Two-wayness: Automata & Transducers

Bruno Guillon

IRIF — Université Paris-Diderot, Paris 7
Dipartimento di Informatica — Universita degli studi di Milano

May 30, 2016
PhD defense

26

Introduction
Computation
Turing machines
Finite automata

Descriptional complexity of finite automata
Main questions and known results
Outer-nondeterministic finite automata
Determinization of outer-nondeterministic finite automata

Transducers
One-way transducers
Two-way transducers
Hadamard operations
Mirror operation
Unary transducers

Conclusion

2

26

Computation
A computation is a sequence of successive elementary operations.

2/26

Computation
A computation is a sequence of successive elementary operations.

f:x—5x-3

2/26

Computation
A computation is a sequence of successive elementary operations.

f:x—5x-3

Compute f(x)
with + and x

— start with x

2/26

Computation
A computation is a sequence of successive elementary operations.

f:x—5x-3

Compute f(x)
with + and x

— start with x

1. multiply by 5

2/26

Computation
A computation is a sequence of successive elementary operations.

f:x—5x-3

Compute f(x)
with + and x

— start with x
1. multiply by 5
2. add -3

2/26

Computation
A computation is a sequence of successive elementary operations.

f:x—5x-3

Compute f(x)
with + and x with + only

— start with x — start with x
1. multiply by 5
2. add -3

2/26

Computation
A computation is a sequence of successive elementary operations.

f:x—5x-3

Compute f(x)

with + and x with + only
— start with x — start with x
1. add x

1. multiply by 5
2. add -3

2/26

Computation
A computation is a sequence of successive elementary operations.

f:x—5x-3

Compute f(x)

with + and x with + only
— start with x — start with x
) 1. add x
1. multiply by 5 2. add x

2. add -3

2/26

Computation
A computation is a sequence of successive elementary operations.

f:x—5x-3

Compute f(x)

with + and x with + only
— start with x — start with x
) 1. add x
1. multiply by 5 2. add x
2. add -3 PRI

2/26

Computation
A computation is a sequence of successive elementary operations.

f:x—5x-3

Compute f(x)

with + and x with + only
— start with x — start with x
) 1. add x
1. multiply by 5 2. add x
2. add -3 3 3dd X
5. add -3

2/26

Computation
A computation is a sequence of successive elementary operations.

gix - X2+ x f:x—bx-3

Compute f(x)

with + and x with + only
— start with x — start with x
) 1. add x
1. multiply by 5 2. add x
2. add -3 4 3dd X
5. add -3

2/26

Computation
A computation is a sequence of successive elementary operations.

gix - X2+ x f:x—bx-3

Compute f(x)

with + and x with + only
— start with x — start with x
) 1. add x
1. multiply by 5 2. add x
2. add -3 4 3dd X
5. add -3

Compute g(x)
— start with x

2/26

Computation
A computation is a sequence of successive elementary operations.

gix X2+ x f:x—bx-3

Compute f(x)

with + and x with + only
— start with x — start with x
) 1. add x
1. multiply by 5 2. add x
2. add -3 4 3dd X
5. add -3

Compute g(x)
— start with x

1. multiply by x

2/26

Computation
A computation is a sequence of successive elementary operations.

gix - X2+ x f:x—bx-3

Compute f(x)

with + and x with + only
— start with x — start with x
) 1. add x
1. multiply by 5 2. add x
2. add -3 4 3dd X
5. add -3

Compute g(x)
— start with x
1. multiply by x
2. add x

2/26

Computation
A computation is a sequence of successive elementary operations.

gix - X2+ x f:x—bx-3

Compute f(x)

with + and x with + only
— start with x — start with x
) 1. add x
1. multiply by 5 2. add x
2. add -3 4 3dd X
5. add -3
Compute g(x)
— start with x — start with x

1. multiply by x
2. add x

2/26

Computation
A computation is a sequence of successive elementary operations.

gix - X2+ x f:x—bx-3

Compute f(x)

with + and x with + only
— start with x — start with x
) 1. add x
1. multiply by 5 2. add x
2. add -3 4 3dd X
5. add -3
Compute g(x)
— start with x — start with x
1. multiply by x » Impossible

2. add x

2/26

Turing machines

[0]0]1]0]0

Lafofafafa] [[] .

