Both ways rational functions

Christian Choffrut ${ }^{1}$ and Bruno Guillon ${ }^{1,2}$
${ }^{1}$ IRIF - Université Paris-Diderot, Paris 7
${ }^{2}$ Dipartimento di Informatica - Università degli studi di Milano

$$
\text { July 25, } 2016
$$

Transductions

Definition

A transduction is a relation in $\Sigma^{*} \times \Delta^{*}$.

Transductions

Definition

 input and output alphabetsA transduction is a relation in $\Sigma^{*} \times \Delta^{*}$.

Examples

$$
R:=\left\{\left.(u, v)| | u\right|_{a}=|v|_{a}\right\}
$$

Transductions

Definition

input and output alphabets
A transduction is a relation in $\Sigma^{*} \times \Delta^{*}$.

Examples

$$
R:=\left\{\left.(u, v)| | u\right|_{a}=|v|_{a}\right\}
$$

$$
S:=\left\{\left.(u, v)| | u\right|_{a}=|v|_{a} \text { and }|u|_{b}=|v|_{b}\right\}
$$

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.
copy vowels and duplicate consonants

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.
copy vowels and duplicate consonants

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.
copy vowels and duplicate consonants

C	a	n	a	d	a
\downarrow		\downarrow	\downarrow		
C C	a	n n	a	d d	a

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.
copy vowels and duplicate consonants

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.
copy vowels and duplicate consonants

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.
copy vowels and duplicate consonants

Theorem (Elgot \& Mezei)
[-way1] transductions $=$ rational relations (Rat)

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.
copy vowels and duplicate consonants

Theorem (Elgot \& Mezei)
[-way1] transductions $=$ rational relations (Rat)
closure of finite transductions under union, concatenation and Kleene star

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.
copy vowels and duplicate consonants

Theorem (Elgot \& Mezei)
[-way1] transductions $=$ rational relations (Rat)
closure of finite transductions under union, concatenation and Kleene star

$$
R:=\left\{\left.(u, v)| | u\right|_{a}=|v|_{a}\right\} \in \operatorname{Rat}
$$

One-way transductions

- [-way1] transduction if accepted by a [-way1] [-tape2] automaton.
copy vowels and duplicate consonants

Theorem (Elgot \& Mezei)
[-way1] transductions $=$ rational relations (Rat)
closure of finite transductions under union, concatenation and Kleene star

$$
\begin{gathered}
R:=\left\{\left.(u, v)| | u\right|_{a}=|v|_{a}\right\} \in \operatorname{Rat} \\
S:=\left\{\left.(u, v)| | u\right|_{a}=|v|_{a} \text { and }|u|_{b}=|v|_{b}\right\} \notin \operatorname{Rat}
\end{gathered}
$$

Examples

$\operatorname{Id}_{\Sigma}:=\left\{(u, u) \mid u \in \Sigma^{*}\right\}$

Examples

$\operatorname{Id}_{\Sigma}:=\left\{(u, u) \mid u \in \Sigma^{*}\right\}$

c a n a d a
$\overline{\operatorname{ld}}_{\Sigma}:=\left\{(\bar{u}, u) \mid u \in \Sigma^{*}\right\}$
a
d
a
n
a
C

Examples

$\operatorname{Id}_{\Sigma}:=\left\{(u, u) \mid u \in \Sigma^{*}\right\}$

Examples

$\operatorname{Id}_{\Sigma}:=\left\{(u, u) \mid u \in \Sigma^{*}\right\}$

$\overline{\mathrm{d}}_{\Sigma}:=\left\{(\bar{u}, u) \mid u \in \Sigma^{*}\right\}$

Examples

$\operatorname{Id}_{\Sigma}:=\left\{(u, u) \mid u \in \Sigma^{*}\right\}$

$\overline{\operatorname{ld}}_{\Sigma}:=\left\{(\bar{u}, u) \mid u \in \Sigma^{*}\right\}$

Examples

$\operatorname{Id}_{\Sigma}:=\left\{(u, u) \mid u \in \Sigma^{*}\right\}$

$\overline{\mathrm{Id}_{\Sigma}}:=\left\{(\bar{u}, u) \mid u \in \Sigma^{*}\right\}$

Examples

$\operatorname{Id}_{\Sigma}:=\left\{(u, u) \mid u \in \Sigma^{*}\right\}$

$\overline{\mathrm{Id}}_{\Sigma}:=\left\{(\bar{u}, u) \mid u \in \Sigma^{*}\right\}$

Examples

$\operatorname{Id}_{\Sigma}:=\left\{(u, u) \mid u \in \Sigma^{*}\right\}$

$\overline{\mathrm{I}}_{\Sigma}:=\left\{(\bar{u}, u) \mid u \in \Sigma^{*}\right\}$

