Two-wayness: Automata & Transducers

Bruno Guillon

IRIF – Université Paris-Diderot, Paris 7 Dipartimento di Informatica – Università degli studi di Milano

> May 30, 2016 PhD defense

Introduction

Computation Turing machines Finite automata

Descriptional complexity of finite automata

Main questions and known results Outer-nondeterministic finite automata Determinization of outer-nondeterministic finite automata

Transducers

One-way transducers Two-way transducers Hadamard operations Mirror operation Unary transducers

Conclusion

$$f: x \mapsto 5x - 3$$

A computation is a sequence of successive *elementary operations*.

$$f: x \mapsto 5x - 3$$

Compute f(x)

with + and \times

— start with x

A computation is a sequence of successive elementary operations.

$$f: x \mapsto \mathbf{5x} - 3$$

Compute f(x)

with + and \times

— start with x

1. multiply by 5

A computation is a sequence of successive elementary operations.

$$f: x \mapsto 5x - 3$$

Compute f(x)

with + and \times

— start with x

1. multiply by 5

2. add -3

$$f: x \mapsto 5x - 3$$

$$f: x \mapsto \mathbf{5x} - 3$$

$$f: x \mapsto 5x - 3$$

$$f: x \mapsto 5x - 3$$

$$f: x \mapsto 5x - 3$$

$$g: x \mapsto x^2 + x$$
 $f: x \mapsto 5x - 3$

A computation is a sequence of successive *elementary operations*.

$$g: x \mapsto x^2 + x$$
 $f: x \mapsto 5x - 3$

Compute g(x)

— start with x

A computation is a sequence of successive elementary operations.

$$g: x \mapsto x^2 + x$$
 $f: x \mapsto 5x - 3$

Compute g(x)

— start with x

1. multiply by x

A computation is a sequence of successive elementary operations.

$$g: x \mapsto x^2 + x$$
 $f: x \mapsto 5x - 3$

Compute g(x)

— start with x

- 1. multiply by x
- 2. add x

$$g: x \mapsto x^2 + x$$
 $f: x \mapsto 5x - 3$

$$g: x \mapsto x^2 + x$$
 $f: x \mapsto 5x - 3$

Huge computational power

infinite memory

- infinite memory
- universal

Complex dynamics

- infinite memory
- universal

Complex dynamics

undecidability of the halting problem

- infinite memory
- universal

Huge computational power

- infinite memory
- universal

Complex dynamics

- undecidability of the halting problem
- contribution of nondeterminism

e.g.,
$$P \stackrel{?}{=} NP$$
 and $L \stackrel{?}{=} NL$

Finite automata

Definition

A finite automata (FA) is a one-way read-only Turing machine.

Definition

Definition

Definition

Definition

Definition

A finite automata (FA) is a one-way read-only Turing machine. FAs are recognizers.

Definition

A finite automata (FA) is a one-way read-only Turing machine. FAs are recognizers.

Definition

A finite automata (FA) is a one-way read-only Turing machine. FAs are recognizers.

accepts the language $\{a, b\}^* \cdot a \cdot a \cdot b \cdot \{a, b\}^*$

Definition

A finite automata (FA) is a one-way read-only Turing machine. FAs are recognizers.

Definition

A finite automata (FA) is a one-way read-only Turing machine. FAs are recognizers.

The smallest family including **finite languages** closed under **union**, **concatenation** and **Kleene star**.

1dfa

1nfa

nondeterminism

nondeterminism

natural simulations

known results on simulations

known results on simulations

The two main questions (Sakoda & Sipser 1978)

- the optimal cost of the simulation of 1NFA by 2DFA?
- the optimal cost of the simulation of 2NFA by 2DFA?

The two main questions (Sakoda & Sipser 1978)

- ▶ the optimal cost of the simulation of 1NFA by 2DFA?
- the optimal cost of the simulation of 2NFA by 2DFA?

▶ the optimal cost of the simulation of 2NFA by 2DFA?

the optimal cost of the simulation of 2NFA by 2DFA?

▶ the optimal cost of the simulation of 2NFA by 2DFA?

▶ the optimal cost of the simulation of 2NFA by 2DFA?

Outer-nondeterministic finite automata

Definition (20NFA)

An 2-way automaton is outer-nondeterministic

if nondeterministic choices are restricted to the endmarkers only.

Outer-nondeterministic finite automata

Definition (20NFA)

An 2-way automaton is outer-nondeterministic

if nondeterministic choices are restricted to the endmarkers only.

Proposition

With a linear increase of the number of states, nondeterministic choices are restricted to the left endmarker only.

Outer-nondeterministic finite automata

Definition (20NFA)

An 2-way automaton is outer-nondeterministic

if nondeterministic choices are restricted to the endmarkers only.

