An algebraic characterization of unary two-way transducers

Christian Choffrut ${ }^{1}$, Bruno Guillon ${ }^{1,2}$

${ }^{1}$ LIAFA, Université Paris Diderot, Paris 7
${ }^{2}$ Dipartimento di Informatica, Università degli Studi di Milano

$$
\text { July 2, } 2014
$$

Two-way automaton over Σ

A
 $(Q, \Sigma, I, F, \delta)$

Two-way automaton over Σ

Two-way transducer over Σ, Γ

$$
(Q, \Sigma, I, F, \delta) \stackrel{(A, \phi)}{L_{\text {transition set: } \subseteq Q \times \bar{\Sigma} \times\{-1,0,+1\} \times Q}}
$$

Two-way transducer over Σ, Γ

$(Q, \Sigma, I, F, \delta) \stackrel{(A, \phi)}{\longleftrightarrow}$ production function: $\delta \rightarrow \Gamma^{*}$ \longrightarrow transition set: $\subseteq Q \times \bar{\Sigma} \times\{-1,0,+1\} \times Q$

One-way simple example

$$
\Sigma=\Gamma=\{a, b\}
$$

$$
\text { accepts: }\left\{(u, v) \mid v=a^{|u|_{a}}\right\}
$$

Simple Examples

$$
\Sigma=\Gamma=\{a, b\}
$$

accepts: $\left\{(w, w) \mid w \in \Sigma^{*}\right\}$

Simple Examples

$$
\Sigma=\Gamma=\{a, b\}
$$

Simple Examples

$$
\Sigma=\Gamma=\{a, b\}
$$

(b, b, +1)

$(a, \epsilon,-1)$

back to \triangleright

Simple Examples

$$
\Sigma=\Gamma=\{a, b\}
$$

Simple Examples

$$
\Sigma=\Gamma=\{a, b\}
$$

Simple Unary Examples

$$
\Sigma=\Gamma=\{a\}
$$


```
accepts: {( }\mp@subsup{a}{}{n},\mp@subsup{a}{}{n})|n\in\mathbb{N}
```


Simple Unary Examples

$$
\Sigma=\Gamma=\{a\}
$$

($a, \epsilon,-1$)

back to \triangleright

Simple Unary Examples

$$
\Sigma=\Gamma=\{a\}
$$

Simple Unary Examples

$$
\Sigma=\Gamma=\{a\}
$$

Relations

Series

$$
R \subseteq \Sigma^{*} \times \Gamma^{*}
$$

Series

$$
R \subseteq \Sigma^{*} \times \Gamma^{*}
$$

the image of $u \in \Sigma^{*}$ is $R(u)=\{v \mid(u, v) \in R\}$

Series

$$
R \subseteq \Sigma^{*} \times \Gamma^{*}
$$

the image of $u \in \sum^{*}$ is
$R(u)=\{v \mid(u, v) \in R\}$

$$
R: \begin{array}{lll}
\Sigma^{*} & \rightarrow \mathcal{P}\left(\Gamma^{*}\right) \\
u & \mapsto & R(u)
\end{array}
$$

Relations

$$
R \subseteq \Sigma^{*} \times \Gamma^{*}
$$

the image of $u \in \Sigma^{*}$ is
$R(u)=\{v \mid(u, v) \in R\}$

$$
s \in \mathcal{P}\left(\Gamma^{*}\right)\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle
$$

the coefficient of $u \in \Sigma^{*}$ is

$$
\langle s, u\rangle=R(u)
$$

$$
R: \quad \begin{array}{llll}
\Sigma^{*} & \rightarrow \mathcal{P}\left(\Gamma^{*}\right) \\
u & \mapsto & \mapsto(u)
\end{array}
$$

Relations

$$
s \in \mathcal{P}\left(\Gamma^{*}\right)\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle
$$

Examples

$$
\begin{array}{rrr}
& \Sigma=\Gamma=\{a, b\} & s=\sum_{w \in \Sigma^{*}}\left\{\left.a^{\prime}\right|_{a}\right\} w \\
R=\left\{\left(w, a^{|w|_{a}}\right)\right\} & s=\sum_{w \in \Sigma^{*}}\{w w\} w \\
R=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\} & \Sigma=\Gamma=\{a\} & s=\sum_{a^{n} \in \Sigma^{*}}\left\{a^{k n} \mid k \in \mathbb{N}\right\} a^{n}
\end{array}
$$

Rational operations...

