Sweeping weakens 2-way Transducers even with a unary output alphabet

Bruno Guillon^{1,2}

¹LIAFA — Université Paris-Diderot, Paris 7 ²Dipartimento di Informatica — Università degli studi di Milano

August 31, 2015 Non-Classical Models of Automata and Applications Porto 2015

1-way automaton over Σ

2-way automaton over Σ

2-way transducer over Σ , Γ

copy the input word

- copy the input word
- rewind the input tape

- copy the input word
- rewind the input tape
- append a copy of the input word

- copy the input word
- rewind the input tape
- append a copy of the input word

copy the input word \longrightarrow rewind the input tape

copy the input word \longrightarrow rewind the input tape

Rational operations

Union

$$R_1 \cup R_2$$

• Componentwise concatenation $R_1 \cdot R_2 = \{(u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$

Kleene star

$$R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Rational operations

Union

$$R_1 \cup R_2$$

- Componentwise concatenation $R_1 \cdot R_2 = \{(u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$
- Kleene star

$$R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Definition $(Rat(\Sigma^* \times \Gamma^*))$

The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Rational operations

Union

$$R_1 \cup R_2$$

- Componentwise concatenation $R_1 \cdot R_2 = \{(u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$
- Kleene star

$$R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i (u_i, v_i) \in R\}$$

Definition $(Rat(\Sigma^* \times \Gamma^*))$

The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Theorem (Elgot, Mezei - 1965) 1-way transducers = the class of rational relations.

H-product

 $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

H-product

 $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

Example: $SQUARE = \{(w, ww) \mid w \in \Sigma^*\} = Identity \oplus Identity$

- copy the input word
- rewind the input tape
- append a copy of the input word

H-product

 $R_1 \oplus R_2 = \{(u, v_1v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

► H-star
$$R^{H\star} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i (u, v_i) \in R\}$$

Example: UnaryMult =
$$\left\{ (a^n, a^{kn}) \mid k, n \in \mathbb{N} \right\} =$$
Identity^{H*}

► H-product
R₁ ⊕ R₂ = {(u, v₁v₂) | (u, v₁) ∈ R₁ and (u, v₂) ∈ R₂}
► H-star
R^{H★} = {(u, v₁v₂ ··· v_k) | ∀i (u, v_i) ∈ R}

Property

two-way transducers are closed under H-operations.

H-Rat relations

Definition A relation R is in H-Rat $(\Sigma^* \times \Gamma^*)$ if

$$R = \bigcup_{0 \le i \le n} A_i \oplus B_i^{\mathsf{H}\star}$$

where for each i, A_i and B_i are rational relations.

H-Rat relations

Definition A relation R is in H-Rat $(\Sigma^* \times \Gamma^*)$ if

$$R = \bigcup_{0 \le i \le n} A_i \oplus B_i^{\mathsf{H}\star}$$

where for each i, A_i and B_i are rational relations.

```
Theorem (Choffrut, G. - 2014)
When \Sigma = \{a\} and \Gamma = \{a\}:
2-way transducers \blacksquare H-Rat relations
```

Theorem (Choffrut, G. - 2014) When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers ? H-Rat

Theorem (Choffrut, G. - 2014) When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers ? H-Rat sweeping transducers

Theorem (This talk
When
$$\Sigma = \{a\}$$
 and $\Gamma = \{a\}$:
2-way transducers \neq H-Rat = sweeping transducers

Theorem (This talk When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers \neq H-Rat = sweeping transducers H-Rat \subseteq 2-way transducers Known results on 2-way transducers

Known results on 2-way transducers

[de Souza - 2013]

Known results on 2-way transducers

Known results on 2-way transducers with unary output

When $\Gamma = \{a\}$:

Known results on 2-way transducers with unary output

Known results on 2-way transducers with unary output

Known results on 2-way transducers with unary output

When
$$\Gamma = \{a\}$$
:
• unambiguous \longrightarrow 1-way [Anselmo - 1990]
• unambiguous \Longrightarrow deterministic
[Carnino, Lombardy - 2014]
• general uniformizable by 1-way
[Choffrut, G. - 2014]
• tropical \Longrightarrow 1-way
[Carnino, Lombardy - 2014]
• production function $\Phi : \delta \rightarrow \{a^n a^* \mid n \in \mathbb{N}\}$
rational of period 1

Establish a non-trivial property satisfied by rational relations;

- Establish a non-trivial property satisfied by rational relations;
- Extend it to *H*-*Rat* relations;

- Establish a non-trivial property satisfied by rational relations;
- Extend it to H-Rat relations;
- Find a relation accepted by a two-way transducer which does not satisfy the previous property.

