Caractérisation algébrique des relations acceptées par transducteurs bidirectionnels unaires

Christian Choffrut ${ }^{1}$ et Bruno Guillon ${ }^{1,2}$
${ }^{1}$ LIAFA - Université Paris-Diderot, Paris 7
${ }^{2}$ Dipartimento di Informatica - Università degli studi di Milano

11 juin 2015
Journée MDSC - Université Nice Sophia Antipolis - 2015

1-way automaton over Σ

$(Q, q-, F, \delta) \stackrel{山^{4}}{\longleftrightarrow}$ transition set: $\subset Q \times \Sigma \times Q$

2-way automaton over Σ

$\left(Q, q_{-}, F, \delta\right) \stackrel{山^{\longleftrightarrow}}{\longleftrightarrow}$ transition set: $\subset Q \times \Sigma_{\triangleright, \triangleleft} \times\{-1,0,1\} \times Q$

2-way transducer over Σ, Г

$\left(Q, q_{-}, F, \delta\right) \stackrel{(A, \phi)}{\longleftrightarrow}$

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word
- rewind the input tape

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word
- rewind the input tape
- append a copy of the input word

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word
- rewind the input tape
- append a copy of the input word

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape $\xrightarrow{\square}$

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape -

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape -

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

accept and halt with nondeterminism

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

accept and halt with nondeterminism

Rational operations

- Union

$$
R_{1} \cup R_{2}
$$

- Componentwise concatenation

$$
R_{1} \cdot R_{2}=\left\{\left(u_{1} u_{2}, v_{1} v_{2}\right) \mid\left(u_{1}, v_{1}\right) \in R_{1} \text { and }\left(u_{2}, v_{2}\right) \in R_{2}\right\}
$$

- Kleene star

$$
R^{*}=\left\{\left(u_{1} u_{2} \cdots u_{k}, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u_{i}, v_{i}\right) \in R\right\}
$$

Rational operations

- Union
- Componentwise concatenation

$$
R_{1} \cdot R_{2}=\left\{\left(u_{1} u_{2}, v_{1} v_{2}\right) \mid\left(u_{1}, v_{1}\right) \in R_{1} \text { and }\left(u_{2}, v_{2}\right) \in R_{2}\right\}
$$

- Kleene star

$$
R^{*}=\left\{\left(u_{1} u_{2} \cdots u_{k}, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u_{i}, v_{i}\right) \in R\right\}
$$

Definition $\left(\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)\right)$
The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Rational operations

- Union
- Componentwise concatenation

$$
R_{1} \cdot R_{2}=\left\{\left(u_{1} u_{2}, v_{1} v_{2}\right) \mid\left(u_{1}, v_{1}\right) \in R_{1} \text { and }\left(u_{2}, v_{2}\right) \in R_{2}\right\}
$$

- Kleene star

$$
R^{*}=\left\{\left(u_{1} u_{2} \cdots u_{k}, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u_{i}, v_{i}\right) \in R\right\}
$$

Definition $\left(\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)\right)$
The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Theorem (Elgot, Mezei - 1965)
1-way transducers $=$ the class of rational relations.

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

Example: $\operatorname{SQUARE}=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}=$ Identity \oplus Identity

- copy the input word
- rewind the input tape
- append a copy of the input word

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

- H-star

$$
R^{H \star}=\left\{\left(u, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u, v_{i}\right) \in R\right\}
$$

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

- H-star

$$
R^{H \star}=\left\{\left(u, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u, v_{i}\right) \in R\right\}
$$

Example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}=$ Identity $^{H \star}$

H-Rat relations

Definition
A relation R is in $H-\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)$ if

$$
R=\bigcup_{0 \leq i \leq n} A_{i} \oplus B_{i}^{H \star}
$$

where for each i, A_{i} and B_{i} are rational relations.

H-Rat relations

Definition
A relation R is in $H-\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)$ if

$$
R=\bigcup_{0 \leq i \leq n} A_{i} \oplus B_{i}^{\mathrm{H}}
$$

where for each i, A_{i} and B_{i} are rational relations.
Proposition
Rat $\ddagger H$-Rat

H-Rat relations

Definition
A relation R is in $H-\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)$ if

$$
R=\bigcup_{0 \leq i \leq n} A_{i} \oplus B_{i}^{\mathrm{H}}
$$

where for each i, A_{i} and B_{i} are rational relations.
Proposition
Rat $\ddagger H$-Rat