- Sum:

$$
s+t=\sum_{u \in \Sigma^{*}}(\langle s, u\rangle \cup\langle t, u\rangle) u
$$

Rational operations...

- Sum:

$$
s+t=\sum_{u \in \Sigma^{*}}(\langle s, u\rangle \cup\langle t, u\rangle) u
$$

- Cauchy product:

$$
s \cdot t=\sum_{u \in \Sigma^{*}} \sum_{u_{1} u_{2}=u}\left\langle s, u_{1}\right\rangle\left\langle t, u_{2}\right\rangle u
$$

Rational operations...

- Sum:

$$
s+t=\sum_{u \in \Sigma^{*}}(\langle s, u\rangle \cup\langle t, u\rangle) u
$$

- Cauchy product:

$$
s \cdot t=\sum_{u \in \Sigma^{*}} \sum_{u_{1} u_{2}=u}\left\langle s, u_{1}\right\rangle\left\langle t, u_{2}\right\rangle u
$$

- Kleene star:

$$
s^{*}=\sum_{u \in \sum^{*}} \sum_{u_{1} u_{2} \cdots u_{n}=u}\left\langle s, u_{1}\right\rangle\left\langle s, u_{2}\right\rangle \cdots\left\langle s, u_{n}\right\rangle u
$$

Rational operations are one-way natural operations

Rational operations are one-way natural operations

Definition

The class of Rational Series is the smallest class of series

Rational operations are one-way natural operations

Definition
The class of Rational Series is the smallest class of series

- that contains Polynomials;

Rational operations are one-way natural operations

Definition
The class of Rational Series is the smallest class of series

- that contains Polynomials;
- and which is closed under rational operations.

Rational operations are one-way natural operations

Definition
The class of Rational Series is the smallest class of series

- that contains Polynomials;
- and which is closed under rational operations.

Theorem
One-way transducers accepts exactly the class of rational series.

Hadamard operations...

- Hadamard product:

$$
s \oplus t=\sum_{u \in \Sigma^{*}}\langle s, u\rangle \cdot\langle t, u\rangle u
$$

Hadamard operations...

- Hadamard product:

$$
s \oplus t=\sum_{u \in \Sigma^{*}}\langle s, u\rangle \cdot\langle t, u\rangle u
$$

- Hadamard star:

$$
s^{\mathrm{H} \star}=\sum_{n \in \mathbb{N}} \underbrace{s \oplus(\leftrightarrow \oplus \oplus S}_{n \text { times }}=\sum_{u \in \Sigma^{*}}\langle s, u\rangle^{*} u
$$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $S \oplus t$

Hadamard operations are natural for two-way transducers

Hadamard product: $s \oplus t$

Hadamard operations are natural for two-way transducers

$$
\Sigma=\Gamma=\{a, b\}
$$

$(b, b,+1)$

Hadamard operations are natural for two-way transducers

$$
\Sigma=\Gamma=\{a, b\}
$$

Hadamard operations are natural for two-way transducers

$$
\Sigma=\Gamma=\{a, b\}
$$

Hadamard operations are natural for two-way transducers

$$
\Sigma=\Gamma=\{a, b\}
$$

Hadamard operations are natural for two-way transducers

$$
\Sigma=\Gamma=\{a\}
$$

Hadamard operations are natural for two-way transducers

$$
\Sigma=\Gamma=\{a\}
$$

$$
(a, \epsilon,-1)
$$

back to \triangleright

Hadamard operations are natural for two-way transducers

$$
\Sigma=\Gamma=\{a\}
$$

Hadamard operations are natural for two-way transducers

$$
\Sigma=\Gamma=\{a\}
$$

Hadamard-rational

Definition
$s \in \mathcal{P}\left(\Gamma^{*}\right)\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$ is H-Rat if

$$
s=\sum_{i} \alpha_{i} \oplus \beta_{i}^{\mathrm{H} \star}
$$

where the sum is finite and $\alpha_{i} \mathrm{~s}$ and $\beta_{i} \mathrm{~s}$ are rational.