READ WRITE

‘ internal state: @ |

/26

Turing machines
[oJof1fofofaftfoJt[1]a[| []

READ WRITE

‘ internal state: @ |

Turing machines

[ofoftfofiftfafofafafi] [[] .

i

‘ internal state: @ |

Turing machines

[ofoftfofiftfafofafafi] [[] .

i

‘ internal state: @ |

0l1,—

1]1,«

Turing machines

[ofofefofifefafofafafi] [[] .

[

‘ internal state: @ |

0l1,—

1]1,«

Turing machines

[ofoftfofifefafofafafi] [[] .

[

‘ internal state: @ |

/26

Turing machines

[ofoftfofifefafofafafi] [[] .

[

‘ internal state: @ |

nondeterministic choice: [or []

01,

/26

Turing machines

[ofofefofifefafofafafi] [[] .

[

‘ internal state: @ |

nondeterministic choice: [or []

01,

/26

Turing machines

[ofoftfofifefafofafafi] [[] .

[

‘ internal state: @ |

nondeterministic choice: [or []

01,

/26

Turing machines

[oJoftfofotfrfofafafi] [[] .

i

‘ internal state: @ |

nondeterministic choice: [or []

01,

/26

Turing machines

[ofoftfofoJtfrfofa]afi] [[] .

i

‘ internal state: @ |

/26

Turing machines

[OJOTTTOTOTITI[OII]I] T T]

internal state: @

Huge computational power

1]10,~

1]1,«

0l1,—

1]1,«

26

Turing machines

[OJOTTTOTOTITI[OII]I] T T]

internal state: @

Huge computational power

» infinite memory

1|17(_ 0|]_,—>

1]0,- 1)1,

3/26

Turing machines

[OJOTTTOTOTITI[OII]I] T T]

internal state: @

Huge computational power
» infinite memory

» universal

1|17(_ 0|]_,—>

1]0,- 1)1,

3/26

Turing machines

[OJOTTTOTOTITI[OII]I] T T]

Complex dynamics

internal state: @

Huge computational power
» infinite memory

» universal

1|17(_ 0|]_,—>

1]0,- 1)1,

3/26

Turing machines

[OJOTTTOTOTITI[OII]I] T T]

Complex dynamics

» undecidability of the halting problem

internal state: @

Huge computational power
» infinite memory

» universal

1|17(_ O|]_,—>

1]0,— 1]1,«

3/26

Turing machines

[OJOTTTOTOTITI[OII]I] T T]

Complex dynamics

» undecidability of the halting problem

internal state: @

» contribution of nondeterminism
? ?
Huge computational power eg, P=NP and L=NL
» infinite memory

» universal

1|17(_ O|]_,—>

©
1]0,— 1]1,«

3/26

Finite automata

Definition
A finite automata (FA) is a one-way read-only Turing machine.

al| b, <

26

Finite automata

Definition
A finite automata (FA) is a one-way read-only Turing machine.

a | K, <

26

Finite automata

Definition
A finite automata (FA) is a one-way read-only Turing machine.

a | XX

26

Finite automata

Definition
A finite automata (FA) is a one-way read-only Turing machine.

a | X, -

26

Finite automata

Definition
A finite automata (FA) is a one-way read-only Turing machine.

26

Finite automata
Definition

A finite automata (FA) is a one-way read-only Turing machine.
FAS are recognizers.

4/26

Finite automata

Definition
A finite automata (FA) is a one-way read-only Turing machine.
FAS are recognizers.

Example b

H{/CD/H\\%/_\

b a b

Finite automata

Definition
A finite automata (FA) is a one-way read-only Turing machine.
FAS are recognizers.

Example b

a a
b %/_\
b a b

accepts the language {a,b}" -a-a-b-{a,b}"

Finite automata

Definition
A finite automata (FA) is a one-way read-only Turing machine.
FAS are recognizers.

Example b

a a

b %/_\
b a b

accepts the language {a,b}" -a-a-b-{a,b}"

Theorem (Kleene)
finite automata = rational languages

26

Finite automata

Definition
A finite automata (FA) is a one-way read-only Turing machine.
FAS are recognizers.