Example

$$
\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}, k \geq 2\right\}
$$

H-Rat relations

Definition
A relation R is in $H-\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)$ if

$$
R=\bigcup_{0 \leq i \leq n} A_{i} \oplus B_{i}^{\mathrm{H} \star}
$$

where for each i, A_{i} and B_{i} are rational relations.
Proposition
Rat $\ddagger H$-Rat

Example

$$
\left\{\left(a^{n}, a^{2 n}\right) \mid n \in \mathbb{N}\right\} \oplus\left(\left\{\left(a^{n}, a^{n}\right) \mid n \in \mathbb{N}\right\}^{H \star}\right.
$$

H-Rat relations

Definition
A relation R is in $H-\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)$ if

$$
R=\bigcup_{0 \leq i \leq n} A_{i} \oplus B_{i}^{\mathrm{H}}
$$

where for each i, A_{i} and B_{i} are rational relations.
Proposition
Rat $\ddagger H$-Rat

Example

$$
\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}, k \geq 2\right\}
$$

Main result

When $\Sigma=\{a\}$ and $\Gamma=\{a\}$:

Theorem (Elgot, Mezei - 1965)
1-way transducers $=$ the class of rational relations.

Main result

When $\Sigma=\{a\}$ and $\Gamma=\{a\}$:

Theorem (This talk .-)
2-way transducers $=$ the class of H -Rat relations

Main result

When $\Sigma=\{a\}$ and $\Gamma=\{a\}$:

Theorem (This talk ..)
2-way transducers $=$ the class of H -Rat relations

Proof

- つ. easy
- \subseteq : difficult part

Known results

- 2-way functional $=$ MSO definable functions
[Engelfriet, Hoogeboom - 2001]
- 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]

Known results

- 2-way functional $=$ MSO definable functions
[Engelfriet, Hoogeboom - 2001]
- 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
- 1-way simulation of 2-way functional transducer: decidable and constructible
[Filiot et al. - 2013]

Known results

- 2-way functional $=$ MSO definable functions
[Engelfriet, Hoogeboom - 2001]
- 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
- 1-way simulation of 2-way functional transducer: decidable and constructible
[Filiot et al. - 2013]

When 「 = $\{a\}$:

- 2-way unambiguous \longrightarrow 1-way
[Anselmo - 1990]

Known results

- 2-way functional $=$ MSO definable functions
[Engelfriet, Hoogeboom - 2001]
- 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
- 1-way simulation of 2-way functional transducer: decidable and constructible
[Filiot et al. - 2013]

When $\Gamma=\{a\}$:

- 2-way unambiguous \longrightarrow 1-way
[Anselmo - 1990]
- 2-way unambiguous = 2-way deterministic
[Carnino, Lombardy - 2014]

From H-Rat to 2-way transducers

> Property
> The family of relations accepted by 2-way transducers is closed under $U,(\leftrightarrow)$ and $H \star$.

From H-Rat to 2-way transducers

```
Property
The family of relations accepted by 2-way transducers is closed under \(U,(A)\) and \(H \star\).
Proof.
- \(R_{1} \cup R_{2}\) :
- simulate \(T_{1}\) or \(T_{2}\)
```


From H-Rat to 2-way transducers

Property

The family of relations accepted by 2-way transducers is closed under $\cup,(H)$ and $H \star$.
Proof.

- $R_{1} \cup R_{2}$:
- simulate T_{1} or T_{2}
- $R_{1} \oplus R_{2}$:
- simulate T_{1}
- rewind the input tape
- simulate T_{2}

From H-Rat to 2-way transducers

Property

The family of relations accepted by 2-way transducers is closed under $\cup,(H)$ and $H \star$.

Proof.

- $R_{1} \cup R_{2}$:
- simulate T_{1} or T_{2}
- $R_{1} \oplus R_{2}$:
- simulate T_{1}
- rewind the input tape
- simulate T_{2}
- $R^{H^{\star}}$:
- repeat an arbitrary number of times:
- simulate T
- rewind the input tape
- reach the right endmarker and accept

From H-Rat to 2-way transducers

Property

The family of relations accepted by 2-way transducers is closed under $U,(H)$ and H^{\star}.

Corollary

From H-Rat to 2-way transducers

Property

The family of relations accepted by 2-way transducers is closed under $U,(\leftrightarrow)$ and $H \star$.

Corollary

From 2-way transducers to H-Rat (unary case)

A first ingredient, a preliminary result:
Lemma
With arbitrary Σ and $\Gamma=\{a\}$:

$$
\text { H-Rat is closed under } U,(H) \text { and } H^{\star} \text {. }
$$

Proof.
Tedious formal computations. . .

From 2-way transducers to H-Rat (unary case)

We fix a transducer \mathcal{T}.

