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Computation
A computation is a sequence of successive elementary operations.

gix - X2+ x f:x—bx-3

Compute f(x)

with + and x with + only
— start with x — start with x
) 1. add x
1. multiply by 5 2. add x
2. add -3 4 3dd X
5. add -3
Compute g(x)
— start with x — start with x
1. multiply by x » Impossible

2. add x
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Turing machines

[OJOTTTOTOTITI[OII]I] T T ]

Complex dynamics

» undecidability of the halting problem

internal state: @

» contribution of nondeterminism
? ?
Huge computational power eg, P=NP and L=NL
» infinite memory

» universal

1|17(_ O|]_,—>

©
1]0,— 1]1,«
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Finite automata

Definition
A finite automata (FA) is a one-way read-only Turing machine.
FAS are recognizers.

Example b

a a

b %/_\
b a b

accepts the language {a,b}" -a-a-b-{a,b}"

Theorem (Kleene)
finite automata = rational languages

The smallest family including finite languages
closed under union, concatenation and Kleene star.
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Definition (20NFA)

An 2-way automaton is outer-nondeterministic
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Outer-nondeterministic finite automata

Definition (20NFA)

An 2-way automaton is outer-nondeterministic
if nondeterministic choices are restricted to the endmarkers only.

> a b a b b a c <
Ot
i —
/>
Proposition

With a linear increase of the number of states,
nondeterministic choices are restricted to the left endmarker only.

Definition
A segment is a computational path between two successive visits

of the left endmarker.
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Key point

Given ¢_ and qg;:

> a b a b b a c <
@—
Is there a segment?
T
Proposition

Answer with a 2DFA of linear size.

Proof.

Adapt a Sipser’s construction to avoid deterministic central loops.
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\_/

sub-exponential

Theorem

» Sub-exponential simulation of 20NFA by 2DFA O(n'°82 (M+7),

» polynomial if L = NL.

Further results

» Simulation by unambiguous 20NFA of polynomial size.
» Simulation by a halting 20NFA of polynomial size.
» Complementation by a halting 20NFA of polynomial size.
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Automata with output: 1-way transducers
> A*

N

alw

OO

input tape | | | | | | | | | | | |
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Automata with output: 1-way transducers

Y A*
\ Example
a | = replace a by b
s replace b by a
= ignore other letters
input tape | a [ o[ [afclafa]afn] 5]

output tape ‘ b
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Equivalent formalisms

» Relations on words:
Rc Yy xA*
Transducers
» A function from words into languages:
T 2A*

fr u ~ {v]|(u,v)eR}

» A formal power series:
o= Y (o,u)u with (o, u) = fr(u)

uexr*

Weighted Automata
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Rational operations

» Union

R1UR2

» Componentwise concatenation
Rl . R2 = {(U1U2, V1V2) | (Ul, V1) € Rl and (U2, V2) € R2}

» Kleene star

R* — {(U1U2"'Uk,V1V2"’Vk) | Vi (LI,'7V,') € R}

lelofefa]-]

e

~~

olo1-]

or

~§§§§--“‘~s
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» Kleene star
R* = {(uupupg,vivo--vi) | Vi (uj,vi) € R}
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T
T
\
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Rational operations

» Union RiUR,
» Componentwise concatenation
Ri- Ry ={(u1uz,vava) | (u1,vi) € Ry and (up, v2) € Ry}
» Kleene star
R* = {(uupupg,vivo--vi) | Vi (uj,vi) € R}
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Rational operations

» Union RiUR,
» Componentwise concatenation
Ri- R ={(uiuz,viva) | (u1,vi) € Ry and (up, v2) € Ra}
» Kleene star
R* = {(unua--ug,vavo---vi) | Vi (uj,vi) € R}

Definition (RAT (X* x A*))
The family of Rational relations is the smallest family:
» including finite relations

» closed under Rational operations
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Theorem (Elgot, Mezei - 1965)
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What about two-way transducers?

Theorem (Elgot, Mezei - 1965)

2-way transducers '— 77

Machine

Algebra

one-way

two-way

R
LML
[

il
M

"
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What about two-way transducers?

