Sweeping weakens 2-way Transducers even with a unary output alphabet

Bruno Guillon ${ }^{1,2}$
${ }^{1}$ LIAFA — Université Paris-Diderot, Paris 7
${ }^{2}$ Dipartimento di Informatica - Università degli studi di Milano

August 31, 2015
Non-Classical Models of Automata and Applications Porto 2015

1-way automaton over Σ

$(Q, q, F, \delta) \stackrel{A}{\downarrow}$

2-way automaton over Σ

$$
(Q, q-, F, \underbrace{\delta)} \stackrel{A}{」} \text { transition set: } Q \times \Sigma_{D, \triangleleft} \times\{-1,0,1\} \times Q
$$

2-way transducer over Σ, Г

$$
(Q, q-, F, \delta) \stackrel{(A, \phi)}{\longleftrightarrow} \bigsqcup^{\longleftrightarrow} \text { transition set: } Q \times \Sigma_{\triangleright, \varangle \times\{-1,0,1\} \times Q} \text { production function: } \delta \rightarrow \operatorname{Rat}\left(\Gamma^{*}\right)
$$

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word
- rewind the input tape

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word
- rewind the input tape
- append a copy of the input word

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word
- rewind the input tape
- append a copy of the input word

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

accept and halt with nondeterminism

Rational operations

- Union
- Componentwise concatenation

$$
R_{1} \cdot R_{2}=\left\{\left(u_{1} u_{2}, v_{1} v_{2}\right) \mid\left(u_{1}, v_{1}\right) \in R_{1} \text { and }\left(u_{2}, v_{2}\right) \in R_{2}\right\}
$$

- Kleene star

$$
R^{*}=\left\{\left(u_{1} u_{2} \cdots u_{k}, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u_{i}, v_{i}\right) \in R\right\}
$$

Rational operations

- Union
- Componentwise concatenation

$$
R_{1} \cdot R_{2}=\left\{\left(u_{1} u_{2}, v_{1} v_{2}\right) \mid\left(u_{1}, v_{1}\right) \in R_{1} \text { and }\left(u_{2}, v_{2}\right) \in R_{2}\right\}
$$

- Kleene star

$$
R^{*}=\left\{\left(u_{1} u_{2} \cdots u_{k}, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u_{i}, v_{i}\right) \in R\right\}
$$

Definition $\left(\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)\right)$
The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Rational operations

- Union
- Componentwise concatenation

$$
R_{1} \cdot R_{2}=\left\{\left(u_{1} u_{2}, v_{1} v_{2}\right) \mid\left(u_{1}, v_{1}\right) \in R_{1} \text { and }\left(u_{2}, v_{2}\right) \in R_{2}\right\}
$$

- Kleene star

$$
R^{*}=\left\{\left(u_{1} u_{2} \cdots u_{k}, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u_{i}, v_{i}\right) \in R\right\}
$$

Definition $\left(\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)\right)$
The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Theorem (Elgot, Mezei - 1965)
1-way transducers $=$ the class of rational relations.

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

Example: $\operatorname{SQUARE}=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}=$ Identity \oplus Identity

- copy the input word
- rewind the input tape
- append a copy of the input word

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

- H-star

$$
R^{H \star}=\left\{\left(u, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u, v_{i}\right) \in R\right\}
$$

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

- H-star

$$
R^{H \star}=\left\{\left(u, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u, v_{i}\right) \in R\right\}
$$

Example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}=$ Identity $^{H \star}$

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

- H-star

$$
R^{H \star}=\left\{\left(u, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u, v_{i}\right) \in R\right\}
$$

Property

```
two-way transducers are closed under H-operations.
```


H-Rat relations

Definition
A relation R is in $H-\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)$ if

$$
R=\bigcup_{0 \leq i \leq n} A_{i} \oplus B_{i}^{H \star}
$$

where for each i, A_{i} and B_{i} are rational relations.

H-Rat relations

Definition
A relation R is in $H-\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)$ if

$$
R=\bigcup_{0 \leq i \leq n} A_{i} \oplus B_{i}^{H \star}
$$

where for each i, A_{i} and B_{i} are rational relations.

Theorem (Choffrut, G. - 2014)
When $\Sigma=\{a\}$ and $\Gamma=\{a\}$:
2-way transducers $=H$-Rat relations

Main result

Theorem (Choffrut, G. - 2014)
When Σ antrit $\Gamma=\{a\}$:
2-way transducers (?) H-Rat

Main result

Theorem (Choffrut, G. - 2014)
When Σ antr $\Gamma=\{a\}$:
2-way transducers (?) H-Rat $=$ sweeping transducers

Main result

Theorem (- This talk
When $\Sigma=\{a\}$ antit $\Gamma=\{a\}$:
2-way transducers $\neq H$-Rat $=$ sweeping transducers

Main result

Theorem (- This talk
When Σ antrt $\Gamma=\{a\}$:
2-way transducers $\neq H$-Rat $=$ sweeping transducers

$$
\text { H-Rat } \subsetneq \text { 2-way transducers }
$$

Known results on 2-way transducers

- functional $=$ deterministic \rightleftharpoons MSO definable functions
- general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]

