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Computation
A computation is a sequence of successive elementary operations.

g ∶ x ↦ x2 + x f ∶ x ↦ 5x − 3

Compute f (x)
with + and ×
— start with x
1. multiply by 5
2. add −3

with + only
— start with x
1. add x
2. add x
3. add x
4. add x
5. add −3

Compute g(x)
— start with x
1. multiply by x
2. add x

— start with x
▸ Impossible
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Turing machines

internal state:

0 0 1 1 0 1 1 10 0 1

A

writeread

0 1 1

B

0 1 1

A

0 1 1

A

0 1 1

A

0 0 1

C

0 0 1

C

nondeterministic choice: or
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Finite automata

Definition
A finite automata (fa) is a one-way read-only Turing machine.

A B

a ∣ b , ←a
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b

accepts the language {a,b}∗ ⋅ a ⋅ a ⋅ b ⋅ {a,b}∗
Theorem (Kleene)
finite automata == rational languages

The smallest family including finite languages
closed under union, concatenation and Kleene star.
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Two-wayness and nondeterminism
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nondeterminism

▸ the optimal cost of the simulation of 1nfa by 2dfa?
▸ the optimal cost of the simulation of 2nfa by 2dfa?
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The two main questions (Sakoda & Sipser 1978)

▸ the optimal cost of the simulation of 1nfa by 2dfa?
▸ the optimal cost of the simulation of 2nfa by 2dfa?
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The two main questions (Sakoda & Sipser 1978)

▸ the optimal cost of the simulation of 1nfa by 2dfa?
▸ the optimal cost of the simulation of 2nfa by 2dfa?
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The two main questions (Sakoda & Sipser 1978)
▸ the optimal cost of the simulation of 1nfa by 2dfa?

▸ the optimal cost of the simulation of 2nfa by 2dfa?
5 / 26



Outer-nondeterministic finite automata
Definition (2onfa)
An 2-way automaton is outer-nondeterministic
if nondeterministic choices are restricted to the endmarkers only.

▷ a b a b b a c ◁

q−
q+
q×

q−
q⋆

q○
q−

q+
q×

q−q⋆
q−

q+
Is there a segment?

Proposition
With a linear increase of the number of states,
nondeterministic choices are restricted to the left endmarker only.
Definition
A segment is a computational path between two successive visits
of the left endmarker.
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Key point

Given q− and q+:

▷ a b a b b a c ◁

q−
q+
q×

q−
q⋆

q○
q−

q+
q×

q−q⋆
q−

q+
Is there a segment?

Proposition
Answer with a 2dfa of linear size.

Proof.
Adapt a Sipser’s construction to avoid deterministic central loops.
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2dfa 2nfa2onfa

??

sub-exponential

polynomial if L = NLpolynomial if L = NL

Theorem

▸ Sub-exponential simulation of 2onfa by 2dfa O(nlog2 (n)+7).

▸ polynomial if L = NL.

Further results

▸ Simulation by unambiguous 2onfa of polynomial size.
▸ Simulation by a halting 2onfa of polynomial size.
▸ Complementation by a halting 2onfa of polynomial size.
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Automata with output: 1-way transducers

− +
a ∣ w

Σ ∆∗

Example

u v
•replace a by b
•replace b by a
•ignore other letters

input tape

output tape
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Automata with output: 1-way transducers

− +
a ∣ w

Σ ∆∗

Example

u v
•replace a by b
•replace b by a
•ignore other letters

a b r a c a d a b r a

b a b b b a b

input tape

output tape
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Equivalent formalisms

▸ Relations on words:
R ⊆ Σ∗ ×∆∗

Transducers
▸ A function from words into languages:

fR ∶ Σ∗ → 2∆∗
u ↦ {v ∣ (u, v) ∈ R}

▸ A formal power series:
σ = ∑

u∈Σ∗ ⟨σ,u⟩u with ⟨σ,u⟩ = fR(u)

Weighted Automata
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Rational operations

▸ Union R1 ∪ R2
▸ Componentwise concatenation

R1 ⋅ R2 = {(u1u2, v1v2) ∣ (u1, v1) ∈ R1 and (u2, v2) ∈ R2}
▸ Kleene star

R∗ = {(u1u2⋯uk , v1v2⋯vk) ∣ ∀i (ui , vi) ∈ R}
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Rational operations
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g o o d –

o o –

j o b

j j j o o o b b b
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Rational operations