Theorem (Elgot, Mezei - 1965)
2-way transducers '— 77

Machine one-way two-way

R
LML

Algebra [ RAT ] [ 77 ]

Most of the known results on 2-way transducers
concern the functional (=deterministic) case. . .
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» copy the input word
» rewind the input tape

» append a copy of the input word
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Another example: POWERS = {(w,w*) | w € ¥}

a b a cHa b a c|a b a c

copy the input word ——— rewind the input tape

‘\?/

accept and halt with nondeterminism

14 /26
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Hadamard operations

» Union RiURy
» H-product Ri@Ry={(u,vava) | (u,v1) € Ry and (u,v2) € R}
» H-star R = {(u,viva---vi) | Vi (u,v;) e R}
> repeat
» simulate 7 example:
» rewind the input tape » POWERS = ID"*

» or accept nondeterministically
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Hadamard operations

» Union RiURy
» H-product Ri@Ry={(u,vava) | (u,v1) € Ry and (u,v2) € R}
» H-star RA* = {(u,viva--vk) | Vi (u,v;) € R}

Definition (HAD (X* x A*))
The family of Hadamard relations is the smallest family:
» including rational relations

» closed under Hadamard operations
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What about two-way transducers?

Theorem
1-way transducers = RAT.

one-way two-way

LML

ex: 2-PREF
RAT | —
R
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What about rotating transducers?

Theorem
1-way transducers
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[Rotating transd ucersj
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What about rotating transducers?

Theorem
rotating transducers = HAD.

one-way rotating two-way

ex: 2-PREF
—
a" — {aPbP, p < n}
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Right to left scan of the input

» Mirror operation: |>|S|A|T|O|R|<]|

R={(@v)| (u.v) €R) /py
Example — TTTeeeal .
Ip = {w,w}

[R[O[T[A[S] ]
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Right to left scan of the input

[>[S[A[T]O]R]<]

» Mirror operation:

R={(@v)| (u.v) €R) /py
Example — TTTeeeal .
Ip = {w,w}

[R[O[T[A[S] ]

Definition (MHAD (X* x A*))
The family of Mirror-Hadamard relations is the smallest family:
» including rational relations

» closed under Hadamard operations and mirror
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What about sweeping transducers?

Theorem
sweeping transducers = MHAD.

one-way rotating sweeping | two-way

[ RAT ] [ HAD ] [MHAD] [MHAD??]
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What about sweeping transducers?

Theorem
sweeping transducers = MHAD.
one-way rotating sweeping | two-way

[T

[MHAD] [@}@]

ex: 2-PREF a" — {aPbP, p<n}



What about sweeping transducers?

Theorem
sweeping transducers = MHAD.
transducer one-way rotating sweeping two-way
a,-1|b T : T ::::::: “‘(z"(::)
o O IR s ud iR EE==cSad i i =u0 ]
RAT HAap &
input unary
I

ex: 2-PREF a" — {aPbP, p < n}
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Unary transducers

We focus on a weaker problem:

> ={a} and A={a}
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Examples
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Unary transducers

We focus on a weaker problem:

> ={a} and A={a}

Examples
» UlD={(a",a") | ne N} € RAT
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Characterization of unary two-way transductions
Theorem
2-way unary transducers = HAD
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Characterization of unary two-way transductions

Theorem
2-way unary transducers = HAD

Corollary

2-way unary transducers |—> rotating transducers .

Example UPOWERS = {(a”, ak"y | k,ne N}
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Key points of the proof

» commutative output
» deal with nondeterministic central loops (X = {a} and A = {a}).
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The output-unary case arbitrary ¥ and A ={a}
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The output-unary case arbitrary ¥ and A ={a}
Proposition
Hap = MHAD
transducer one-way rotating sweeping two-way
a-1|b T =
O O T
)
general
input unary
RAT [T
output unary
input and iR
ouptut unary L

23 /26



The output-unary case arbitrary ¥ and A ={a}

Proposition € RAT
H*
HAD = MHAD = U R@S
finite
transducer one-way rotating sweeping two-way
a,-1|b ] j’,\, —
o O T
)
general
input unary
RAT [T
output unary
input and iR
ouptut unary q

23 /26



The output-unary case arbitrary ¥ and A ={a}
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An non-Hadamard output-unary transduction
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Two-way transducers VERSUS Algebra
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Conclusion

Descriptional complexity

polynomial if L = NL
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