Example b

a a

b %/_\
b a b

accepts the language {a,b}" -a-a-b-{a,b}"

Theorem (Kleene)
finite automata = rational languages

The smallest family including finite languages
closed under union, concatenation and Kleene star.

4/26

Two-wayness and nondeterminism

2DFA 2NFA

two-wayness

1DFA INFA

nondeterminism

Two-wayness and nondeterminism

2DFA 2NFA

two-wayness

\
/

1DFA INFA

nondeterminism

5/26

Two-wayness and nondeterminism

2DFA 2NFA
=y ° <
1DFA . INFA

natural simulations

Two-wayness and nondeterminism

2DFA 2NFA
E =
E 2 x* %
% &

h 2" [MFT71] Mg
1DFA ¢ 1INFA

known results on simulations

5/26

Two-wayness and nondeterminism

2DFA 2NFA
E =

h 2" [MFT71] Mg
1DFA ¢ 1INFA

known results on simulations

5/26

Two-wayness and nondeterminism
77

/\

2DFA 2NFA
E =

M 2" [MFT71] h
1DFA ¢ 1INFA

The two main questions (Sakoda & Sipser 1978)
» the optimal cost of the simulation of 1NFA by 2DFA?
» the optimal cost of the simulation of 2NFA by 2DFA?

5/26

Two-wayness and nondeterminism
77

/_\

2DFA 2NFA

The two main questions (Sakoda & Sipser 1978)
» the optimal cost of the simulation of 1NFA by 2DFA?
» the optimal cost of the simulation of 2NFA by 2DFA?

26

Two-wayness and nondeterminism
77

(/\

2DFA 2NFA
o 8%
sweeping
> <
time

» the optimal cost of the simulation of 2NFA by 2DFA?

/26

Two-wayness and nondeterminism
77

(/\

2DFA 2NFA
g v 7,20 \5\980\
= -
sweeping
> <
time

» the optimal cost of the simulation of 2NFA by 2DFA?

/ 26

Two-wayness and nondeterminism
77

2DFA 20NFA 2NFA

» the optimal cost of the simulation of 2NFA by 2DFA?

26

Two-wayness and nondeterminism
77

2DFA 20NFA 2NFA

\/

sub-exponential

» the optimal cost of the simulation of 2NFA by 2DFA?

Outer-nondeterministic finite automata
Definition (20NFA)

An 2-way automaton is outer-nondeterministic
if nondeterministic choices are restricted to the endmarkers only.

> a b a b b a c <
@) @),
\ k k

26

Outer-nondeterministic finite automata
Definition (20NFA)

An 2-way automaton is outer-nondeterministic
if nondeterministic choices are restricted to the endmarkers only.

> a b a b b a c <

o ® @D

Proposition
With a linear increase of the number of states,
nondeterministic choices are restricted to the left endmarker only.

Outer-nondeterministic finite automata

Definition (20NFA)

An 2-way automaton is outer-nondeterministic
if nondeterministic choices are restricted to the endmarkers only.

> a b a b b a c <
Ot
i —
/>
Proposition

With a linear increase of the number of states,
nondeterministic choices are restricted to the left endmarker only.

Definition
A segment is a computational path between two successive visits

of the left endmarker.
6/26

Key point

Given g_ and q,:

>

a

Is there a segment?

/26

Key point

Given ¢_ and qg;:

> a b a b b a c <
@—
Is there a segment?
T
Proposition

Answer with a 2DFA of linear size.

Proof.

Adapt a Sipser’s construction to avoid deterministic central loops.

26

2DFA

20NFA

27

2NFA

26

27

2DFA 20NFA 2NFA

_/

sub-exponential

Theorem

» Sub-exponential simulation of 20NFA by 2DFA O(nlog2(M+7),

/26

polynomial if L = NLL
??

2DFA 20NFA 2NFA

_/

sub-exponential

Theorem

» Sub-exponential simulation of 20NFA by 2DFA O(nlog2(M+7),

» polynomial if L = NL.

/26

polynomial if L = NLL
??

