Caractérisation algébrique des relations acceptées par transducteurs bidirectionnels unaires

Christian Choffrut¹ et Bruno Guillon^{1,2}

¹LIAFA - Université Paris-Diderot, Paris 7 ²Dipartimento di Informatica - Università degli studi di Milano

11 juin 2015 Journée MDSC - Université Nice Sophia Antipolis - 2015 1-way automaton over $\boldsymbol{\Sigma}$

$$\begin{pmatrix} Q, q_{-}, F, \delta \end{pmatrix} \xleftarrow{}_{\text{transition set: } \subset Q \times \Sigma \times Q}$$

2-way automaton over Σ

2-way transducer over Σ , Γ

$$(\mathcal{A}, \phi) (Q, q_{-}, F, \delta) \xleftarrow{} production function: \delta \rightarrow Rat(\Gamma^*)$$

copy the input word

- copy the input word
- rewind the input tape

- copy the input word
- rewind the input tape
- append a copy of the input word

- copy the input word
- rewind the input tape
- append a copy of the input word

Rational operations

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

Kleene star

$$R^* = \{ (u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i (u_i, v_i) \in R \}$$

Rational operations

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

Kleene star

$$R^* = \{ (u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i \ (u_i, v_i) \in R \}$$

Definition $(Rat(\Sigma^* \times \Gamma^*))$

The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Rational operations

Union

$$R_1 \cup R_2$$

Componentwise concatenation

 $R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \}$

Kleene star

$$R^* = \{ (u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i \ (u_i, v_i) \in R \}$$

Definition $(Rat(\Sigma^* \times \Gamma^*))$

The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Theorem (Elgot, Mezei - 1965) 1-way transducers = the class of rational relations.

H-product

 $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

H-product

$$R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

Example: SQUARE = { $(w, ww) | w \in \Sigma^*$ } = Identity (i) Identity

- copy the input word
- rewind the input tape
- append a copy of the input word

H-product

$$R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

$$\mathbf{R}^{\mathsf{H}\star} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i \ (u, v_i) \in \mathbf{R}\}$$

H-product

$$R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► H-star

$$R^{H\star} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i (u, v_i) \in R\}$$

Example: UnaryMult =
$$\{(a^n, a^{kn}) | k, n \in \mathbb{N}\}$$
 = Identity^{H*}

Definition A relation *R* is in H- $Rat(\Sigma^* \times \Gamma^*)$ if

$$R = \bigcup_{0 \le i \le n} A_i \oplus B_i^{\mathsf{H}\star}$$

where for each i, A_i and B_i are rational relations.

Definition A relation *R* is in H- $Rat(\Sigma^* \times \Gamma^*)$ if

$$R = \bigcup_{0 \le i \le n} A_i \oplus B_i^{\mathsf{H}\star}$$

where for each i, A_i and B_i are rational relations.

Definition A relation R is in H-Rat $(\Sigma^* \times \Gamma^*)$ if

$$R = \bigcup_{0 \le i \le n} A_i \oplus B_i^{\mathsf{H}\star}$$

where for each i, A_i and B_i are rational relations.

 $\begin{array}{r} \mathsf{Proposition} \\ \mathsf{Rat} & \subsetneq & \mathsf{H-Rat} \end{array}$

Example

$$\left\{\left(a^{n},a^{kn}\right)\mid k,n\in\mathbb{N},\ k\geq 2\right\}$$

Definition A relation *R* is in H- $Rat(\Sigma^* \times \Gamma^*)$ if

$$R = \bigcup_{0 \le i \le n} A_i \oplus B_i^{\mathsf{H}^{\star}}$$

where for each i, A_i and B_i are rational relations.

 $\begin{array}{r} \mathsf{Proposition} \\ \mathsf{Rat} & \subsetneq & \mathsf{H-Rat} \end{array}$

Example

$$\left\{\left(a^{n},a^{2n}\right)\mid n\in\mathbb{N}\right\}\oplus\left\{\left(a^{n},a^{n}\right)\mid n\in\mathbb{N}\right\}^{\mathsf{H}^{\star}}$$

Definition A relation *R* is in H- $Rat(\Sigma^* \times \Gamma^*)$ if

$$R = \bigcup_{0 \le i \le n} A_i \oplus B_i^{\mathsf{H}\star}$$

where for each i, A_i and B_i are rational relations.