Known results on 2-way transducers

- functional $=$ deterministic $=$ MSO definable functions
- general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
- general uniformizable by deterministic
[de Souza - 2013]

Known results on 2-way transducers

- functional $=$ deterministic $=$ MSO definable functions
- general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
- general uniformizable by deterministic
[de Souza - 2013]
- 1-way simulation of 2-way functional transducer:
decidable and constructible
[Filiot et al. - 2013]

Known results on 2-way transducers with unary output

$$
\text { When } \Gamma=\{a\}:
$$

Known results on 2-way transducers with unary output

```
When \(\Gamma=\{a\}\) :
- unambiguous \(\longrightarrow\) 1-way
- unambiguous \(=\) deterministic
```

[Carnino, Lombardy - 2014]

Known results on 2-way transducers with unary output

```
When \(\Gamma=\{a\}\) :
- unambiguous \(\longrightarrow\) 1-way
- unambiguous \(=\) deterministic
```

[Carnino, Lombardy - 2014]

- general uniformizable by 1-way
[Choffrut, G. - 2014]

Known results on 2-way transducers with unary output

```
When \(\Gamma=\{a\}\) :
- unambiguous \(\square\)
- unambiguous \(=\) deterministic
```

[Carnino, Lombardy - 2014]

- general uniformizable by 1-way
[Choffrut, G. - 2014]
- tropical $=1$-way
[Carnino, Lombardy - 2014]
\rightarrow production function $\Phi: \delta \rightarrow\left\{a^{n} a^{*} \mid n \in \mathbb{N}\right\}$

Sketch of the proof

Theorem

Sketch of the proof

Theorem
two-way transducer $\neq H$-Rat

$$
\left(\bigcup_{i} A_{i} \oplus B_{i}^{H \star}\right)
$$

- Establish a non-trivial property satisfied by rational relations;

Sketch of the proof

Theorem

$$
\begin{gathered}
\text { When } \Gamma=\{a\} . \quad \text { two-way transducer } \neq \frac{H-R a t}{} \\
\left(\bigcup_{i} A_{i} \oplus B_{i}^{H \star}\right) \longleftarrow
\end{gathered}
$$

- Establish a non-trivial property satisfied by rational relations;
- Extend it to H-Rat relations;

Sketch of the proof

Theorem

$$
\begin{gathered}
\text { When } \Gamma=\{a\} . \quad \text { two-way transducer } \neq \frac{H-R a t}{} \\
\left(\bigcup_{i} A_{i} \oplus B_{i}^{H \star}\right) \longleftarrow
\end{gathered}
$$

- Establish a non-trivial property satisfied by rational relations;
- Extend it to H-Rat relations;
- Find a relation accepted by a two-way transducer which does not satisfy the previous property.

Revisiting the family Rat($\left.a^{*}\right)$

the family $\operatorname{Rat}\left(a^{*}\right)$ is isomorphic to the rational subsets of \mathbb{N}
by the canonical mapping $a^{n} \mapsto n$

Revisiting the family Rat($\left.a^{*}\right)$

the family $\operatorname{Rat}\left(a^{*}\right)$ is isomorphic to the rational subsets of \mathbb{N}
by the canonical mapping $a^{n} \mapsto n$

Revisiting the family $\operatorname{Rat}\left(a^{*}\right)$

the family $\operatorname{Rat}\left(a^{*}\right)$ is isomorphic to the rational subsets of \mathbb{N}
by the canonical mapping $a^{n} \mapsto n$

Revisiting the family Rat($\left.a^{*}\right)$

the family $\operatorname{Rat}\left(a^{*}\right)$ is isomorphic to the rational subsets of \mathbb{N}
by the canonical mapping $a^{n} \mapsto n$

Revisiting the family Rat($\left.a^{*}\right)$

the family $\operatorname{Rat}\left(a^{*}\right)$ is isomorphic to the rational subsets of \mathbb{N}
by the canonical mapping $a^{n} \mapsto n$

Revisiting the family $\operatorname{Rat}\left(a^{*}\right)$

the family $\operatorname{Rat}\left(a^{*}\right)$ is isomorphic to the rational subsets of \mathbb{N}

by the canonical mapping $a^{n} \mapsto n$

$$
L=A \cup(t+M+p \mathbb{N})
$$

where: $\quad t, p \in \mathbb{N}, \quad A \subseteq \llbracket 0, t \llbracket \quad$ and $\quad M \subseteq \llbracket 0, p \llbracket$

- t is a threshold for L
- p is a period for L

Periods of images

$R \subseteq \Sigma^{*} \times \Gamma^{*}$. The image of $u \in \Sigma^{*}$ is:

$$
R(u)=\{v \mid(u, v) \in R\} \in 2^{\Gamma^{*}}
$$

Periods of images

$R \subseteq \Sigma^{*} \times \Gamma^{*}$. The image of $u \in \Sigma^{*}$ is:

$$
R(u)=\{v \mid(u, v) \in R\} \in 2^{\Gamma^{*}}
$$

Theorem
R is rational $\Rightarrow \exists t, p$ such that $\forall u$

- $t(|u|+1)$ is a threshold and
- p is a period
of $R(u)$.