2DFA 20NFA 2NFA

_/

sub-exponential

Theorem

» Sub-exponential simulation of 20NFA by 2DFA O(n'°82 (M+7),

» polynomial if L = NL.

Further results

» Simulation by unambiguous 20NFA of polynomial size.

/26

polynomial if L = NLL
??

2DFA 20NFA 2NFA

_/

sub-exponential

Theorem

» Sub-exponential simulation of 20NFA by 2DFA O(n'°82 (M+7),

» polynomial if L = NL.

Further results

» Simulation by unambiguous 20NFA of polynomial size.
» Simulation by a halting 20NFA of polynomial size.
» Complementation by a halting 20NFA of polynomial size.

26

Automata with output: 1-way transducers
> A*

N

alw

OO

input tape | | | | | | | | | | | |

output tape | | | | | | | | | |

9/26

Automata with output: 1-way transducers

Y A*
\ Example
a | = replace a by b
s replace b by a
= ignore other letters
input tape | a [o[[afclafa]afn] 5]

output tape ‘ b

Equivalent formalisms

» Relations on words:
Rc Yy xA*

10/26

Equivalent formalisms

» Relations on words:
Rc Yy xA*

» A function from words into languages:
T 2A*

fr u ~ {v]|(u,v)eR}

10/26

Equivalent formalisms

» Relations on words:
Rc Yy xA*

» A function from words into languages:
T 2A*

fR .

u ~ {v]|(u,v)eR}

» A formal power series:
o= Y (o,u)u with (o, u) = fr(u)

uexr*

10/26

Equivalent formalisms

» Relations on words:
Rc Yy xA*

Transducers

» A function from words into languages:
T 2A*

fR .

u ~ {v]|(u,v)eR}

» A formal power series:
o= Y (o,u)u with (o, u) = fr(u)

uexr*

10/26

Equivalent formalisms

» Relations on words:
Rc Yy xA*
Transducers
» A function from words into languages:
T 2A*

fr u ~ {v]|(u,v)eR}

» A formal power series:
o= Y (o,u)u with (o, u) = fr(u)

uexr*

Weighted Automata

10/26

Rational operations

» Union RiUR,
» Componentwise concatenation
Ri- Ry ={(u1uz,vava) | (u1,vi) € Ry and (up, v2) € Ry}
» Kleene star
R* = {(uupupg,vivo--vi) | Vi (uj,vi) € R}

11/26

Rational operations

» Union RiuRy
» Componentwise concatenation
Ri- Ry ={(u1uz,vava) | (u1,vi) € Ry and (up, v2) € Ry}
» Kleene star
R* = {(uupupg,vivo--vi) | Vi (uj,vi) € R}

lelofefal-)) [i]e]®]

LD TTeTeTTo o]

11/26

Rational operations

» Union

R1UR2

» Componentwise concatenation
Rl . R2 = {(U1U2, V1V2) | (Ul, V1) € Rl and (U2, V2) € R2}

» Kleene star

R* — {(U1U2"'Uk,V1V2"’Vk) | Vi (LI,'7V,') € R}

lelofefa]-]

e

~~

olo1-]

or

~§§§§--“‘~s

Lils]sfefelole e 0]

11/26

Rational operations

» Union RiUR,
» Componentwise concatenation
Ri- Ry ={(u1uz,vava) | (u1,vi) € Ry and (up, v2) € Ry}
» Kleene star
R* = {(uupupg,vivo--vi) | Vi (uj,vi) € R}

lelofefal-[life]e]

RS

[odof-MlifslsTe e o o e]

11/26

Rational operations

» Union RiUR,
» Componentwise concatenation
Ri- Ry ={(u1uz,vava) | (u1,vi) € Ry and (up, v2) € Ry}
» Kleene star
R* = {(uupupg,vivo--vi) | Vi (uj,vi) € R}

lelofefaf-[li]e]e]

lelolMlsfslsfefe oo e e]

11/26

Rational operations

» Union RiUR,
» Componentwise concatenation
Ri- Ry ={(u1uz,vava) | (u1,vi) € Ry and (up, v2) € Ry}
» Kleene star
R* = {(uupupg,vivo--vi) | Vi (uj,vi) € R}

lefofolal-[lefofofa]-le[ofofa]-le[o]o]d]-]
T
T
\
~
Lo fol-[ele-flolo]-[lo]-]-]