 $\begin{array}{r} \mathsf{Proposition} \\ \mathsf{Rat} & \subsetneq & \mathsf{H-Rat} \end{array}$

Example

$$\left\{ \left(a^{n}, a^{kn}\right) \mid k, n \in \mathbb{N}, \ k \ge 2 \right\}$$

Main result

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

Theorem (Elgot, Mezei - 1965)

1-way transducers = the class of rational relations.

Main result

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

Main result

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

Theorem (This talk)

$$2$$
-way transducers = the class of H-Rat relations.

Proof

- ► ⊇: easy
- ▶ ⊆: difficult part

2-way functional = MSO definable functions

 [Engelfriet, Hoogeboom - 2001]

 2-way general incomparable MSO definable relations

 [Engelfriet, Hoogeboom - 2001]

2-way functional = MSO definable functions

 [Engelfriet, Hoogeboom - 2001]

 2-way general incomparable MSO definable relations
 [Engelfriet, Hoogeboom - 2001]
 1-way simulation of 2-way functional transducer:
 decidable and constructible
 [Filiot et al. - 2013]

2-way functional = MSO definable functions

 [Engelfriet, Hoogeboom - 2001]
 2-way general incomparable MSO definable relations
 [Engelfriet, Hoogeboom - 2001]
 1-way simulation of 2-way functional transducer:
 decidable and constructible
 [Filiot et al. - 2013]

When Γ = {a}: ► 2-way unambiguous → 1-way

[Anselmo - 1990]

2-way functional = MSO definable functions

 [Engelfriet, Hoogeboom - 2001]

 2-way general incomparable MSO definable relations
 [Engelfriet, Hoogeboom - 2001]
 1-way simulation of 2-way functional transducer:
 decidable and constructible
 [Filiot et al. - 2013]

When Γ = {a}: • 2-way unambiguous → 1-way [Anselmo - 1990] • 2-way unambiguous = 2-way deterministic [Carnino, Lombardy - 2014]

Property The family of relations accepted by 2-way transducers is closed under \cup , \bigoplus and μ *.

Property

The family of relations accepted by 2-way transducers is closed under \cup , \bigoplus and μ *.

Proof.

- $R_1 \cup R_2$:
 - simulate T_1 or T_2

Property

The family of relations accepted by 2-way transducers is closed under \cup , \bigoplus and $\mu \star$.

Proof.

- $R_1 \cup R_2$:
 - simulate T_1 or T_2
- ► *R*₁ ⊕ *R*₂:
 - simulate T₁
 - rewind the input tape
 - simulate T₂

Property

The family of relations accepted by 2-way transducers is closed under \cup , \bigoplus and $\mu \star$.

Proof.

- $R_1 \cup R_2$:
 - simulate T_1 or T_2
- ► *R*₁ ⊕ *R*₂:
 - simulate T₁
 - rewind the input tape
 - simulate T₂

► *R*^{H★}:

- repeat an arbitrary number of times:
 - simulate T
 - rewind the input tape
- reach the right endmarker and accept

A first ingredient, a preliminary result:

Lemma With arbitrary Σ and $\Gamma = \{a\}$:

H-Rat is closed under
$$\cup$$
, \bigoplus and H^* .

Proof. Tedious formal computations...

We fix a transducer \mathcal{T} .

Consider border to border run segments;

We fix a transducer \mathcal{T} .

Consider border to border run segments;

We fix a transducer \mathcal{T} .

- Consider border to border run segments;
- Compose border to border segments;

We fix a transducer \mathcal{T} .

- Consider border to border run segments;
- Compose border to border segments;

 $R_1 \oplus R_2 \oplus R_3 = \{(u, v_1 v_2 v_3)\}$

We fix a transducer \mathcal{T} .

- Consider border to border run segments;
- Compose border to border segments;
- Conclude using the closure properties of *H*-*Rat*.

 $R_1 \oplus R_2 \oplus R_3 = \{(u, v_1 v_2 v_3)\}$

define a relation R_{b_i} , b_j

Second ingredient: The behavior of \mathcal{T} is given by the matrix $HIT^{H\star}$.

Second ingredient: The behavior of \mathcal{T} is given by the matrix HIT^{H*} .

Remark

The relation accepted by T is a union of entries of HIT^{H*} .

Second ingredient: The behavior of \mathcal{T} is given by the matrix HIT^{H*} .

Remark

The relation accepted by \mathcal{T} is a union of entries of $HIT^{H^{\star}}$.