Hadamard-rational

Definition
$s \in \mathcal{P}\left(\Gamma^{*}\right)\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$ is H-Rat if

$$
s=\sum_{i} \alpha_{i} \oplus \beta_{i}^{\mathrm{H} \star}
$$

where the sum is finite and $\alpha_{i} \mathrm{~s}$ and $\beta_{i} \mathrm{~s}$ are rational.

Property

Rat ¢f H-Rat

Hadamard-rational

Definition
$s \in \mathcal{P}\left(\Gamma^{*}\right)\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$ is H-Rat if

$$
s=\sum_{i} \alpha_{i} \leftrightarrow \beta_{i}^{\mathrm{H} \star}
$$

where the sum is finite and $\alpha_{i} \mathrm{~s}$ and $\beta_{i} \mathrm{~s}$ are rational.

```
Property
Rat \(\subsetneq H-R a t\)
Lemma
If \(\Gamma^{*}\) is commutative,
then H -Rat is closed under finite sum, H -product and H -star.
```


Main Result

Definition

$s \in \mathcal{P}\left(\Gamma^{*}\right)\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$ is H-Rat if

$$
s=\sum_{i} \alpha_{i} \oplus \beta_{i}^{\mathrm{H} \star}
$$

where the sum is finite and $\alpha_{i} \mathrm{~s}$ and $\beta_{i} \mathrm{~s}$ are rational.

Main Result

Definition

$s \in \mathcal{P}\left(\Gamma^{*}\right)\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$ is H-Rat if

$$
s=\sum_{i} \alpha_{i} \oplus \beta_{i}^{\mathrm{H} \star}
$$

where the sum is finite and $\alpha_{i} \mathrm{~s}$ and $\beta_{i} \mathrm{~s}$ are rational.

Theorem
Unary two-way transducers accepts exactly H-Rat series.

Analogy with Probabilistic Automata

Theorem (Anselmo,Bertoni, 1994)
Acceptation probability of two-way finite automata is of the form:

$$
\tau(w)=\alpha(w) \times \frac{1}{\beta(w)}
$$

where α and β are rational series of $\mathbb{Q}\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$.

Known results

Theorem (Engelfriet, Hoogeboom)
Two-way transducers
versus
MSO logic

Known results

Theorem (Engelfriet, Hoogeboom)

Two-way transducers
 versus

functional
functions

Known results

Theorem (Engelfriet, Hoogeboom)

Two-way transducers	versus	MSO logic
functional	$=$	functions

Known results

Theorem (Engelfriet, Hoogeboom)

Two-way transducers versus MSO logic

functional \square functions
general
relations

Known results

Theorem (Engelfriet, Hoogeboom)

Two-way transducers versus MSO logic

functional	functions
general incomparable relations	

Known results

Theorem (Engelfriet, Hoogeboom)

Two-way transducers	versus	MSO logic
functional		functions
general	incomparable	relations

Theorem (Filiot, Gauwin, Reinier, Servais)
From functional two-way to one-way transducers?

Known results

Theorem (Engelfriet, Hoogeboom)

Two-way transducers	versus	MSO logic
functional		functions
general	incomparable	relations

Theorem (Filiot, Gauwin, Reinier, Servais)
From functional two-way to one-way transducers?

> decidable

Known results

Theorem (Engelfriet, Hoogeboom)
Two-way transducers versus MSO logic
functional
general incomparable relations

Theorem (Filiot, Gauwin, Reinier, Servais)
From functional two-way to one-way transducers?
decidable and contructible

Known results

Theorem (Engelfriet, Hoogeboom)

Two-way transducers versus MSO logic

functional $=$ functions

general incomparable relations

Theorem (Filiot, Gauwin, Reinier, Servais)
From functional two-way to one-way transducers?
decidable and contructible

Known results

Theorem (Engelfriet, Hoogeboom)

Two-way transducers versus MSO logic

functional $=$ functions

general incomparable relations

Theorem (Filiot, Gauwin, Reinier, Servais) unary alphabets?