11/26

Rational operations

» Union RiUR,
» Componentwise concatenation
Ri- Ry ={(u1uz,vava) | (u1,vi) € Ry and (up, v2) € Ry}
» Kleene star
R* = {(uupupg,vivo--vi) | Vi (uj,vi) € R}

lelofefa]-lefefola]-Jlsfoola][-Jls]o]e]d]-]

11/26

Rational operations

» Union RiUR,
» Componentwise concatenation
Ri- R ={(uiuz,viva) | (u1,vi) € Ry and (up, v2) € Ra}
» Kleene star
R* = {(unua--ug,vavo---vi) | Vi (uj,vi) € R}

Definition (RAT (X* x A*))
The family of Rational relations is the smallest family:
» including finite relations

» closed under Rational operations

11/26

One-way is rational

Theorem (Elgot, Mezei - 1965)

1-way transducers = RAT.

one-way

12/26

One-way is rational

Theorem (Elgot, Mezei - 1965)
1-way transducers = RAT.

Machine one-way

Algebra RAT

12/26

What about two-way transducers?

Theorem (Elgot, Mezei - 1965)

2-way transducers '— 77

Machine

Algebra

one-way

two-way

R
LML
[

il
M

"

12/26

What about two-way transducers?

Theorem (Elgot, Mezei - 1965)
2-way transducers '— 77

Machine one-way two-way

R
LML

Algebra [RAT] [77]

Most of the known results on 2-way transducers
concern the functional (=deterministic) case. . .

12/26

A simple example: SQUARE = {(w,ww) | w e X*}

13/26

A simple example: SQUARE = {(w,ww) | w e X*}

» copy the input word

13/26

A simple example: SQUARE = {(w,ww) | w e X*}

copy the input word

v

» rewind the input tape

13/26

A simple example: SQUARE = {(w,ww) | w e X*}

v

copy the input word

v

rewind the input tape

» append a copy of the input word

13/26

A simple example: SQUARE = {(w,ww) | w e X*}

» copy the input word
» rewind the input tape

» append a copy of the input word

13/26

Another example: POWERS = {(w,w*) | w € ¥}

14 /26

Another example: POWERS = {(w,w*) | w € ¥}

ooan

copy the input word

T—e

14 /26

Another example: POWERS = {(w,w*) | w € ¥}

copy the input word ——— rewind the input tape

T—e

14 /26

Another example: POWERS = {(w,w*) | w € ¥}

a b a c|a

‘ |

copy the input word ——— rewind the input tape

‘\./

14 /26

Another example: POWERS = {(w,w*) | w € ¥}

copy the input word ——— rewind the input tape

\./

14 /26

Another example: POWERS = {(w,w*) | w € ¥}

copy the input word ——— rewind the input tape

\./

14 /26

Another example: POWERS = {(w,w*) | w € ¥}

a b a cHa b a c|a b a c

copy the input word ——— rewind the input tape

‘\?/

accept and halt with nondeterminism

14 /26

A last one: 2-PREF = {(a", aPbP) | p < n}

15/26

A last one: 2-PREF = {(a", aPbP) | p < n}

15/26

A last one: 2-PREF = {(a", aPbP) | p < n}

15/26

A last one: 2-PREF = {(a", aPbP) | p < n}

15/26

Hadamard operations

» Union RiUR,

16 /26

Hadamard operations

» Union RiUR,
» H-product Ri®Ry ={(u,viva) | (u,v1) € Ry and (u,v2) € Ro}

16 /26

Hadamard operations

» Union RiUR,
» H-product Ri@Ry={(u,vava) | (u,v1) € Ry and (u,v2) € R}

» simulate 71 example:

» rewind the input tape » SQUARE = ID®ID
» simulate 7>

16 /26

Hadamard operations

» Union RiUR,
» H-product Ri®Ry ={(u,viva) | (u,v1) € Ry and (u,v2) € Ro}
» H-star RA* = {(u,viva--vk) | Vi (u,v;) € R}