- Consider border to border run segments;

From 2-way transducers to H-Rat (unary case)

We fix a transducer \mathcal{T}.

- Consider border to border run segments;

From 2-way transducers to H-Rat (unary case)

We fix a transducer \mathcal{T}.

- Consider border to border run segments;
- Compose border to border segments;

From 2-way transducers to H-Rat (unary case)

We fix a transducer \mathcal{T}.

- Consider border to border run segments;
- Compose border to border segments;

$$
R_{1} \oplus R_{2} \oplus R_{3}=\left\{\left(u, v_{1} v_{2} v_{3}\right)\right\}
$$

From 2-way transducers to H-Rat (unary case)

We fix a transducer \mathcal{T}.

- Consider border to border run segments;
- Compose border to border segments;
- Conclude using the closure properties of H-Rat.

$$
R_{1} \oplus R_{2} \oplus R_{3}=\left\{\left(u, v_{1} v_{2} v_{3}\right)\right\}
$$

From 2-way transducers to H-Rat (unary case)

define a relation $R_{b_{i}}, b_{j}$

From 2-way transducers to H-Rat (unary case)

define a relation R

From 2-way transducers to H-Rat (unary case)

\(\left.\boldsymbol{H} \boldsymbol{T}=\left(\begin{array}{cccccc}R_{0,0} \& R_{0,1} \& \cdot \& \cdot \& \cdot \& R_{0, k}

R_{1,0} \& R_{1,1} \& \cdot \& \cdot \& \cdot \& R_{1, k}

\cdot \& \& \& R_{i, j} \& \cdot

\cdot \& \& \& \cdot

\cdot \& \& \& \cdot

R_{k, 0} \& R_{k, 1} \& \cdot \& \cdot \& \cdot \& R_{k, k}\end{array}\right)\right\}\)| $\underline{\mathrm{O}}$ |
| :--- |

From 2-way transducers to H-Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix $H I T^{\text {H* }}$.

From 2-way transducers to H-Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix $H I T^{\text {H* }}$.
Remark
The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{H \star}$.

From 2-way transducers to H -Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix $H I T^{\text {Hौ }}$.
Remark
The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{H \star}$.
$\Gamma=\{a\}$, by closure property:
entries of HIT $\in H-R a t \Rightarrow$ entries of HIT ${ }^{H \star} \in H-R a t$

From 2-way transducers to H -Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix $H I T^{\text {H* }}$.
Remark
The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{\mathrm{H} \mathrm{\star}}$.
$\Gamma=\{a\}$, by closure property:
entries of HIT $\in H-R a t \Rightarrow$ entries of HIT ${ }^{H \star} \in H-R a t$
Proposition

```
sweeping transducers \subseteqH-Rat
```


From 2-way transducers to H-Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix $H I T^{\text {H* }}$.
Remark
The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{\mathrm{H} \mathrm{\star}}$.
$\Gamma=\{a\}$, by closure property:
entries of HIT $\in H-R a t \Rightarrow$ entries of HIT ${ }^{H \star} \in H-R a t$
Proposition

$$
\text { sweeping transducers }=H \text {-Rat }
$$

From 2-way transducers to H-Rat (unary case)

From 2-way transducers to H -Rat (unary case)

o
u
t
w
$\frac{\mathrm{h}}{}$
a
t
m
e
t
h
i

From 2-way transducers to H-Rat (unary case)

From 2-way transducers to H -Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix $H I T^{\text {Hौ }}$.
Remark
The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{H \star}$.
$\Gamma=\{a\}$, by closure property:
entries of HIT $\in H-R a t \Rightarrow$ entries of HIT ${ }^{H \star} \in H-R a t$

From 2-way transducers to H-Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix $H I T^{\text {H* }}$.
Remark
The relation accepted by \mathcal{T} is a union of entries of $\mathrm{HIT}^{\mathrm{H} \mathrm{\star}}$.
$\Gamma=\{a\}$, by closure property:
entries of HIT $\in H-R a t \Rightarrow$ entries of HIT ${ }^{H \star} \in H-R a t$
Proposition
unary 2-way transducers $\subseteq H-R a t$

Generalizations?

Theorem
When $\Sigma=\{a\}$ and $\Gamma=\{a\}$:
2-way transducers accept exactly the H-Rat relations.

Generalizations?

Theorem

```
When \(\Sigma=\{a\}\) and \(\Gamma=\{a\}\) :
2-way transducers accept exactly the H-Rat relations.
```

Remember, with only $\Gamma=\{a\}$:

$$
\text { sweeping transducer }=H \text {-Rat }
$$

Generalizations?