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

Periods of images

 $R \subseteq \Sigma^* \times \Gamma^*$. The image of $u \in \Sigma^*$ is:

 $R(u) = \{v \mid (u, v) \in R\} \in 2^{\Gamma^*}$

Periods of images

 $R \subseteq \Sigma^* \times \Gamma^*$. The image of $u \in \Sigma^*$ is:

 $R(u) = \{v \mid (u, v) \in R\} \in 2^{\Gamma^*}$

Theorem $R \text{ is rational} \Rightarrow \exists t, p \text{ such that } \forall u$ $\blacktriangleright t(|u|+1) \text{ is a threshold and}$ $\blacktriangleright p \text{ is a period}$ of R(u).

Periods of images

 $R \subseteq \Sigma^* \times \Gamma^*$. The image of $u \in \Sigma^*$ is:

 $R(u) = \{v \mid (u, v) \in R\} \in 2^{\Gamma^*}$

Theorem *R* is *H*-*R*at $\Rightarrow \exists k \text{ such that } \forall u, R(u) \text{ has a period } p \in \mathcal{O}(|u|^k).$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

start

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

start → choose block

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$u = \#a^{n_1} \#a^{n_2} \# \cdots \#a^{n_r} \#$$

 $R(u) = \bigcup_{0 < i \le r} \left\{ a^{kn_i} \right\} \quad \text{has minimal period } \lim_{0 < i \le r} (n_i)$ $|u| = \sum_{0 < i \le r} n_i + r + 1$

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$u = \#a^{n_1} \#a^{n_2} \# \cdots \#a^{n_r} \#$$

 $R(u) = \bigcup_{0 < i \le r} \left\{ a^{kn_i} \right\} \quad \text{has minimal period } \operatorname{lcm}_{0 < i \le r}(n_i)$ $|u| = \sum_{0 < i \le r} n_i + r + 1$

 $g(n) = \max(\{ |cm(n_i)| \sum n_i = n \})$ (Landau's function)

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$
$$R = \left\{ \left(u, a^{kn}\right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$u = \#a^{n_1} \# a^{n_2} \# \cdots \# a^{n_r} \#$$

 $R(u) = \bigcup_{0 < i \le r} \left\{ a^{kn_i} \right\} \quad \text{has minimal period } \operatorname{lcm}_{0 < i \le r}(n_i)$ $|u| = \sum_{0 < i \le r} n_i + r + 1$

 $g(n) = \max(\{ |cm(n_i)| \sum n_i = n \})$ (Landau's function)

the period is super-polynomial in |u|

start \longrightarrow choose index

start \longrightarrow choose index \longrightarrow find block

u = #aaa#aaaaa#aaaaaa# |u| = 20

the period of R(u) is lcm(3,5,7) = 105

the period of R(u) is in $\mathcal{O}(|u|^r)$

Conclusion

When $\Gamma = \{a\}$:

two-way transducers:

transducer		family
deterministic		
unambiguous	=	rational
functional		
sweeping		
outer-nondeterm	=	H-Rat
input unary		
general	⊋	H-Rat

Conclusion

When $\Gamma = \{a\}$:

two-way transducers:

transducer		family
deterministic		
unambiguous	=	rational
functional		
sweeping		
outer-nondeterm	=	H-Rat
input unary		
general	⊋	H-Rat

▶ images of *u*:

family	threshold	period
rational	linear	constant
H-Rat		polynomial

Conclusion

When $\Gamma = \{a\}$:

two-way transducers:

transducer		family
deterministic		
unambiguous	=	rational
functional		
sweeping		
outer-nondeterm	=	H-Rat
input unary		
general	⊋	H-Rat

▶ images of *u*:

family	threshold	period
rational	linear	constant
H-Rat		polynomial

Thank you for your attention.