 $\Gamma = \{a\}$, by closure property:

entries of $HIT \in H$ - $Rat \implies$ entries of $HIT^{H*} \in H$ -Rat

Second ingredient: The behavior of T is given by the matrix HIT^{H*} .

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^{H^*} .

 $\Gamma = \{a\}, \text{ by closure property:}$ entries of $HIT \in H-Rat \implies \text{entries of } HIT^{H*} \in H-Rat$ Proposition sweeping transducers \subseteq H-Rat

Second ingredient: The behavior of T is given by the matrix HIT^{H*} .

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^{H^{\star}}.

 $\Gamma = \{a\}, \text{ by closure property:}$ entries of $HIT \in H-Rat \implies \text{entries of } HIT^{H*} \in H-Rat$ Proposition sweeping transducers = H-Rat

Second ingredient: The behavior of \mathcal{T} is given by the matrix HIT^{H*} .

Remark

The relation accepted by \mathcal{T} is a union of entries of $HIT^{H^{\star}}$.

 $\Gamma = \{a\}$, by closure property:

entries of $HIT \in H$ - $Rat \implies$ entries of $HIT^{H*} \in H$ -Rat

Second ingredient: The behavior of T is given by the matrix HIT^{H*} .

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^{H^*} .

 $\Gamma = \{a\}, \text{ by closure property:}$ entries of $HIT \in H-Rat \implies$ entries of $HIT^{H*} \in H-Rat$ Proposition unary 2-way transducers \subseteq H-Rat

Generalizations?

Theorem When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers accept exactly the H-Rat relations.

Theorem When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers accept exactly the H-Rat relations.

Remember, with only $\Gamma = \{a\}$:

sweeping transducer = *H*-*Rat*

Theorem When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers accept exactly the H-Rat relations. 2-way transducers = sweeping transducers Remember, with only $\Gamma = \{a\}$: sweeping transducer = H-Rat

Theorem When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers accept exactly the H-Rat relations. 2-way transducers = sweeping transducers Remember, with only $\Gamma = \{a\}$: sweeping transducer = H-Rat

Question Generalization to arbitrary Σ ?

Theorem When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers accept exactly the H-Rat relations. 2-way transducers = sweeping transducers Remember, with only $\Gamma = \{a\}$: sweeping transducer = H-Rat

Question

Generalization to arbitrary Σ ?

Theorem When $\Sigma = \{a\}$ and $\Gamma = \{a\}$: 2-way transducers accept exactly the H-Rat relations. 2-way transducers = sweeping transducers Remember, with only $\Gamma = \{a\}$: sweeping transducer = H-Rat

Question

Generalization to arbitrary Σ ?

No.

with
$$\Sigma = \{\#, a\}$$
:

$$R = \left\{ \left(u, a^{kn}
ight) \mid k, n \in \mathbb{N}, \ \# a^k \# ext{ is a factor of } u
ight\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \#a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

$$R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \ \# a^k \# \text{ is a factor of } u \right\}$$

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: sweeping transducer = H-Rat relations = 2-way transducers

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: sweeping transducer = H-Rat relations = 2-way transducers With only $\Gamma = \{a\}$: sweeping transducers = H-Rat \subsetneq 2-way transducers

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: sweeping transducer \blacksquare H-Rat relations \blacksquare 2-way transducers With only $\Gamma = \{a\}$: sweeping transducers \blacksquare H-Rat \subsetneq 2-way transducers \bullet 2-way $\begin{cases} deterministic \\ unambiguous \\ functional \end{cases}$ accept rational relations.

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: sweeping transducer = H-Rat relations = 2-way transducers

With only $\Gamma = \{a\}$: sweeping transducers = *H*-*Rat* \subsetneq 2-way transducers

- 2-way { deterministic unambiguous functional } accept rational relations.
- 2-way transducers are uniformizable by 1-way transducers.

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: sweeping transducer = H-Rat relations = 2-way transducers

With only $\Gamma = \{a\}$: sweeping transducers = *H-Rat* \subsetneq 2-way transducers

▶ 2-way transducers are uniformizable by 1-way transducers.

Every thing is **constructible**.

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: sweeping transducer = H-Rat relations = 2-way transducers

With only $\Gamma = \{a\}$: sweeping transducers = *H-Rat* \subsetneq 2-way transducers

▶ 2-way transducers are uniformizable by 1-way transducers.

Every thing is **constructible**.

Thank you for your attention.