From functional two-way to one-way transducers?
decidable and contructible

Crossing sequences. . .

Crossing sequences...

Crossing sequences. . .

Crossing sequences...

Crossing sequences...

Crossing sequences. . .

Crossing sequences. . .

Crossing sequences. . .

Crossing sequences...

Crossing sequences. . .

Crossing sequences. . .

Crossing sequences. . .

Get around the problems...

- Consider only loop-free runs;

Get around the problems...

- Consider only loop-free runs;
- Consider the case $\Gamma=\{a\}$, or parikh-equivalence.

Particular transducers

Γ^{*} is commutative

Theorem
For any deterministic or functional transducer
there exists an equivalent one-way transducer.

Particular transducers

Γ^{*} is commutative

Theorem
For any deterministic or functional transducer
there exists an equivalent one-way transducer.

Theorem
For any transducer accepting a relation R,
\exists a one-way transducer accepting a rational uniformization of R

Particular transducers

Γ^{*} is commutative

Theorem
For any deterministic or functional transducer
there exists an equivalent one-way transducer.

Theorem
For any transducer accepting a relation R,
\exists a one-way transducer accepting a rational uniformization of R

Input unary case

$$
\Sigma=\{a\}
$$

Lemma
Central loops of a two-way transducer produce finitely many rational output languages.

Input unary case

$$
\Sigma=\{a\}
$$

Lemma
Central loops of a two-way transducer produce finitely many rational output languages.

We can take into account central loops in one-way simulation.

Get around the problems...

$$
\Sigma=\{a\}
$$

- Consider only loop-free runs,
- Consider the case $\Gamma=\{a\}$, or parikh-equivalence.

Get around the problems...

$$
\Sigma=\{a\}
$$

- Consider particular parts of run: hits (from border to border)
- Consider the case $\Gamma=\{a\}$, or parikh-equivalence.

One-way simulation of loop-free hits

Hit: a border to border run

One-way simulation of loop-free hits

Hit: a border to border run

- reading u

One-way simulation of loop-free hits

Hit: a border to border run

- reading u
- outputing v

One-way simulation of loop-free hits

Hit: a border to border run

- reading u
- outputing v
- no visit to endmarkers

One-way simulation of loop-free hits

Hit: a border to border run

- reading u
define a relation $R_{b_{i}, b_{j}}$
- outputing v
- no visit to endmarkers

One-way simulation of loop-free hits

Hit: a border to border run

- reading u
- outputing v
- no visit to endmarkers

One-way simulation of loop-free hits

Hit: a border to border run

- reading u
- outputing v
- no visit to endmarkers

HIT $=$

define a relation

One-way simulation of loop-free hits

Hit: a border to border run

- reading u
- outputing v
- no visit to endmarkers

HIT $=$

Composition of hits

Given:

- a b_{0} to b_{x} hit over u producing v_{0};
- and a b_{x} to b_{1} hit over u producing v_{1}
we may compose them into a b_{0} to b_{1} run over u producing $v_{0} v_{1}$.

Composition of hits

Given:

- a b_{0} to b_{x} hit over u producing v_{0};
- and a b_{x} to b_{1} hit over u producing v_{1}
we may compose them into a b_{0} to b_{1} run over u producing $v_{0} v_{1}$.
double-hit relations are:

$$
R_{b_{0}, b_{1}}^{(2)}=\bigcup_{b_{x} \in Q \times\{\triangleright, \triangleleft\}} R_{b_{0}, b_{x}} \oplus R_{b_{x}, b_{1}}
$$

Composition of hits

Given:

- a b_{0} to b_{x} hit over u producing v_{0};
- and a b_{x} to b_{1} hit over u producing v_{1}
we may compose them into a b_{0} to b_{1} run over u producing $v_{0} v_{1}$.
double-hit relations are:

$$
R_{b_{0}, b_{1}}^{(2)}=\bigcup_{b_{x} \in Q \times\{\triangleright, \triangleleft\}} R_{b_{0}, b_{x}} \oplus R_{b_{x}, b_{1}}
$$

coefficient $\left(b_{0}, b_{1}\right)$ of HIT $\oplus H I T$.