Proposition

With a linear increase of the number of states, nondeterministic choices are restricted to the left endmarker only.

Definition

A segment is a computational path between two successive visits of the left endmarker.

Key point

Given q_- and q_+ :

Key point

Given q_- and q_+ :

Proposition

Answer with a 2DFA of linear size.

Proof.

Adapt a Sipser's construction to avoid deterministic central loops.

• Sub-exponential simulation of 20NFA by 2DFA $\mathcal{O}(n^{\log_2(n)+7})$.

- Sub-exponential simulation of 20NFA by 2DFA $\mathcal{O}(n^{\log_2(n)+7})$.
 - polynomial if L = NL.

- Sub-exponential simulation of 20NFA by 2DFA $\mathcal{O}(n^{\log_2(n)+7})$.
 - polynomial if L = NL.

Further results

• Simulation by unambiguous 20NFA of polynomial size.

- Sub-exponential simulation of 20NFA by 2DFA $O(n^{\log_2(n)+7})$.
 - polynomial if L = NL.

Further results

- Simulation by unambiguous 20NFA of polynomial size.
- Simulation by a halting 20NFA of polynomial size.
- Complementation by a halting 20NFA of polynomial size.

Automata with output: 1-way transducers

Automata with output: 1-way transducers

• Relations on words:

 $R \subseteq \Sigma^* \times \Delta^*$

Relations on words:

$$R \subseteq \Sigma^* \times \Delta^*$$

• A function from words into languages:

$$f_R: \begin{array}{ccc} \Sigma^* & \to & 2^{\Delta^*} \\ u & \mapsto & \{v \mid (u, v) \in R\} \end{array}$$

Relations on words:

$$R \subseteq \Sigma^* \times \Delta^*$$

A function from words into languages:

$$f_R: \begin{array}{ccc} \Sigma^* & \to & 2^{\Delta^*} \\ u & \mapsto & \{v \mid (u,v) \in R\} \end{array}$$

• A formal power series:

$$\sigma = \sum_{u \in \Sigma^*} \langle \sigma, u \rangle u \qquad \text{with } \langle \sigma, u \rangle = f_R(u)$$

Relations on words:

$$R \subseteq \Sigma^* \times \Delta^*$$

A function from words into languages:

$$f_R: \begin{array}{ccc} \Sigma^* & \to & 2^{\Delta^*} \\ u & \mapsto & \{v \mid (u, v) \in R\} \end{array}$$

• A formal power series:

$$\sigma = \sum_{u \in \Sigma^*} \langle \sigma, u \rangle u \quad \text{with } \langle \sigma, u \rangle = f_R(u)$$
Equivalent formalisms

Relations on words:

$$R \subseteq \Sigma^* \times \Delta^*$$

A function from words into languages:

$$f_R: \begin{array}{ccc} \Sigma^* & \to & 2^{\Delta^*} \\ u & \mapsto & \{v \mid (u, v) \in R\} \end{array}$$

A formal power series:

$$\sigma = \sum_{u \in \Sigma^*} \langle \sigma, u \rangle u \qquad \text{with } \langle \sigma, u \rangle = f_R(u)$$

Weighted Automata

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

$$R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

$$R^* = \{ (u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i (u_i, v_i) \in R \}$$

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

$$R^* = \{ (u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i (u_i, v_i) \in R \}$$

Union

$$R_1 \cup R_2$$

Componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

$$R^* = \{ (u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i (u_i, v_i) \in R \}$$

Union

$$R_1 \cup R_2$$

Componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

$$R^* = \{ (u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i (u_i, v_i) \in R \}$$

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

Kleene star

 $R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

Kleene star

 $R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

Kleene star

$$R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Definition $(\operatorname{Rat}(\Sigma^* \times \Delta^*))$

The family of Rational relations is the smallest family:

- including finite relations
- closed under Rational operations

One-way is rational

One-way is rational

What about two-way transducers?

Theorem (Elgot, Mezei - 1965) 2-way transducers = ??

What about two-way transducers?

Theorem (Elgot, Mezei - 1965) 2-way transducers = ??

Most of the known results on 2-way transducers concern the **functional** (=deterministic) case...

copy the input word

- copy the input word
- rewind the input tape

- copy the input word
- rewind the input tape
- append a copy of the input word

- copy the input word
- rewind the input tape
- append a copy of the input word

Union

 $R_1 \cup R_2$

Union

$$R_1 \cup R_2$$

► H-product $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

Union

$$R_1 \cup R_2$$

• H-product $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

- simulate \mathcal{T}_1
- rewind the input tape
- simulate T₂

example:

• SQUARE = $ID \oplus ID$

Union

$$R_1 \cup R_2$$

- ► H-product $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$
- H-star $R^{H^{\star}} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i (u, v_i) \in R\}$

Union

$$R_1 \cup R_2$$

- ► H-product $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$
- H-star $R^{H^{\star}} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i (u, v_i) \in R\}$

- repeat
 - simulate *T*
 - rewind the input tape
- or accept nondeterministically

example:

• POWERS = ID^{H*}

Union

$$R_1 \cup R_2$$

- ► H-product $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$
- H-star $R^{H\star} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i (u, v_i) \in R\}$

Definition $(HAD(\Sigma^* \times \Delta^*))$

The family of Hadamard relations is the smallest family:

- including rational relations
- closed under Hadamard operations

What about two-way transducers?