Theorem

```
When \(\Sigma=\{a\}\) and \(\Gamma=\{a\}\) :
2-way transducers accept exactly the H-Rat relations.
```


2-way transducers $=$ sweeping transducers

Remember, with only $\Gamma=\{a\}$:

$$
\text { sweeping transducer }=H \text {-Rat }
$$

Generalizations?

Theorem

$$
\begin{aligned}
& \text { When } \Sigma=\{a\} \text { and } \Gamma=\{a\}: \\
& \text { 2-way transducers accept exactly the H-Rat relations. }
\end{aligned}
$$

2-way transducers $=$ sweeping transducers

Remember, with only $\Gamma=\{a\}$:

$$
\text { sweeping transducer }=H-R a t
$$

Question
Generalization to arbitrary \sum ?

Generalizations?

Theorem

$$
\begin{aligned}
& \text { When } \Sigma=\{a\} \text { and } \Gamma=\{a\}: \\
& \text { 2-way transducers accept exactly the H-Rat relations. }
\end{aligned}
$$

2-way transducers $=$ sweeping transducers

Remember, with only $\Gamma=\{a\}$:

$$
\text { sweeping transducer }=H \text {-Rat }
$$

Question
Generalization to arbitrary \sum ?
No.

Generalizations?

Theorem

$$
\begin{aligned}
& \text { When } \Sigma=\{a\} \text { and } \Gamma=\{a\} \text { : } \\
& \text { 2-way transducers accept exactly the H-Rat relations. }
\end{aligned}
$$

2-way transducers $=$ sweeping transducers

Remember, with only $\Gamma=\{a\}$:

$$
\text { sweeping transducer }=H \text {-Rat }
$$

Question
Generalization to arbitrary \sum ?
No.

$$
\begin{aligned}
& \text { with } \Sigma=\{\#, a\}: \\
R & =\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
\end{aligned}
$$

The counter example

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

The counter example

$$
R=\left\{\left(u, a^{k n}\right) \mid k, n \in \mathbb{N}, \# a^{k} \# \text { is a factor of } u\right\}
$$

Conclusion

Theorem
When $\Gamma=\{a\}$ and $\Sigma=\{a\}$:
sweeping transducer $=H$-Rat relations $=$ 2-way transducers

Conclusion

Theorem
When $\Gamma=\{a\}$ and $\Sigma=\{a\}$:
sweeping transducer $=H$-Rat relations $=$ 2-way transducers
With only $\Gamma=\{a\}$:
sweeping transducers $=H$-Rat \mp 2-way transducers

Conclusion

Theorem
When $\Gamma=\{a\}$ and $\Sigma=\{a\}$:
sweeping transducer $=H$-Rat relations $=$ 2-way transducers
With only $\Gamma=\{a\}$:
sweeping transducers $=H$-Rat \ddagger 2-way transducers

- 2-way $\left\{\begin{array}{c}\text { deterministic } \\ \text { unambiguous } \\ \text { functional }\end{array}\right\}$ accept rational relations.

Conclusion

Theorem
When $\Gamma=\{a\}$ and $\Sigma=\{a\}$:
sweeping transducer $=$ H-Rat relations $=$ 2-way transducers
With only $\Gamma=\{a\}$:
sweeping transducers $=H$-Rat \ddagger 2-way transducers

- 2-way $\left\{\begin{array}{c}\text { deterministic } \\ \text { unambiguous } \\ \text { functional }\end{array}\right\}$ accept rational relations.
- 2-way transducers are uniformizable by 1-way transducers.

Conclusion

Theorem
When $\Gamma=\{a\}$ and $\Sigma=\{a\}$:
sweeping transducer $=$ H-Rat relations $=$ 2-way transducers
With only $\Gamma=\{a\}$:
sweeping transducers $=H$-Rat \ddagger 2-way transducers

- 2-way $\left\{\begin{array}{c}\text { deterministic } \\ \text { unambiguous } \\ \text { functional }\end{array}\right\}$ accept rational relations.
- 2-way transducers are uniformizable by 1-way transducers.

Every thing is constructible.

Conclusion

Theorem
When $\Gamma=\{a\}$ and $\Sigma=\{a\}$:
sweeping transducer $=$ H-Rat relations $=$ 2-way transducers
With only $\Gamma=\{a\}$:
sweeping transducers $=H$-Rat \ddagger 2-way transducers

- 2-way $\left\{\begin{array}{c}\text { deterministic } \\ \text { unambiguous } \\ \text { functional }\end{array}\right\}$ accept rational relations.
- 2-way transducers are uniformizable by 1-way transducers.

Every thing is constructible.

Thank you for your attention.