The mirror operations

$$
\overline{\mathrm{d}}_{\Sigma}:=\left\{(\bar{u}, u) \mid u \in \Sigma^{*}\right\}
$$

Definition (Mirror)
The mirror of a relation $R \subseteq \Sigma^{*} \times \Delta^{*}$ is the relation:

$$
\overline{\operatorname{Id}}_{\Sigma} \circ R:=\{(u, v) \mid(\bar{u}, v) \in R\}
$$

The mirror operations

$$
\overline{\operatorname{ld}}_{\Sigma}:=\left\{(\bar{u}, u) \mid u \in \Sigma^{*}\right\}
$$

Definition (Mirror)
The mirror of a relation $R \subseteq \Sigma^{*} \times \Delta^{*}$ is the relation:

$$
\overline{\operatorname{Id}}_{\Sigma} \circ R:=\{(u, v) \mid(\bar{u}, v) \in R\}
$$

Definition $(\overline{\mathrm{Id}} \Sigma \circ$ Rat $)$
R is mirror rational if $\overline{\mathrm{I}} \Sigma \circ R \in$ Rat.

About mirrors

Proposition
$\overline{\operatorname{Id}}_{\Sigma} \notin \operatorname{Rat} \quad$ and $\quad \mathrm{Id}_{\Sigma} \notin \overline{\mathrm{Id}}_{\Sigma} \circ$ Rat

About mirrors

Proposition
$\overline{\mathrm{Id}}_{\Sigma} \notin \operatorname{Rat} \quad$ and $\quad \mathrm{Id}_{\Sigma} \notin \overline{\mathrm{Id}}_{\Sigma} \circ$ Rat
Proposition

$$
R \in \text { Rat }
$$

$$
\overline{\mathrm{Id}}_{\Sigma} \circ R \circ \overline{\mathrm{Id}}_{\Delta} \in \operatorname{Rat}
$$

About mirrors

Proposition
$\overline{\mathrm{Id}}_{\Sigma} \notin \operatorname{Rat} \quad$ and $\quad \mathrm{Id}_{\Sigma} \notin \overline{\mathrm{Id}}_{\Sigma} \circ$ Rat
Proposition

$$
R \in \text { Rat }
$$

$$
\overline{\mathrm{Id}}_{\Sigma} \circ R \circ \overline{\mathrm{Id}}_{\Delta} \in \operatorname{Rat}
$$

Both ways rational relations

Both ways rational relations

Both ways rational relations

Both ways rational relations

Both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Examples of both ways rational relations

Factorizable relations

Definition (Fact)
$\mathrm{R} \subseteq \Sigma^{*} \times \Delta^{*}$ is factorizable if there exist

- $S \subseteq \Sigma^{*} \times a^{*}$ rational such that $R=S \circ T$.
- $\mathrm{T} \subseteq a^{*} \times \Delta^{*}$ rational

bwRat versus Fact
Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \rightarrow R \circ S \rightarrow R^{-1} \bullet \overline{\mathrm{I}}_{\Sigma} \circ R \rightarrow R \circ \overline{\mathrm{I}}_{\Delta}$
bwRat versus Fact
Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{I d}_{\Sigma} \circ R \bullet R \circ \overline{I d}_{\Delta}$
- $R \cdot T \vee R \cap T \quad$ for $T \in \operatorname{Rec}$

bwRat versus Fact

Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{\mathrm{Id}}_{\Sigma} \circ R \vee R \circ \overline{\mathrm{Id}}_{\Delta}$
$\checkmark R \cdot T \vee R \cap T \quad$ for $T \in \operatorname{Rec} \quad\left(T=\underset{\text { finite } \downarrow}{\bigcup} X_{i} \times \quad Y_{i}\right)$

bu Rat versus Fact

Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{\mathrm{Id}}_{\Sigma} \circ R \vee R \circ \overline{\mathrm{Id}}_{\Delta}$
$\triangleright R \cdot T \quad R \cap T \quad$ for $T \in \operatorname{Rec} \quad\left(T=\underset{\text { finite }}{\bigcup} X_{i} \times Y_{i}\right)$
Remark

$$
\in \operatorname{Rec}\left(\Sigma^{*}\right) \quad \in \operatorname{Rec}\left(\Delta^{*}\right)
$$

- $|\Sigma|=1 \Rightarrow$ Rat $=$ Fact = bwRat.
$-|\Delta|=1 \Rightarrow$ Rat $=$ Fact $=$ bwRat.

bwRat versus Fact

Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{\mathrm{Id}}_{\Sigma} \circ R \vee R \circ \overline{\mathrm{Id}}_{\Delta}$
$จ R \cdot T \quad R \cap T \quad$ for $T \in \operatorname{Rec} \quad\left(T=\bigcup_{\text {finite }} X_{i} \times Y_{i}\right)$

