeping \subsetneq two-way

Proof

• Establish a non trivial property satisfied by rational relations

Proof

Establish a non trivial property satisfied by rational relations
 ... a property on the language of images

 $R(u) = \{v \mid (u, v) \in R\} \in 2^{\Gamma^*}$

Proposition With $\Sigma = \{a, \#\}$ and $\Gamma = \{a\}$, HAD = sweeping \subsetneq two-way

Proof

Establish a non trivial property satisfied by rational relations
 ... a property on the language of images

 $R(u) = \{v \mid (u, v) \in R\} \in 2^{\Gamma^*}$

Extend it to Hadamard relations

Proposition With $\Sigma = \{a, \#\}$ and $\Gamma = \{a\}$, HAD = sweeping \subsetneq two-way

Proof

- ► Establish a non trivial property satisfied by rational relations
 ... a property on the language of images
 R(u) = {v | (u, v) ∈ R} ∈ 2^{Γ*}
- Extend it to Hadamard relations
- Prove that the previous relation does not satisfy the property

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

by the canonical mapping $a^n \mapsto n$

$$L = A \cup \left(t + M + p \mathbb{N} \right)$$

where: $t, p \in \mathbb{N}$, $A \subseteq [0, t]$ and $M \subseteq [0, p]$

- t is a threshold for L p is a period for L

Periods of images

 $R \subseteq \Sigma^* \times \Gamma^*$. The image of $u \in \Sigma^*$ is:

$$R(u) = \{v \mid (u, v) \in R\} \in 2^{\Gamma^*}$$

Periods of images

 $R \subseteq \Sigma^* \times \Gamma^*$. The image of $u \in \Sigma^*$ is:

 $R(u) = \{v \mid (u, v) \in R\} \in 2^{\Gamma^*}$

Theorem $R \text{ is rational} \Rightarrow \exists t, p \text{ such that } \forall u$

• t(|u|+1) is a threshold and

of R(u).

p is a period

Periods of images

 $R \subseteq \Sigma^* \times \Gamma^*$. The image of $u \in \Sigma^*$ is:

 $R(u) = \{v \mid (u, v) \in R\} \in 2^{\Gamma^*}$

Theorem *R* is rational $\Rightarrow \exists t, p \text{ such that } \forall u$

- t(|u|+1) is a threshold and of R(u).
- p is a period

Theorem $R \text{ is } HAD \implies \exists k \text{ such that } \forall u, R(u) \text{ has a period } p \in \mathcal{O}(|u|^k).$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u\}$$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u\}$$

 $u = \#a^{n_1} \#a^{n_2} \# \cdots \# a^{n_r} \#$

 $R(u) = \bigcup_{0 < i \le r} \left\{ a^{kn_i} \right\} = \bigcup_{0 < i \le r} n_i \mathbb{N} \quad \text{has minimal period } \operatorname{lcm}_{0 < i \le r}(n_i)$ $|u| = \sum_{0 < i \le r} n_i + r + 1$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u\}$$

 $u = \#a^{n_1} \#a^{n_2} \# \cdots \# a^{n_r} \#$

 $R(u) = \bigcup_{0 < i \le r} \left\{ a^{kn_i} \right\} = \bigcup_{0 < i \le r} n_i \mathbb{N} \quad \text{has minimal period } \operatorname{lcm}_{0 < i \le r}(n_i)$ $|u| = \sum_{0 < i \le r} n_i + r + 1$

 $g(n) = \max(\{\operatorname{lcm}(n_i) \mid \sum n_i = n\})$ (Landau's function)

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u\}$$

 $u = \#a^{n_1} \#a^{n_2} \# \cdots \# a^{n_r} \#$

 $R(u) = \bigcup_{0 < i \le r} \left\{ a^{kn_i} \right\} = \bigcup_{0 < i \le r} n_i \mathbb{N} \quad \text{has minimal period } \operatorname{lcm}_{0 < i \le r}(n_i)$ $|u| = \sum_{0 < i \le r} n_i + r + 1$

 $g(n) = \max\left(\{\operatorname{lcm}(n_i) \mid \sum n_i = n\}\right) \qquad \text{(Landau's function)}$

the period is super-polynomial in |u|

transducer	one-way	rotating	sweeping	two-way
general			MHAD	
input unary	Ват	HAD		MHAD
output unary	10111			
input and ouptut unary				

everything is effective...