16 /26

Hadamard operations

» Union RiURy
» H-product Ri@Ry={(u,vava) | (u,v1) € Ry and (u,v2) € R}
» H-star R = {(u,viva---vi) | Vi (u,v;) e R}
> repeat
» simulate 7 example:
» rewind the input tape » POWERS = ID"*

» or accept nondeterministically

16 /26

Hadamard operations

» Union RiURy
» H-product Ri@Ry={(u,vava) | (u,v1) € Ry and (u,v2) € R}
» H-star RA* = {(u,viva--vk) | Vi (u,v;) € R}

Definition (HAD (X* x A*))
The family of Hadamard relations is the smallest family:
» including rational relations

» closed under Hadamard operations

16 /26

What about two-way transducers?

Theorem
1-way transducers = RAT.

one-way two-way

17 /26

What about two-way transducers?

Theorem
1-way transducers = RAT.

one-way two-way

LML

ex: 2-PREF
RAT | —
R

17 /26

What about rotating transducers?

Theorem
1-way transducers

= RAT.

[Rotating transd ucersj

17/26

What about rotating transducers?

Theorem
rotating transducers = HAD.

one-way rotating two-way

ex: 2-PREF
—
a" — {aPbP, p < n}

17 /26

Right to left scan of the input

» Mirror operation: |>|S|A|T|O|R|<]|

R={(@v)| (u.v) €R) /py
Example — TTTeeeal .
Ip = {w,w}

[R[O[T[A[S]]

18 /26

Right to left scan of the input

[>[S[A[T]O]R]<]

» Mirror operation:

R={(@v)| (u.v) €R) /py
Example — TTTeeeal .
Ip = {w,w}

[R[O[T[A[S]]

Definition (MHAD (X* x A*))
The family of Mirror-Hadamard relations is the smallest family:
» including rational relations

» closed under Hadamard operations and mirror

18 /26

What about sweeping transducers?

Theorem
sweeping transducers = MHAD.

one-way rotating sweeping | two-way

[RAT] [HAD] [MHAD] [MHAD??]

19/26

What about sweeping transducers?

Theorem
sweeping transducers = MHAD.
one-way rotating sweeping | two-way

[T

[MHAD] [@}@]

ex: 2-PREF a" — {aPbP, p<n}

What about sweeping transducers?

Theorem
sweeping transducers = MHAD.
transducer one-way rotating sweeping two-way
a,-1|b T : T ::::::: “‘(z"(::)
o O IR s ud iR EE==cSad i i =u0]
RAT HAap &
input unary
I

ex: 2-PREF a" — {aPbP, p < n}
19/26

Unary transducers

We focus on a weaker problem:

> ={a} and A={a}

20/26

Unary transducers

We focus on a weaker problem:

> ={a} and

Examples

» UID = {(2",a") | ne N}

A

13}

€ RAT

20 /26

Unary transducers

We focus on a weaker problem:

> ={a} and A={a}

Examples
» UlD={(a",a") | ne N} € RAT

» USQUARE = UID@®UID = {(a",2?") | ne N} € RAT

20 /26

Unary transducers

We focus on a weaker problem:

> ={a} and A={a}

Examples
» UlD={(a",a") | ne N} € RAT
» USQUARE = UID@®UID = {(a",2?") | ne N} € RAT

» UPOWERS = UID"™ = {(u", uk") | k,n e N} e HAD \ RAT

20 /26

Characterization of unary two-way transductions

transducer one-way rotating sweeping two-way
a-1|b 1] T =F ==
o~ O T | R L
general MHAD
-
input unary RAT
ouptut unary 1 -

26

Characterization of unary two-way transductions

Theorem
2-way unary transducers = HAD

transducer one-way rotating sweeping two-way

a-1b -

o O T | e

general

input unary RAT

input and Hap ~

ouptut unary]

Characterization of unary two-way transductions
Theorem
2-way unary transducers = HAD

Corollary

2-way unary transducers |—> rotating transducers .

transducer one-way rotating sweeping two-way
a-1|b T T
o O IRERREEEEE Sy
general MHAD
-
input unary RAT
input and HAD ~

ouptut unary]

Characterization of unary two-way transductions

Theorem
2-way unary transducers = HAD

Corollary

2-way unary transducers |—> rotating transducers .