▸ Union R1 ∪ R2
▸ Componentwise concatenation

R1 ⋅ R2 = {(u1u2, v1v2) ∣ (u1, v1) ∈ R1 and (u2, v2) ∈ R2}
▸ Kleene star

R∗ = {(u1u2⋯uk , v1v2⋯vk) ∣ ∀i (ui , vi) ∈ R}
Definition (Rat (Σ∗ ×∆∗))
The family of Rational relations is the smallest family:

▸ including finite relations
▸ closed under Rational operations
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One-way is rational

Theorem (Elgot, Mezei - 1965)
1-way transducers == Rat .2-way transducers ??

one-wayMachine

Algebra Rat

Most of the known results on 2-way transducers
concern the functional (==deterministic) case. . .
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What about two-way transducers?
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A simple example: Square = {(w , ww) ∣ w ∈ Σ∗}

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▷ a b a c c a b ◁

a b a c c a b a b a c c a b

▸ copy the input word
▸ rewind the input tape
▸ append a copy of the input word
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Another example: Powers = {(w , w∗) ∣ w ∈ Σ∗}
▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

▷ a b a c ◁

a b a c a b a c a b a c

copy the input word rewind the input tape

accept and halt with nondeterminism
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A last one: 2-Pref = {(an, apbp) ∣ p ≤ n}

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p

▷ a a a a a a a a a a a a a a ◁

a a a a b b b b

p

p
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Hadamard operations

▸ Union R1 ∪ R2

▸ H-product R1 H R2 = {(u, v1v2) ∣ (u, v1) ∈ R1 and (u, v2) ∈ R2}
▸ H-star RH⋆ = {(u, v1v2⋯vk) ∣ ∀i (u, vi) ∈ R}
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▸ H-product R1 H R2 = {(u, v1v2) ∣ (u, v1) ∈ R1 and (u, v2) ∈ R2}

▸ H-star RH⋆ = {(u, v1v2⋯vk) ∣ ∀i (u, vi) ∈ R}

▸ simulate T1
▸ rewind the input tape
▸ simulate T2

example:
▸ Square = Id H Id

16 / 26



Hadamard operations

▸ Union R1 ∪ R2

▸ H-product R1 H R2 = {(u, v1v2) ∣ (u, v1) ∈ R1 and (u, v2) ∈ R2}
▸ H-star RH⋆ = {(u, v1v2⋯vk) ∣ ∀i (u, vi) ∈ R}

16 / 26



Hadamard operations

▸ Union R1 ∪ R2

▸ H-product R1 H R2 = {(u, v1v2) ∣ (u, v1) ∈ R1 and (u, v2) ∈ R2}
▸ H-star RH⋆ = {(u, v1v2⋯vk) ∣ ∀i (u, vi) ∈ R}

▸ repeat
▸ simulate T
▸ rewind the input tape

▸ or accept nondeterministically

example:
▸ Powers = IdH⋆
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Hadamard operations

▸ Union R1 ∪ R2

▸ H-product R1 H R2 = {(u, v1v2) ∣ (u, v1) ∈ R1 and (u, v2) ∈ R2}
▸ H-star RH⋆ = {(u, v1v2⋯vk) ∣ ∀i (u, vi) ∈ R}

Definition (Had (Σ∗ ×∆∗))
The family of Hadamard relations is the smallest family:

▸ including rational relations
▸ closed under Hadamard operations
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What about two-way transducers?

Theorem
1-way transducers == Rat .

one-way two-way

Rat Had?? ex: 2-Pref
an ↦ {apbp, p ≤ n}
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What about rotating transducers?

Theorem
1-way transducers == Rat .

Rotating transducers
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▸ Mirror operation:
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The family of Mirror-Hadamard relations is the smallest family:

▸ including rational relations
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Characterization of unary two-way transductions

Theorem
2-way unary transducers == Had

Corollary
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The output-unary case arbitrary Σ and ∆ = {a}
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Conclusion
Descriptional complexity

2dfa 2nfa2onfa

??

sub-exponential
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▸ Alternating 2onfa
▸ Other restrictions on
nondeterminism of 2nfa

▸ Uniformization
▸ Composition R1 ○R2
▸ Transitive closure

▸ Extend to series
▸ Describe the mirror
▸ Cost of simulations

Thanks for your attention
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output unary

input and
ouptut unary

− +
a,−1 ∣ b

Rat
Had

MHad

MHad
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▸ Alternating 2onfa
▸ Other restrictions on
nondeterminism of 2nfa

▸ Uniformization
▸ Composition R1 ○R2
▸ Transitive closure

▸ Extend to series
▸ Describe the mirror
▸ Cost of simulations
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