Theorem *1-way transducers* = RAT.

What about two-way transducers?

Theorem *1-way transducers* = RAT.

What about rotating transducers?

Theorem *1-way transducers* = RAT.

Rotating transducers

What about rotating transducers?

Theorem rotating transducers = HAD.

Right to left scan of the input

• Mirror operation: $\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$

Example $\overline{\text{ID}} = \{w, \overline{w}\}$

Right to left scan of the input

• Mirror operation: $\overline{R} = \{(\overline{u}, v) \mid (u, v) \in R\}$

Example $\overline{\text{ID}} = \{w, \overline{w}\}$

Definition $(MHAD (\Sigma^* \times \Delta^*))$

The family of Mirror-Hadamard relations is the smallest family:

- including rational relations
- closed under Hadamard operations and mirror

What about sweeping transducers?

Theorem sweeping transducers = MHAD.

What about sweeping transducers?

Theorem sweeping transducers = MHAD.

What about sweeping transducers?

Theorem sweeping transducers = MHAD.

19/26

We focus on a weaker problem:

$$\Sigma = \{a\}$$
 and $\Delta = \{a\}$

We focus on a weaker problem:

$$\Sigma = \{a\}$$
 and $\Delta = \{a\}$

Examples

• UID = $\{(a^n, a^n) \mid n \in \mathbb{N}\}$

 $\in Rat$

We focus on a weaker problem:

$$\Sigma = \{a\}$$
 and $\Delta = \{a\}$

Examples

► UID = {
$$(a^n, a^n) \mid n \in \mathbb{N}$$
} $\in RAT$

► USQUARE = UID ⊕ UID = $\{(a^n, a^{2n}) \mid n \in \mathbb{N}\}$ $\in RAT$

We focus on a weaker problem:

$$\Sigma = \{a\}$$
 and $\Delta = \{a\}$

Examples

• UID =
$$\{(a^n, a^n) \mid n \in \mathbb{N}\}$$
 $\in RAT$

- ► USQUARE = UID ⊕ UID = { $(a^n, a^{2n}) | n \in \mathbb{N}$ } $\in \text{RAT}$
- ▶ UPOWERS = $\text{UID}^{H^{\star}} = \{(u^n, u^{kn}) \mid k, n \in \mathbb{N}\} \in \text{HAD} \setminus \text{RAT}$

21/26

Theorem

2-way unary transducers = HAD

Theorem 2-way unary transducers = HAD Corollary

2-way unary transducers \longrightarrow rotating transducers.

Example

UPOWERS = $\{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$

- commutative output
- deal with nondeterministic central loops ($\Sigma = \{a\}$ and $\Delta = \{a\}$).

- commutative output
- deal with nondeterministic central loops ($\Sigma = \{a\}$ and $\Delta = \{a\}$).

а	а	а	а	а	а	а	а	а	а	а	а	а	
		0-	•1)-	*2-	•(1)								
		0.	-4*	-3*									

- commutative output
- deal with nondeterministic central loops ($\Sigma = \{a\}$ and $\Delta = \{a\}$).

а	а	а	а	а	а	а	а	а	а	а	а	а	
				0-	•1)-	•2-	•(1)						
				0*	-(4)*	-3*							

- commutative output
- deal with nondeterministic central loops ($\Sigma = \{a\}$ and $\Delta = \{a\}$).

а	а	а	а	а	а	а	а	а	а	а	а	а	
		0-	•1)-	*2-	•(1)								
		0.	-4*	-3*									

- commutative output
- deal with nondeterministic central loops ($\Sigma = \{a\}$ and $\Delta = \{a\}$).

а	а	а	а	а	а	а	а	а	а	а	а	а	
		0-	•1)-	•2-	•1)-	•2)-	*(1)						
		0*	-4*	-3*	-4	-3*	\sim						

- commutative output
- deal with nondeterministic central loops ($\Sigma = \{a\}$ and $\Delta = \{a\}$).

- commutative output
- deal with nondeterministic central loops ($\Sigma = \{a\}$ and $\Delta = \{a\}$).

- commutative output
- deal with nondeterministic central loops ($\Sigma = \{a\}$ and $\Delta = \{a\}$).