Example UPOWERS = {(a”, ak"y | k,ne N}
transducer one-way rotating sweeping two-way
a,-1]b EREEN) :\,\‘,f\\v - tz’:::)
o O TR T
general MHAD
-
input unary RAT
input and HAD ~]
ouptut unary

26

Key points of the proof

» commutative output
» deal with nondeterministic central loops (X = {a} and A = {a}).

22/26

Key points of the proof

» commutative output
» deal with nondeterministic central loops (X = {a} and A = {a}).

22/26

Key points of the proof

» commutative output
» deal with nondeterministic central loops (X = {a} and A = {a}).

a
@*@>@@
©)

22/26

Key points of the proof

» commutative output
» deal with nondeterministic central loops (X = {a} and A = {a}).

22/26

Key points of the proof

» commutative output
» deal with nondeterministic central loops (X = {a} and A = {a}).

22/26

Key points of the proof

» commutative output
» deal with nondeterministic central loops (X = {a} and A = {a}).

22/26

Key points of the proof

» commutative output
» deal with nondeterministic central loops (X = {a} and A = {a}).

_________ dj|adajalalala o aj|ala
@*@>@§®
ok
@]
OO

22/26

Key points of the proof

» commutative output
» deal with nondeterministic central loops (X = {a} and A = {a}).

_________ alalalajajajajajajajajala|
@*@>@@
@@1
O
@O

22/26

The output-unary case arbitrary ¥ and A ={a}

transducer one-way rotating sweeping two-way

a-1b] R

O O

general

input unary

RAT 11 HAD

output unary

o

MHap) | [77 |

input and
ouptut unary

23 /26

The output-unary case arbitrary ¥ and A ={a}
Proposition
Hap = MHAD
transducer one-way rotating sweeping two-way
a-1|b T =
O O T
)
general
input unary
RAT [T
output unary
input and iR
ouptut unary L

23 /26

The output-unary case arbitrary ¥ and A ={a}

Proposition € RAT
H*
HAD = MHAD = U R@S
finite
transducer one-way rotating sweeping two-way
a,-1|b] j’,\, —
o O T
)
general
input unary
RAT [T
output unary
input and iR
ouptut unary q

23 /26

The output-unary case arbitrary ¥ and A ={a}

Proposition € RAT Theorem
Hap = MHAD = U R ® 5 2-way output-unary F HAD
finite
transducer one-way rotating sweeping two-way

a-1lb +—— T

o O T

)
general l

input unary

RAT [
output unary

input and
ouptut unary L

23 /26

An non-Hadamard output-unary transduction

Y ={a,#} and A ={a}

R= {(u, ak”) | k,neN, #a"# is a factor of u}

ITI#IaI |al#[alalalalafal#[a] _[a[#]<]

24 /26

An non-Hadamard output-unary transduction

Y ={a,#} and A ={a}

R= {(u, ak”) | k,neN, #a"# is a factor of u}

(>l#]a] Jal#lalalalafalaf#]a] _[a]#]<]

24 /26

An non-Hadamard output-unary transduction

Y ={a,#} and A ={a}

R= {(u, ak”) | k,neN, #a"# is a factor of u}

[>[#[a] |al#[alalalafala[#]a] |a[#[<]

24 /26

An non-Hadamard output-unary transduction

Y ={a,#} and A ={a}

R= {(u, ak”) | k,neN, #a"# is a factor of u}

(>l#]a] Jal#lalalalafalaf#]a] _[a]#]<]

24 /26

An non-Hadamard output-unary transduction

Y ={a,#} and A ={a}

R= {(u, ak”) | k,neN, #a"# is a factor of u}

[>[#[a] |al#[alalalafala[#]a] |a[#[<]

[a]alalalala]alalalalala] [[[[[[]

24 /26

An non-Hadamard output-unary transduction

Y ={a,#} and A ={a}

R= {(u, ak”) | k,neN, #a"# is a factor of u}

(>l#]a] Jal#lalalalafalaf#]a] _[a]#]<]

[a[a]afa[afa]alafafalafa[T [[[[]