Deterministic (= functional) case

transducer	one-way	rotating	sweeping	two-way	
general			MHAD	MARAD	
input unary			Had		
output unary	Ват				
input and ouptut unary		10.			

transducer	one-way	rotating	sweeping	two-way
general			MHAD	
input unary	Ват	HAD		MHAD
output unary	10111			
input and ouptut unary				

Thank you for your attention.

Thank you for your attention.

Appendix 1

On the optimality of:

Theorem $R \text{ is } \operatorname{Had} \implies \exists k \text{ such that } \forall u, R(u) \text{ has a period } p \in \mathcal{O}(|u|^k).$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

u = #aaa#aaaaa#aaaaaa # |u| = 20

the period of R(u) is lcm(3,5,7) = 105

$$R_{r} = \left\{ \left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i}n} \right) \mid n \in \mathbb{N} \right\}$$

the period of R(u) is in $\mathcal{O}(|u|^r)$

Appendix 2

On central loops when $\Sigma = \{a\}$ and $\Gamma = \{a\}$

We fix $q \in Q$.

Consider the language:

We fix $q \in Q$.

► Consider the subset of N:

We fix $q \in Q$.

► Consider the subset of N:

 $L_q^{\infty} = \{ |\phi(\mathbf{r})| \mid \mathbf{r} \text{ is a } q \text{-central loop over some input } u \}$

• It is a submonoid of $2^{\mathbb{N}}$

We fix $q \in Q$.

► Consider the subset of N:

- It is a submonoid of $2^{\mathbb{N}}$
- \Rightarrow it is finitely generated: $\{g_1, \ldots, g_n\}$

We fix $q \in Q$.

► Consider the subset of N:

- It is a submonoid of $2^{\mathbb{N}}$
- \Rightarrow it is finitely generated: $\{g_1, \ldots, g_n\}$
- each generator g_i is produced by a q-central loop $\mathbf{r_i}$

We fix $q \in Q$.

► Consider the subset of N:

- It is a submonoid of $2^{\mathbb{N}}$
- \Rightarrow it is finitely generated: $\{g_1, \ldots, g_n\}$
- each generator g_i is produced by a q-central loop $\mathbf{r_i}$
- each r_i needs a finite space

We fix $q \in Q$.

► Consider the subset of N:

- It is a submonoid of $2^{\mathbb{N}}$
- \Rightarrow it is finitely generated: $\{g_1, \ldots, g_n\}$
- each generator g_i is produced by a q-central loop $\mathbf{r_i}$
- each r_i needs a finite space bounded by N

We fix $q \in Q$.

► Consider the subset of N:

- It is a submonoid of 2[№]
- \Rightarrow it is finitely generated: $\{g_1, \ldots, g_n\}$
- each generator g_i is produced by a q-central loop $\mathbf{r_i}$
- each r_i needs a finite space bounded by N
- if a position is at distance > N of both endmarkers, then each r_i may occur

We fix $q \in Q$.

► Consider the subset of N:

- It is a submonoid of $2^{\mathbb{N}}$
- \Rightarrow it is finitely generated: $\{g_1, \ldots, g_n\}$
- each generator g_i is produced by a q-central loop $\mathbf{r_i}$
- each r_i needs a finite space bounded by N
- if a position is at distance > N of both endmarkers, then each r_i may occur
- and thus the language L_q^{∞} can be produced on the output tape