Remark

- $|\Sigma|=1 \Rightarrow$ Rat $=$ Fact = bwRat.
- $|\Delta|=1 \Rightarrow$ Rat $=$ Fact $=$ bwRat.
$\in \operatorname{Rec}\left(\Sigma^{*}\right) \quad \in \operatorname{Rec}\left(\Delta^{*}\right)$
Corollary
- Fact \subseteq bwRat

bwRat versus Fact

Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{\mathrm{Id}}_{\Sigma} \circ R \vee R \circ \overline{\mathrm{Id}}_{\Delta}$
$จ R \cdot T \quad R \cap T \quad$ for $T \in \operatorname{Rec} \quad\left(T=\bigcup_{\text {finite }} X_{i} \times Y_{i}\right)$

Remark

- $|\Sigma|=1 \Rightarrow$ Rat $=$ Fact $=$ bwRat.
$-|\Delta|=1 \Rightarrow$ Rat $=$ Fact $=$ bwRat.

Corollary

- Fact \subseteq bwRat

Question
Do we have Fact = bwRat?

bwRat versus Fact

Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{\mathrm{Id}}_{\Sigma} \circ R \vee R \circ \overline{\mathrm{Id}}_{\Delta}$

- R.T $\neg R \cap T \quad$ for $T \in \operatorname{Rec} \quad\left(T=\bigcup_{\text {finite }} X_{i} \times Y_{i}\right)$

Remark

- $|\Sigma|=1 \Rightarrow$ Rat $=$ Fact = bwRat.
$-|\Delta|=1 \Rightarrow$ Rat $=$ Fact $=$ bwRat.

Corollary

- Fact \subseteq bwRat

Question
Do we have Fact = bwRat? No.

bwRat versus Fact

Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{\mathrm{Id}}_{\Sigma} \circ R \vee R \circ \overline{\mathrm{Id}}_{\Delta}$
$\bullet R \cdot T \vee R \cap T \quad$ for $T \in \operatorname{Rec} \quad\left(T=\bigcup_{\text {finite }} X_{i} \times Y_{i}\right)$

Remark
$-|\Sigma|=1 \Rightarrow$ Rat $=$ Fact = bwRat.
$-|\Delta|=1 \Rightarrow$ Rat $=$ Fact = bwRat.
$-|\Sigma|=1 \Rightarrow$ Rat $=$ Fact = bwRat.
$-|\Delta|=1 \Rightarrow$ Rat $=$ Fact = bwRat.

Corollary

- Fact \subseteq bwRat

Question
Do we have Fact = bwRat? No.
Theorem
If R is a rational (partial) function then:

$$
R \in \text { bwRat } \quad \Leftrightarrow \quad R \in \text { Fact }
$$

bwRat versus Fact

Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{\mathrm{Id}}_{\Sigma} \circ R \vee R \circ \overline{\mathrm{Id}}_{\Delta}$
-R.T $\neg R \cap T \quad$ for $T \in \operatorname{Rec} \quad\left(T=\bigcup_{\text {finite }} X_{i} \times Y_{i}\right)$
Remark

- $|\Sigma|=1 \Rightarrow$ Rat $=$ Fact = bwRat. $\in \operatorname{Rec}\left(\Sigma^{*}\right) \quad \in \operatorname{Rec}\left(\Delta^{*}\right)$
$\rightarrow|\Delta|=1 \Rightarrow$ Rat $=$ Fact = bwRat.
Corollary
- Fact \subseteq bwRat

Question

Do we have Fact = bwRat?

No.

Theorem
If R is a rational (partial) function then:

$$
R \in \text { bwRat } \quad \Leftrightarrow \quad R \in \text { Fact } \quad \Leftrightarrow \quad \text { image }(R)=\bigcup_{\text {finite }} x y^{*} z
$$

bwRat versus Fact

Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{\mathrm{Id}}_{\Sigma} \circ R \vee R \circ \overline{\mathrm{Id}}_{\Delta}$
-R.T $\vee R \cap T \quad$ for $T \in \operatorname{Rec} \quad\left(T=\bigcup_{\text {finite }} X_{i} \times Y_{i}\right)$
Remark

- $|\Sigma|=1 \Rightarrow$ Rat $=$ Fact = bwRat.
$-|\Delta|=1 \Rightarrow$ Rat $=$ Fact $=$ bwRat.

Question

Do we have Fact = bwRat?

No.