24 /26

An non-Hadamard output-unary transduction

Y ={a,#} and A ={a}

R= {(u, ak”) | k,neN, #a"# is a factor of u}

[>|#]a la|#|alalalalala|#|a] |a|#]|<]|

[a[a]afa[afa]a]a[a[a[a[a[a]aa]a]a]a]]

24 /26

An non-Hadamard output-unary transduction

Y ={a,#} and A ={a}

R= {(u, ak”) | k,neN, #a"# is a factor of u}

[>#]al [al#lalalalafafa[#]a]]a |#|<T |

[aJaala[aa]a]alalala]a]aa[a]a[a[a]]

24 /26

Two-way transducers VERSUS Algebra

transducer

one-way

rotating

sweeping

a-11b

o O

general

input unary

RAT

output unary

input and
ouptut unary

25 /26

Two-way transducers VERSUS Algebra

[functional case]

transducer one-way rotating sweeping | two-way

a-11b -

o O TITTT | | e
general () [
input unary {

output unary

input and
ouptut unary \

25 /26

Conclusion

Descriptional complexity

polynomial if L = NL

??
2DFA 20NFA 2NFA
sub-exponential
Two-way transducers
transducer one-way rotating sweeping | two-way
general
input unary
RaT
output unary Hap
input and ~]
ouptut unary

26 /26

Conclusion

Descriptional complexity

polynomial if L = NL

2DFA 20NFA

~—_

sub-exponential

Two-way transducers

??

2NFA

transducer one-way rotating

sweeping

two-way

general

input unary

output unary

input and
ouptut unary

» Alternating 2onfa

26

26

Conclusion

Descriptional complexity

polynomial if L = NL

2DFA

sub-exponential

20NFA
\/

Two-way transducers

’?

2NFA

transducer

one-way

rotating

sweeping

two-way

O O

general

input unary

output unary

input and
ouptut unary

» Alternating 2onfa

>

26

26

Conclusion

Descriptional complexity

polynomial if L = NL

2DFA

sub-exponential

20NFA
\/

Two-way transducers

’?

2NFA

transducer

one-way

rotating

sweeping

two-way

O O

general

input unary

output unary

input and
ouptut unary

» Alternating 2onfa

>

» Uniformization

26

26

Conclusion

Descriptional complexity

polynomial if L = NL

2DFA

sub-exponential

20NFA
_/

Two-way transducers

’?

2NFA

transducer

one-way

rotating

sweeping

two-way

O O

general

input unary

output unary

input and
ouptut unary

» Alternating 2onfa

>

» Uniformization
» Composition R0 R,
» Transitive closure

26 /26

Conclusion

Descriptional complexity

polynomial if L = NL

’?
2DFA 20NFA 2NFA
sub-exponential
Two-way transducers
transducer one-way rotating sweeping | two-way
general
input unary
RaT
output unary HaD
input and ~]
ouptut unary

» Alternating 2onfa

>

» Uniformization

26

Composition ;o R,
» Transitive closure

26

Conclusion

Descriptional complexity

polynomial if L = NL

’?
2DFA 20NFA 2NFA
sub-exponential
Two-way transducers
transducer one-way rotating sweeping | two-way
general
input unary
RaT
output unary HaD
input and ~]
ouptut unary I

» Alternating 2onfa

>

» Uniformization

» Composition R0 R,

» Transitive closure

26

26

Conclusion

Descriptional complexity

polynomial if L = NL

2DFA

sub-exponential

20NFA

_/

Two-way transducers

’?

2NFA

transducer

one-way

rotating

sweeping two-way

O O

general

input unary

output unary

input and
ouptut unary

» Alternating 2onfa

>

» Uniformization

26

Composition ;o R,
» Transitive closure

26

Conclusion

Descriptional complexity Alt ting 2onf
> ernating 2onfa

polynomial if L = NL

??
2DFA 20NFA 2NFA
sub-exponential
Two-way transducers » Uniformization
transducer one-way rotating sweeping two-way g comPOSItlon Rl © R2

» Transitive closure

general

input unary
RAT

output unary

input and
ouptut unary

Thanks for your attention

26 /26

	Introduction
	Descriptional complexity of finite automata
	Transducers
	Conclusion