Composition of hits

Given:

- a b_{0} to b_{x} hit over u producing v_{0};
- and a b_{x} to b_{1} hit over u producing v_{1}
we may compose them into a b_{0} to b_{1} run over u producing $v_{0} v_{1}$.
triple-hit relations are:

$$
R_{b_{0}, b_{1}}^{(3)}=\bigcup_{b_{x_{1}}, b_{x_{2}} \in Q \times\{\triangleright, \triangleleft\}} R_{b_{0}, b_{x_{1}}} \oplus R_{b_{x_{1}}, b_{x_{2}}} \oplus R_{b_{x_{2}}, b_{1}}
$$

coefficient $\left(b_{0}, b_{1}\right)$ of HIT $\oplus H I T \oplus H I T$.

Composition of hits

Given:

- a b_{0} to b_{x} hit over u producing v_{0};
- and a b_{x} to b_{1} hit over u producing v_{1}
we may compose them into a b_{0} to b_{1} run over u producing $v_{0} v_{1}$.
multi-hit relations are:

$$
R_{b_{0}, b_{1}}^{(H \star)}=\bigcup_{n \in \mathbb{N}} \bigcup_{b_{x_{1}}, \ldots, b_{x_{n}}} R_{b_{0}, b_{x_{1}}} \oplus \ldots, R_{b_{x_{n}}, b_{1}}
$$

coefficient $\left(b_{0}, b_{1}\right)$ of $H I T^{\text {H* }}$.

Accepting runs

An accepting run is a particular composition of hits.

Accepting runs

An accepting run is a particular composition of hits.

Look at coefficients $R_{b_{0}, b_{1}}^{(\mathrm{H})}$ of $H I T^{\mathrm{H} \star}$ such that:

- b_{0} corresponds to the initial configuration
- b_{1} corresponds to some accepting configuration

Accepting runs

An accepting run is a particular composition of hits.

Look at coefficients $R_{b_{0}, b_{1}}^{(\mathrm{H})}$ of $H I T^{H \star}$ such that:

- b_{0} corresponds to the initial configuration
- b_{1} corresponds to some accepting configuration
$R=\bigcup_{b_{1} \text { accepting }} R_{b_{0}, b_{1}}^{(H \star)}$ is the relation accepted by the transducer.

Accepting runs

An accepting run is a particular composition of hits.

Look at coefficients $R_{b_{0}, b_{1}}^{(\mathrm{H})}$ of $H I T^{H \star}$ such that:

- b_{0} corresponds to the initial configuration
- b_{1} corresponds to some accepting configuration
$R=\bigcup_{b_{1} \text { accepting }} R_{b_{0}, b_{1}}^{(H \star)}$ is the relation accepted by the transducer.

Theorem
R is in H-Rat.
(by closure properties of H-Rat)

Conclusion

Theorem
Unary two-way transducers accept series: $s=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \times}$.

Conclusion

Theorem
Unary two-way transducers accept series: $s=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}$.

Corollary
Every unary two-way transducer can be made sweeping.

Conclusion

Theorem
Unary two-way transducers accept series: $s=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \times}$.

Corollary
Every unary two-way transducer can be made sweeping.

Theorem

are equivalent to one-way transducer.

Conclusion

Theorem
Unary two-way transducers accept series: $s=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \times}$.

Corollary
Every unary two-way transducer can be made sweeping.

Theorem

are equivalent to one-way transducer.

Conclusion

Theorem
Unary two-way transducers accept series: $\left.s=\sum_{i} \alpha_{i} \oplus\right)_{i}^{H \times}$.

Corollary
Every unary two-way transducer can be made sweeping.

Theorem

are equivalent to one-way transducer.

Grazie infinite.