Theorem
If R is a rational (partial) function then:

$$
R \in \text { bwRat } \quad \Leftrightarrow \quad R \in \text { Fact } \quad \Leftrightarrow \quad \text { image }(R)=\bigcup_{\text {finite }} \widehat{x y^{*} z}
$$

bwRat versus Fact

Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{\mathrm{Id}}_{\Sigma} \circ R \vee R \circ \overline{\mathrm{Id}}_{\Delta}$
-R.T $\vee R \cap T \quad$ for $T \in \operatorname{Rec} \quad\left(T=\bigcup_{\text {finite }} X_{i} \times Y_{i}\right)$
Remark

- $|\Sigma|=1 \Rightarrow$ Rat $=$ Fact = bwRat.
$-|\Delta|=1 \Rightarrow$ Rat $=$ Fact $=$ bwRat.

Question

Do we have Fact = bwRat?

No.

Theorem
If R is a rational (partial) function then:

$$
\begin{aligned}
R \in \mathrm{bwRat} & \Leftrightarrow \quad R \in \mathrm{Fact} \quad \Leftrightarrow \quad \text { image }(R)=\bigcup_{\text {finite }} \frac{\lambda}{x y^{*} z} \\
& \leftarrow
\end{aligned}
$$

bwRat versus Fact

Proposition (closure properties)
If R and S belongs to Fact (resp. bwRat), then so do:
$-R \cup S \bullet R \circ S \bullet R^{-1} \bullet \overline{\mathrm{Id}}_{\Sigma} \circ R \vee R \circ \overline{\mathrm{Id}}_{\Delta}$
-R.T $\vee R \cap T \quad$ for $T \in \operatorname{Rec} \quad\left(T=\bigcup_{\text {finite }} X_{i} \times Y_{i}\right)$
Remark

$$
\in \operatorname{Rec}\left(\Sigma^{*}\right) \quad \in \operatorname{Rec}\left(\Delta^{*}\right)
$$

- $|\Sigma|=1 \Rightarrow$ Rat $=$ Fact $=$ bwRat.
$-|\Delta|=1 \Rightarrow$ Rat $=$ Fact $=$ bwRat.

Question

Do we have Fact = bwRat? No.

Theorem
If R is a rational (partial) function then:

$$
\begin{array}{rll}
R \in \text { bwRat } & \Leftrightarrow \quad R \in \text { Fact } & \Leftrightarrow \\
& \Leftarrow &
\end{array}
$$

Corollary

- Fact \subseteq bwRat

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup x y^{*} z$ finite

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup_{\text {finite }} x y^{*} z$

Consider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup x y^{*} z$ finite

Consider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup x y^{*} z$

 finiteConsider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup x y^{*} z$

 finiteConsider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$

Proof of $R \in$ bwRat $\Rightarrow \operatorname{image}(R)=\bigcup x y^{*} z$

Consider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup x y^{*} z$

Consider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$ finite

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup x y^{*} z$

Consider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup x y^{*} z$ finite

Consider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup x y^{*} z$ finite

Consider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$

$$
=\{(v, \bar{v}) \mid v \in \operatorname{image}(R)\} \in \operatorname{Rat}
$$

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup x y^{*} z$

 finiteConsider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$

$$
=\{(v, \bar{v}) \mid v \in \operatorname{image}(R)\} \in \operatorname{Rat}
$$

$$
\Longrightarrow \text { image }(R)=\bigcup_{\text {finite }} x y^{*} z
$$

Proof of $\mathrm{R} \in$ bwRat \Rightarrow image $(\mathrm{R})=\bigcup x y^{*} z$

 finiteConsider the function: $\mathrm{R}^{-1} \circ \mathrm{R} \circ \overline{\mathrm{Id}}_{\Delta}$

$$
=\{(v, \bar{v}) \mid v \in \operatorname{image}(R)\} \in \operatorname{Rat}
$$

Counter example: bwRat \nsubseteq Fact

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$
belongs to Sep if and only if
- $i \neq \ell$
- or $k \neq \ell$

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$
belongs to Sep if and only if
- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$
belongs to Sep if and only if
- $i \neq \ell$
- or $k \neq \ell$
- or $(k=n$ and $j=m)$

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$
belongs to Sep if and only if
- $i \neq \ell$
- or $k \neq \ell$
- or $(k=n$ and $j=m)$

Proposition \quad Sep \in bwRat

Counter example: bwRat \nsubseteq Fact

belongs to Sep if

- $i \neq \ell$
- or $k \neq \ell$
- or $(i=n$ and $j=m)$

Proposition \quad Sep \in bwRat but \quad Sep \notin Fact
belongs to Sep if and only if

- $i \neq \ell$
- or $k \neq \ell$
- or $(k=n$ and $j=m)$

Conclusion

Conclusion

Conclusion

Conclusion \quad Functional case

Conclusion \quad Functional case

Conclusion \quad Functional case

Thanks for your attention. 13/13