Periods of images

$R \subseteq \Sigma^{*} \times \Gamma^{*}$. The image of $u \in \Sigma^{*}$ is:

$$
R(u)=\{v \mid(u, v) \in R\} \in 2^{\Gamma^{*}}
$$

Theorem
R is rational $\Rightarrow \exists t, p$ such that $\forall u$

- $t(|u|+1)$ is a threshold and
- p is a period
of $R(u)$.

Theorem
R is H-Rat $\Rightarrow \exists k$ such that $\forall u, R(u)$ has a period $p \in \mathcal{O}\left(|u|^{k}\right)$.

The counter example

$$
\begin{gathered}
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\} \\
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
\end{gathered}
$$

The counter example

$$
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\}
$$

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

start

The counter example

$$
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\}
$$

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

start \longrightarrow choose block

The counter example

$$
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\}
$$

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

start \longrightarrow choose block
copy block

The counter example

$$
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\}
$$

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\}
$$

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\}
$$

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
\begin{gathered}
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\} \\
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
\end{gathered}
$$

The counter example

$$
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\}
$$

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
\begin{gathered}
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\} \\
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\} \\
u=\# a^{n_{1}} \# a^{n_{2}} \# \cdots \# a^{n_{r}} \# \\
R(u)=\bigcup_{0<i \leq r}\left\{a^{k n_{i}}\right\} \quad \text { has minimal period } \operatorname{lcm}_{0<i \leq r}\left(n_{i}\right) \\
|u|=\sum_{0<i \leq r} n_{i}+r+1
\end{gathered}
$$

The counter example

$$
\begin{gathered}
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\} \\
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\} \\
u=\# a^{n_{1}} \# a^{n_{2}} \# \cdots \# a^{n_{r}} \# \\
R(u)=\bigcup_{0<i \leq r}\left\{a^{k n_{i}}\right\} \quad \text { has minimal period } \mid c m_{0<i \leq r}\left(n_{i}\right) \\
|u|=\sum_{0<i \leq r} n_{i}+r+1 \\
g(n)=\max \left(\left\{\operatorname{lcm}\left(n_{i}\right) \mid \sum n_{i}=n\right\}\right) \quad \text { (Landau's function) }
\end{gathered}
$$

The counter example

$$
\begin{gathered}
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\} \\
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\} \\
u=\# a^{n_{1}} \# a^{n_{2}} \# \cdots \# a^{n_{r}} \# \\
R(u)=\bigcup_{0<i \leq r}\left\{a^{k n_{i}}\right\} \quad \text { has minimal period } \mid c m_{0<i \leq r}\left(n_{i}\right) \\
|u|=\sum_{0<i \leq r} n_{i}+r+1 \\
g(n)=\max \left(\left\{\left|\mathrm{cm}\left(n_{i}\right)\right| \sum n_{i}=n\right\}\right) \quad \text { (Landau's function) } \\
\text { the period is super-polynomial in }|u|
\end{gathered}
$$

Example with polynomial period

start \longrightarrow choose index

Example with polynomial period

start \longrightarrow choose index \longrightarrow find block

Example with polynomial period

Example with polynomial period

$$
\begin{gathered}
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\} \\
R_{r}=\left\{\left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i} n}\right) \mid n \in \mathbb{N}\right\}
\end{gathered}
$$

accept and halt with nondeterminism

Example with polynomial period

Example with polynomial period

$$
\begin{gathered}
\Sigma=\{\#, a\} \text { and } \Gamma=\{a\} \\
R_{r}=\left\{\left(\# a^{k_{1}} \# a^{k_{2}} \# \cdots \# a^{k_{r}} \#, a^{k_{i} n}\right) \mid n \in \mathbb{N}\right\}
\end{gathered}
$$

the period of $R(u)$ is in $\mathcal{O}\left(|u|^{r}\right)$

Conclusion

When $\Gamma=\{a\}$:

- two-way transducers:

transducer	family
deterministic unambiguous functional	$=$ rational
sweeping outer-nondeterm input unary	$=$ H-Rat
general	$\supsetneq H$ Hat

Conclusion

When $\Gamma=\{a\}$:

- two-way transducers:

transducer	family
deterministic unambiguous functional	$=$ rational
sweeping outer-nondeterm input unary	$=$ H-Rat
general	$\supsetneq H$ Hat

- images of u :

family	threshold	period
rational	linear	constant
H-Rat		polynomial

Conclusion

When $\Gamma=\{a\}$:

- two-way transducers:

transducer	family
deterministic unambiguous functional	$=$ rational
sweeping outer-nondeterm input unary	$=$ H-Rat
general	$\supsetneq H$ Hat

- images of u :

family	threshold	period
rational	linear	constant
H-Rat		polynomial

Thank you for your attention.