 а	а	а	а	а	а	а	а	а	а	а	а	а	
		0-	•1)-	*2-	•(1)								
		0.	-4*	-3*									
			(1)-	*2-	•1								
		0.	-(4)* ``(1)-	-0 •0									
		•	_(4)*	-3*									
)										

The output-unary case

arbitrary Σ and $\Delta = \{a\}$

 $\frac{Proposition}{HAD} = MHAD$

The output-unary case

arbitrary Σ and $\Delta = \{a\}$

Proposition
$$\stackrel{\in \text{RAT}}{\bigcup}$$
 HAD = MHAD = $\underset{finite}{\bigcup} \stackrel{\stackrel{\swarrow}{R} \stackrel{\vee}{\oplus} S^{H^*}$

The output-unary case

Proposition $\stackrel{\in \text{RAT}}{\bigcup}$ HAD = MHAD = $\underset{finite}{\bigcup} \stackrel{\stackrel{\swarrow}{R} \stackrel{\searrow}{\textcircled{}_{\tiny{B}}} S^{H\star}$

arbitrary Σ and $\Delta = \{a\}$

$$\Sigma = \{a, \#\}$$
 and $\Delta = \{a\}$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{a, \#\}$$
 and $\Delta = \{a\}$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{a, \#\}$$
 and $\Delta = \{a\}$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{a, \#\}$$
 and $\Delta = \{a\}$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{a, \#\}$$
 and $\Delta = \{a\}$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{a, \#\}$$
 and $\Delta = \{a\}$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{a, \#\}$$
 and $\Delta = \{a\}$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{a, \#\}$$
 and $\Delta = \{a\}$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

Two-way transducers **VERSUS** Algebra

Two-way transducers **VERSUS** Algebra

Descriptional complexity

Two-way transducers

transducer	one-way	rotating	sweeping	two-way
a,-1 b				
general			MHAD	
input unary	Ват			MIHAD
output unary	10111	H.	AD	
input and ouptut unary				

Descriptional complexity

Two-way transducers

transducer	one-way	rotating	sweeping	two-way
a1 b				
general			MHAD	
input unary	Ват			MIHAD
output unary	10.11	H	AD	
input and ouptut unary				

Alternating 2onfa

Descriptional complexity

Two-way transducers

transducer	one-way	rotating	sweeping	two-way
general			MHAD	
input unary	Ват			MIHAD
output unary	10111	H.	AD	
input and ouptut unary				

Alternating 2onfa

Descriptional complexity

Two-way transducers

transducer	one-way	rotating	sweeping	two-way
a1 b				
general			MHAD	
input unary	Ват			MIHAD
output unary	10.11	H	AD	
input and ouptut unary				

Alternating 2onfa

• Other restrictions on nondeterminism of 2NFA

Uniformization

Descriptional complexity

Two-way transducers

transducer		one-way	rotating	sweeping	two-way
a1 b	F				
general	ſ			MHAD	
input unary		Ват			MIHAD
output unary		10111	H.	AD	
input and ouptut unary	Π				

Alternating 2onfa

- Uniformization
- ► Composition *R*₁ ∘ *R*₂
- Transitive closure

Descriptional complexity

Two-way transducers

transducer	one-way	rotating	sweeping	two-way
a,-1 b				
general			MHAD	
input unary	Ват			MIHAD
output unary	10.11	H.	AD	
input and ouptut unary				

Alternating 2onfa

- Uniformization
- ► Composition *R*₁ ∘ *R*₂
- Transitive closure
- Extend to series

Descriptional complexity

Two-way transducers

transducer	one-way	rotating	sweeping	two-way
general			MHAD	
input unary	Ват			MIHAD
output unary	10.11	H.	AD	
input and ouptut unary				

Alternating 2onfa

- Uniformization
- ► Composition *R*₁ ∘ *R*₂
- Transitive closure
- Extend to series
- Describe the mirror

Descriptional complexity

Two-way transducers

transducer	one-way	rotating	sweeping	two-way
a,-1 b				
general			MHAD	
input unary	Ват			MIHAD
output unary	10111	H.	AD	
input and ouptut unary				

Alternating 2onfa

- Uniformization
- ► Composition *R*₁ ∘ *R*₂
- Transitive closure
- Extend to series
- Describe the mirror
- Cost of simulations

Descriptional complexity

Two-way transducers

transducer	one-way	rotating	sweeping	two-way
a1 b				
general			MHAD	
input unary	Ват			MIHAD
output unary	10.11	Н	AD	
input and ouptut unary				

Alternating 2onfa

• Other restrictions on nondeterminism of 2NFA

- Uniformization
- ► Composition *R*₁ ∘ *R*₂
- Transitive closure
- Extend to series
- Describe the mirror
- Cost of simulations

Thanks for your attention